AMSC/CMSC 460: Midterm 2

Prof. Doron Levy
April 17, 2018

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points)

1. (a) Explain the advantages of interpolating at Chebyshev points.
(b) Compute the unique interpolating polynomial of degree ≤ 2 that interpolates data sampled from $f(x)=x^{2}$ at an appropriate number of Chebyshev points on the interval $[-1,1]$.
(c) Repeat part (b) with $f(x)=x^{4}$.

Note: Chebyshev polynomials are given by

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \forall n \geq 1
$$

2. Find a spline of degree $2, S(x)$, on the interval $[0,2]$, for which $S(0)=0, S(1)=2$, $S(2)=0$, and $S^{\prime}(0)=0$. Use the points $0,1,2$ as the knots.
3. Use the Gram-Schmidt process to find orthogonal polynomials of degrees $0,1,2$, on the interval $[0,1]$, with respect to the weight $w(x)=1+x$.

Note: you do not need to normalize the polynomials. For the quadratic polynomial, $P_{2}(x)$, write the coefficients but do not explicitly calculate the integrals.
4. Let $f(x)=x^{2}$. Find the quadratic polynomial $Q_{2}^{*}(x)$ that minimizes

$$
\int_{-\infty}^{\infty} e^{-x^{2}}\left(f(x)-Q_{2}(x)\right)^{2} d x
$$

among all quadratic polynomials $Q_{2}(x)$.
Note: You may use:

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

