AMSC/CMSC 460: Final Exam

Prof. Doron Levy
May 17, 2018

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 2 hours.
- Good luck!

Additional instructions:

- The exam has 2 parts: part A and part B. Each part has 4 problems.
- You should solve only 3 out of the 4 problems in each part.
- No extra credit will be given for solving more than 3 problems in each part.
- If you solve more than 3 problems, you should clearly indicate which problems you would like to be graded - otherwise, the first 3 problems in each part will be graded.

Part A: Choose 3 problems out of problems 1-4 (Each problem $=10$ points)

1. Find the most accurate approximation to $f^{\prime}(x)$ using $f\left(x-\frac{h}{2}\right), f(x), f(x+h)$. What is the order of accuracy of this approximation?
2. Find a quadrature of the form

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree ≤ 3.
3. (a) Write the Lagrange form of the linear interpolation polynomial that interpolates $f(x)$ at $x=-1,1$.
(b) Use the interpolant you obtained in part (a) to find a weighted quadrature of the form

$$
\int_{-2}^{2} x f(x) d x=A_{0} f(-1)+A_{1} f(1) .
$$

4. Find a linear polynomial, $P_{1}^{*}(x)$, that minimizes

$$
\int_{-\infty}^{\infty} e^{-x^{2}}\left(x^{3}-Q_{1}(x)\right)^{2} d x
$$

among all polynomials $Q_{1}(x)$ of degree ≤ 1.

Part B: Choose 3 problems out of problems 5-8 (Each problem $=10$ points)

5. Find values for a, b, c, d such that the following function, $s(x)$, is a cubic spline on $[0,2]$ that satisfies $s^{\prime}(2)=0$,

$$
s(x)= \begin{cases}x^{3}-a x^{2}+b, & 0 \leq x \leq 1 \\ c x^{3}+d x^{2}, & 1 \leq x \leq 2\end{cases}
$$

6. Use the Gram-Schmidt process to find orthonormal polynomials of degrees 0 and 1 with respect to the inner product

$$
\langle f, g\rangle_{w}=\int_{0}^{\infty} f(x) g(x) e^{-2 x} d x
$$

7. Explain what the floating point representation of $\frac{1}{10}$ looks like on a 32-bit machine.
8. Find a Cholesky decomposition of

$$
A=\left(\begin{array}{ccc}
16 & 12 & 4 \\
12 & 13 & 3 \\
4 & 3 & 17
\end{array}\right)
$$

- Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \quad \forall n \geq 1 . \\
& \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=0, \quad m \neq n . \\
& \int_{-1}^{1} \frac{\left(T_{n}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x= \begin{cases}\pi, & n=0, \\
\frac{\pi}{2}, & n=1,2, \ldots\end{cases} \\
& \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\pi .
\end{aligned}
$$

- Hermite polynomials

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \quad \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

- Other formulas

$$
\begin{aligned}
& \int x e^{a x} d x=\frac{e^{a x}}{a}\left(x-\frac{1}{a}\right) . \\
& \int x^{2} e^{a x} d x=\frac{e^{a x}}{a}\left(x^{2}-\frac{2 x}{a}+\frac{2}{a^{2}}\right) .
\end{aligned}
$$

