AMSC/CMSC 460: Midterm 2

Prof. Doron Levy

April 18, 2019

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points)

1. (a) Assume $h>0$. Find the most accurate approximation of $f^{\prime \prime}(x)$ using $f(x-h)$, $f(x+h)$, and $f(x+2 h)$.
(b) What is the order of accuracy of this approximation?
2. (a) Let $w(x)=\sin (x)$. Find two polynomials, $P_{0}(x)$ (of degree 0) and $P_{1}(x)$ (of degree 1) that are orthogonal with respect to $w(x)$ on $[0, \pi]$.
(b) Normalize the polynomials you found in part (a).

You may use: $\int x \sin (x) d x=\sin (x)-x \cos (x)$ and $\int x^{2} \sin (x) d x=2 x \sin (x)+$ $\left(2-x^{2}\right) \cos (x)$.
3. Let $f(x)=x^{2}+1$. Find the weighted linear least squares approximation to $f(x)$ with respect to $w(x)=2$ on $[-1,1]$.
4. Find a cubic spline, $s(x)$, that interpolates

$$
\begin{array}{c||c|c|c}
x & -1 & 0 & 1 \\
\hline y & 1 & 0 & 1
\end{array}
$$

on $[-1,1]$ given that $s^{\prime \prime}(-1)=s^{\prime \prime}(1)=0$. Use the interpolation points as the spline nodes.

Note: Unfortunately you cannot solve this problem by guessing the answer. Solving it does require some calculations.

