AMSC/CMSC 460: Midterm 2

Prof. Doron Levy

April 18, 2019

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points)

1. (a) Assume $h>0$. Find the most accurate approximation of $f^{\prime \prime}(x)$ using $f(x-h)$, $f(x+h)$, and $f(x+2 h)$.

Solution:

Using the method of undetermined coefficients, we approximation

$$
f^{\prime \prime}(x) \approx A f(x-h)+B f(x+h)+C f(x+2 h)
$$

We write the Taylor expansions:

$$
\begin{aligned}
f(x-h) & =f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+\ldots \\
f(x+h) & =f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+\ldots \\
f(x+2 h) & =f(x)+2 h f^{\prime}(x)+\frac{(2 h)^{2}}{2} f^{\prime \prime}(x)+\frac{(2 h)^{3}}{6} f^{\prime \prime \prime}(x)+\ldots
\end{aligned}
$$

This leads to the following system of equations:

$$
\begin{aligned}
A+B+C & =0 \\
-A+B+2 C & =0 \\
A+B+4 C & =\frac{2}{h^{2}}
\end{aligned}
$$

The solution of this system is: $A=\frac{1}{3 h^{2}}, B=-\frac{1}{h^{2}}, C=\frac{2}{3 h^{2}}$. Hence, the approximation is

$$
f^{\prime \prime}(x) \approx \frac{f(x-h)-3 f(x+h)+2 f(x+2 h)}{3 h^{2}} .
$$

(b) What is the order of accuracy of this approximation?

Solution:

The coefficient of the next term in the expansion $\left(f^{\prime \prime \prime}(x)\right)$ is not zero. Hence this is the error term, which means that the method is $O(h)$, i.e., a first-order approximation.
2. (a) Let $w(x)=\sin (x)$. Find two polynomials, $P_{0}(x)$ (of degree 0) and $P_{1}(x)$ (of degree 1) that are orthogonal with respect to $w(x)$ on $[0, \pi]$.

Solution:

The first polynomial is $P_{0}(x)=1$. For $P_{1}(x)$ we set $P_{1}(x)=x-c P_{0}=x-c$. We find c such that P_{0} and P_{1} are orthogonal to each other:

$$
0=\left\langle P_{0}, P_{1}\right\rangle_{w}=\int_{0}^{\pi}(x-c) \sin (x) d x=\ldots=-2 c+\pi
$$

Hence $c=\frac{\pi}{2}$ and $P_{1}(x)=x-\frac{\pi}{2}$.
(b) Normalize the polynomials you found in part (a).

You may use: $\int x \sin (x) d x=\sin (x)-x \cos (x)$ and $\int x^{2} \sin (x) d x=2 x \sin (x)+$ $\left(2-x^{2}\right) \cos (x)$.

Solution:

Let $\tilde{P}_{0}(x)=c P_{0}(x)$. Hence

$$
1=\left\langle\tilde{P}_{0}, \tilde{P}_{0}\right\rangle_{w}=c^{2} \int_{0}^{\pi} \sin (x) d x=\ldots=2 c^{2}
$$

Hence, $c=\frac{1}{\sqrt{2}}$ which means that $\tilde{P}_{0}(x)=\frac{1}{\sqrt{2}}$.
For the second polynomial, we let $\tilde{P}_{1}(x)=c P_{1}(x)$. Hence

$$
1=\left\langle\tilde{P}_{1}, P_{1}\right\rangle_{w}=c^{2} \int_{0}^{\pi}\left(x-\frac{\pi}{2}\right)^{2} \sin (x) d x=\ldots=c^{2}\left(\frac{\pi^{2}}{2}-4\right) .
$$

This means that $c=\frac{1}{\sqrt{\frac{\pi^{2}}{2}-4}}$, and

$$
\tilde{P}_{1}(x)=\frac{x-\frac{\pi}{2}}{\sqrt{\frac{\pi^{2}}{2}-4}} .
$$

3. Let $f(x)=x^{2}+1$. Find the weighted linear least squares approximation to $f(x)$ with respect to $w(x)=2$ on $[-1,1]$.

