AMSC/CMSC 460: Final Exam

Prof. Doron Levy
May 16, 2019

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 2 hours.
- Good luck!

Additional instructions:

- You should solve only 6 out of the 7 problems. Each problem $=10$ points.
- No extra credit will be given for solving more than 6 problems.
- If you solve more than 6 problems, you should clearly indicate which problems you would like to be graded - otherwise, the first 6 problems in each part will be graded.

Solve 6 problems out of the following 7 problems

1. Find the most accurate approximation to the second derivative, $f^{\prime \prime}(x)$, using $f(x-2 h), f(x), f(x+4 h)$. What is the order of accuracy of this approximation?

Solution:

Using the method of undetermined coefficients, we let

$$
f^{\prime \prime}(x) \approx A f(x-2 h)+B f(x)+C f(x+4 h)
$$

We now write the Taylor expansions:

$$
f(x-2 h)=f(x)-2 h f^{\prime}(x)+\frac{(2 h)^{2}}{2} f^{\prime \prime}(x)-\frac{(2 h)^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right),
$$

and

$$
f(x+4 h)=f(x)+4 h f^{\prime}(x)+\frac{(4 h)^{2}}{2} f^{\prime \prime}(x)+\frac{(4 h)^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right) .
$$

This leads to the following system:

$$
\left\{\begin{array}{l}
A+B+C=0, \\
-2 A+4 C=0, \\
\frac{h^{2}}{2}(4 A+16 C)=1 .
\end{array}\right.
$$

The solution of this system is $A=\frac{1}{6 h^{2}}, B=-\frac{1}{4 h^{2}}, C=\frac{1}{12 h^{2}}$, which means that the approximation is

$$
f^{\prime \prime}(x) \approx \frac{2 f(x-2 h)-3 f(x)+f(x+4 h)}{12 h^{2}}+O(h)
$$

2. Let $D(h)$ be a first-order approximation to $f^{\prime}(x)$ such that

$$
f^{\prime}(x)=D(h)+C_{1} h+C_{2} h^{2}+\ldots
$$

(a) Use Richardson's extrapolation to find a second-order approximation of $f^{\prime}(x)$.

Solution:

By changing h to $2 h$ we have

$$
f^{\prime}(x)=D(2 h)+C_{1} 2 h+C_{2}(2 h)^{2}+\ldots
$$

Hence

$$
f^{\prime}(x)=2 D(h)-D(2 h)+O\left(h^{2}\right) .
$$

(b) What is the result of part (a) if

$$
D(h)=\frac{f(x+h)-f(x-3 h)}{4 h} .
$$

Solution:

$$
2 D(h)-D(2 h)=2 \frac{f(x+h)-f(x-3 h)}{4 h}-\frac{f(x+2 h)-f(x-6 h)}{8 h}
$$

3. Find a linear polynomial, $P_{1}^{*}(x)$, that minimizes

$$
\int_{-1}^{1} \frac{\left(x^{2}-Q_{1}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x,
$$

among all polynomials $Q_{1}(x)$ of degree ≤ 1.

Solution:

This is a weighted least squares problem. The orthogonal polynomials are $T_{0}=1$ and $T_{1}=x$. The solution of this problem is given by

$$
P_{1}^{*}(x)=c_{0} T_{0}(x)+c_{1} T_{1}(x),
$$

with

$$
c_{0}=\frac{\left\langle x^{2}, T_{0}\right\rangle_{w}}{\left\|T_{0}\right\|_{w}^{2}}=\frac{\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x}{\pi}=\frac{\frac{\pi}{2}}{\pi}=\frac{1}{2},
$$

and

$$
c_{1}=\frac{\left\langle x^{2}, T_{1}\right\rangle_{w}}{\left\|T_{1}\right\|_{w}^{2}}=\frac{\int_{-1}^{1} \frac{x^{2} \cdot x}{\sqrt{1-x^{2}}} d x}{\frac{\pi}{2}}=0 .
$$

Hence $P_{1}^{*}(x)=\frac{1}{2}$.
4. (a) Find a quadrature of the form

$$
\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right),
$$

that is exact for all polynomials of degree ≤ 3.
Solution: The orthogonal polynomials that correspond to this problem are the Hermite polynomials: $H_{0}=1, H_{1}=2 x$, and $H_{2}=2 x H_{1}-2 H_{0}=4 x^{2}-2$. Since we need to quadrature points, we are looking for the roots of $H_{2}(x)$, which are $\pm \frac{1}{\sqrt{2}}$. All that remains is to find the coefficients A_{0} and A_{1}, which we do by setting the quadrature to be exact for 1 and x :

$$
\sqrt{\pi}=\int_{-\infty}^{\infty} 1 e^{-x^{2}} d x=A_{0}+A_{1}
$$

and

$$
0=\int_{-\infty}^{\infty} x e^{-x^{2}} d x=A_{0}\left(-\frac{1}{\sqrt{2}}\right)+A_{1} \frac{1}{\sqrt{2}}
$$

Hence $A_{0}=A_{1}=\frac{\sqrt{\pi}}{2}$, and the approximation is

$$
\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x \approx \frac{\sqrt{\pi}}{2}\left[f\left(-\frac{1}{\sqrt{2}}\right)+f\left(\frac{1}{\sqrt{2}}\right)\right] .
$$

(b) Use the result of part (a) to approximate $\int_{-\infty}^{\infty} x^{6} e^{-x^{2}} d x$.

Solution:

$$
\frac{\sqrt{\pi}}{2}\left[\left(-\frac{1}{\sqrt{2}}\right)^{6}+\left(\frac{1}{\sqrt{2}}\right)^{6}\right]=\frac{\sqrt{\pi}}{8}
$$

5. Consider the ODE $y^{\prime}(t)=f(t, y(t))$ together with the initial condition $y(0)=y_{0}$.
(a) Write an equivalent integral formulation to the ODE and show how to obtain Euler's method using a rectangular quadrature.

Solution:

Integrating the ODE from t to $t+h$ we get

$$
y(t+h)=y(t)+\int_{t}^{t+h} f(s, y(s)) d s
$$

Replacing the integral with a rectangular quadrature, we get Euler's method: $w_{0}=y_{0}$, and $w_{i+1}=w_{i}+h f\left(t_{i}, w_{i}\right)$.
(b) Let $f(t, y(t))=t^{2} y(t)$. Compute two iterations of Euler's method for the ODE $y^{\prime}=f(t, y(t))$, starting from $y(0)=1$. Assume that the time step is $h=0.1$.

Solution: $w_{0}=1$. Hence $w_{1}=w_{0}+h f(0,1)=w_{0}=1$, and $w_{2}=w_{1}+$ $0.1 f(0.1,1)=1+(0.1)^{3}$.
6. Let $f(x)=x^{4}$ in $[-1,1]$.
(a) Write the Lagrange form of the interpolating polynomial $P_{2}(x)$, of degree ≤ 2, that interpolates the values of $f(x)$ at 3 Chebyshev points.

Solution:

The problem requires 3 Chebyshev points which means that we need to find the roots of the cubic Chebyshev polynomial, $T_{3}(x)$. Since $T_{0}=1$ and $T_{1}=x$, $T_{2}=2 x^{-} 1$, and $T_{3}=4 x^{3}-3 x$. Hence the roots we are looking for are $\pm \frac{\sqrt{3}}{2}, 0$. The values of the given function at these points are: $f(0)=0$,
$f(-\sqrt{3} / 2)=f(\sqrt{3} / 2)=9 / 16$. Hence, the Lagrange form of the interpolating polynomial is:

$$
P_{2}(x)=\frac{9}{16} \frac{(x-0)\left(x-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{\sqrt{3}}{2}-0\right)\left(-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)}+\frac{9}{16} \frac{(x-0)\left(x+\frac{\sqrt{3}}{2}\right)}{\left(\frac{\sqrt{3}}{2}-0\right)\left(\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right)}=\frac{3}{4} x^{2} .
$$

(b) Explain the advantages of interpolating at Chebyshev points.

Solution:

The interpolation error is given by

$$
f(x)-P_{n}(x)=\frac{f^{(n+1)}\left(\xi_{n}\right)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Interpolating in Chebyshev points minimizes the product term in the error.
7. Let $f(x)=e^{-x}-x$.
(a) Prove that $f(x)$ must have an least one root in the interval $[0,10]$.

Solution: $f(x)$ is a continuous function. $f(0)>0$, and $f(10)<0$. According to the midvalue theorem, there is at least one point $c \in(0,10$ for which $f(c)=0$.
(b) Explain why $f(x)$ has only one root in the interval [0,10]. Any root of $f(x)$ satisfies $e^{-x}=x$. Plot e^{-x} and x and see that they intersect exactly once.

Solution:

(c) Write Newton's method for approximating a root of $f(x)$, and compute two iterations of the method, starting from $x_{0}=1$.

Solution:

Newton's method is given by

$$
\left.x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right.}\right) .
$$

With $x_{0}=1$, we have

$$
x_{1}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{e^{-1}-1}{-e^{-1}-1}=\frac{2}{1+e} .
$$

And

$$
x_{2}=\frac{2}{1+e}-\frac{e^{-\frac{2}{1+e}}-\frac{2}{1+e}}{-e^{-\frac{2}{1+e}}-1} .
$$

- Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \quad \forall n \geq 1 . \\
& \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=0, \quad m \neq n . \\
& \int_{-1}^{1} \frac{\left(T_{n}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{cc}
\pi, & n=0, \\
\frac{\pi}{2}, & n=1,2, \ldots
\end{array}\right. \\
& \int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C, \quad \int \frac{x^{2} d x}{\sqrt{1-x^{2}}}=\frac{1}{2}\left(\arcsin x-x \sqrt{1-x^{2}}\right)+C .
\end{aligned}
$$

- Hermite polynomials

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \quad \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