Solution:

The first polynomial is $P_{0}(x)=1$. For $P_{1}(x)$ we set $P_{1}(x)=x-c P_{0}(x)=x-c$ and find c such that P_{0} and P_{1} are orthogonal to each other:

$$
0=\left\langle P_{0}, P_{1}\right\rangle_{w}=\int_{-1}^{1}(x-c) 2 d x=\ldots=-4 c
$$

which means that $c=0$ and $P_{1}(x)=x$.
Now, the linear least squares approximation can be written as

$$
Q_{1}(x)=c_{0} P_{0}(x)+c_{1} P_{1}(x) .
$$

Here

$$
c_{0}=\frac{\left\langle f, P_{0}\right\rangle_{w}}{\left\|P_{0}\right\|_{w}}=\frac{\int_{-1}^{1}\left(x^{2}+1\right) 2 d x}{\int_{-1}^{1} 1 \cdot 1 \cdot 2 d x}=\ldots=\frac{4}{3}
$$

and

$$
c_{1}=\frac{\left\langle f, P_{1}\right\rangle_{w}}{\left\|P_{1}\right\|_{w}}=\frac{\int_{-1}^{1}\left(x^{2}+1\right) x 2 d x}{\int_{-1}^{1} x^{2} 2 d x}=0 .
$$

Therefore

$$
Q_{1}(x)=c_{0} P_{0}(x)=\frac{4}{3}
$$

4. Find a cubic spline, $s(x)$, that interpolates

$$
\begin{array}{c||c|c|c}
x & -1 & 0 & 1 \\
\hline y & 1 & 0 & 1
\end{array}
$$

on $[-1,1]$ given that $s^{\prime \prime}(-1)=s^{\prime \prime}(1)=0$. Use the interpolation points as the spline nodes.

Note: Unfortunately you cannot solve this problem by guessing the answer. Solving it does require some calculations.

Solution:

Let

$$
s(x)=\left\{\begin{array}{rr}
s_{0}(x), & -1 \leq x \leq 0, \\
s_{1}(x), & 0 \leq x \leq 1,
\end{array}=\left\{\begin{array}{lr}
a_{0} x^{3}+b_{0} x^{2}+c_{0} x+d_{0}, \quad-1 \leq x \leq 0, \\
a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}, \quad 0 \leq x \leq 1
\end{array}\right.\right.
$$

From $s(0)=0$ we have $d_{0}=d_{1}=0$. The other interpolation conditions are: $s(-1)=1$, i.e., $-a_{0}+b_{0}-c_{0}=1$, and $s(1)=1$, from which $a_{1}+b_{1}+c_{1}=1$. From $s_{0}^{\prime}(0)=s_{1}^{\prime}(0)$ we have $c_{0}=c_{1}$, and from $s_{0}^{\prime \prime}(0)=s_{1}^{\prime \prime}(0)$ we have $b_{0}=b_{1}$.
Then $s^{\prime \prime}(-1)=-6 a_{0}+2 b_{0}=0$, and $s^{\prime \prime}(1)=6 a_{1}+2 b_{1}=0$. Solving the system, we have $a_{0}=1 / 2, b_{0}=3 / 2, c_{0}=0, d_{0}=0$, and $a_{1}=-1 / 2, b_{1}=3 / 2, c_{1}=0$, $d_{1}=0$.
This means that the spline we are seeking for is:

$$
s(x)=\left\{\begin{array}{rr}
\frac{1}{2} x^{3}+\frac{3}{2} x^{2}, & -1 \leq x \leq 0 \\
-\frac{1}{2} x^{3}+\frac{3}{2} x^{2}, & 0 \leq x \leq 1
\end{array}\right.
$$

