AMSC/CMSC 460: Midterm 2

Prof. Doron Levy
April 17, 2018

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points)

1. (a) Explain the advantages of interpolating at Chebyshev points.

Solution: When interpolating data that is sampled from a function $f(x)$ at $n+1$ points x_{0}, \ldots, x_{n}, the interpolation error is given by

$$
\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

When considering the interval $[-1,1]$, choosing x_{0}, \ldots, x_{n} as Chebyshev points (i.e. the $n+1$ roots of $T_{n+1}(x)$, minimizes the product term in the error, i.e.,

$$
\max _{x \in[-1,1]} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

has the smallest value out of all possible choices of interpolation points.
(b) Compute the unique interpolating polynomial of degree ≤ 2 that interpolates data sampled from $f(x)=x^{2}$ at an appropriate number of Chebyshev points on the interval $[-1,1]$.

Solution: Since we are asked to compute a quadratic polynomial that interpolates data that is sampled from a quadratic function, we can immediately use the uniqueness of the interpolating polynomial and conclude that the answer must be the function itself, i.e., $P_{2}(x)=x^{2}$. Any direct calculation must lead to this answer.
(c) Repeat part (b) with $f(x)=x^{4}$.

Solution: Here we should compute the answer. We are seeking a quadratic interpolant, which means that we need 3 values. The 3 values should be the roots of the cubic Chebyshev polynomial $T_{3}(x)=4 x^{3}-3 x$:

$$
x_{0}=-\frac{\sqrt{3}}{2}, \quad x_{1}=0, \quad x_{2}=\frac{\sqrt{3}}{2} .
$$

Computing the divided differences, we get

$$
f\left(x_{0}\right)=\frac{9}{16}, \quad f\left[x_{0}, x_{1}\right]=-\frac{9}{8 \sqrt{3}}, \quad f\left[x_{0}, x_{1}, x_{2}\right]=\frac{3}{4} .
$$

Hence, the interpolating polynomial is

$$
P_{2}(x)=\frac{9}{16}-\frac{9}{8 \sqrt{3}}\left(x+\frac{\sqrt{3}}{2}\right)+\frac{3}{4}\left(x+\frac{\sqrt{3}}{2}\right) x=\ldots=\frac{3}{4} x^{2} .
$$

Note: Chebyshev polynomials are given by

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \forall n \geq 1 .
$$

2. Find a spline of degree $2, S(x)$, on the interval $[0,2]$, for which $S(0)=0, S(1)=2$, $S(2)=0$, and $S^{\prime}(0)=0$. Use the points $0,1,2$ as the knots.

Solution:

Consider a quadratic spline of the form

$$
S(x)=\left\{\begin{array}{ll}
S_{0}(x), & 0 \leq x \leq 1 \\
S_{1}(x), & 1 \leq x \leq 2
\end{array}= \begin{cases}a_{0}+a_{1} x+a_{2} x^{2}, & 0 \leq x \leq 1 \\
b_{0}+b_{1} x+b_{2} x^{2}, & 1 \leq x \leq 2\end{cases}\right.
$$

We write 6 equations for the 6 unknowns. First we have the 4 interpolation conditions:

- $S_{0}(0)=0 \Longrightarrow a_{0}=0$.
- $S_{0}(1)=2 \Longrightarrow a_{0}+a_{1}+a_{2}=2$.
- $S_{1}(1)=2 \Longrightarrow b_{0}+b_{1}+b_{2}=2$.
- $S_{1}(2)=0 \Longrightarrow b_{0}+2 b_{1}+4 b_{2}=0$.

The continuity of the first derivative implies that

$$
S_{0}^{\prime}(1)=S_{1}^{\prime}(1) \Longrightarrow a_{1}+2 a_{2}=b_{1}+2 b_{2} .
$$

Finally, we have the additional condition at the first derivative:

$$
S^{\prime}(0)=0 \Longrightarrow a_{1}=0
$$

Solving for $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}$ we end up with

$$
S(x)= \begin{cases}2 x^{2}, & 0 \leq x \leq 1 \\ -8+16 x-6 x^{2}, & 1 \leq x \leq 2\end{cases}
$$

3. Use the Gram-Schmidt process to find orthogonal polynomials of degrees $0,1,2$, on the interval $[0,1]$, with respect to the weight $w(x)=1+x$.

Note: you do not need to normalize the polynomials. For the quadratic polynomial, $P_{2}(x)$, write the coefficients but do not explicitly calculate the integrals.

Solution: We note that we are only asked to find orthogonal polynomials without normalizing them. Set $P_{0}(x)=1$. We then let $P_{1}(x)=x-c P_{0}(x)$. The orthogonality condition, $\left\langle P_{0}, P_{1}\right\rangle_{w}=0$, implies that $\left\langle P_{0}, x-c P_{0}\right\rangle_{w}=$, i.e., $\left\langle P_{0}, x\right\rangle_{w}=$ $c\left\langle P_{0}, P_{0}\right\rangle_{w}$, or

$$
c=\frac{\left\langle P_{0}, x\right\rangle_{w}}{\left\|P_{0}\right\|_{w}^{2}}=\frac{\int_{0}^{1} x \cdot 1 \cdot(1+x) d x}{\int_{0}^{1} 1^{2}(1+x) d x}=\ldots=\frac{5}{9}
$$

Hence $P_{1}(x)=x-\frac{5}{9}$. For the quadratic polynomial, we set

$$
P_{2}(x)=x^{2}-c P_{0}(x)-d P_{1}(x) .
$$

The orthogonality condition $\left\langle P_{0}, P_{2}\right\rangle_{w}=0$ implies that

$$
c=\frac{\left\langle x^{2}, P_{0}\right\rangle_{w}}{\left\|P_{0}\right\|_{w}^{2}}=\frac{\int_{0}^{1} x^{2} \cdot 1 \cdot(1+x) d x}{\frac{3}{2}}
$$

The orthogonality condition $\left\langle P_{1}, P_{2}\right\rangle_{w}=0$ implies that

$$
d=\frac{\left\langle x^{2}, P_{1}\right\rangle_{w}}{\left\|P_{1}\right\|_{w}^{2}}=\frac{\int_{0}^{1} x^{2}\left(x-\frac{5}{9}\right)(x+1) d x}{\int_{0}^{1}\left(x-\frac{5}{9}\right)^{2}(x+1) d x}
$$

4. Let $f(x)=x^{2}$. Find the quadratic polynomial $Q_{2}^{*}(x)$ that minimizes

$$
\int_{-\infty}^{\infty} e^{-x^{2}}\left(f(x)-Q_{2}(x)\right)^{2} d x
$$

among all quadratic polynomials $Q_{2}(x)$.
Note: You may use:

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

Solution: We have the appropriate orthogonal polynomials:

$$
H_{0}(1)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2
$$

We note that the norms are

$$
\left\|H_{0}\right\|^{2}=\sqrt{\pi}, \quad\left\|H_{1}\right\|^{2}=2 \sqrt{\pi}, \quad\left\|H_{2}\right\|^{2}=8 \sqrt{\pi}
$$

Set

$$
Q_{2}^{*}(x)=c_{0} H_{0}(x)+c_{1} H_{1}(x)+c_{2} H_{2}(x)
$$

Then

$$
c_{0}=\frac{\left\langle f, H_{0}\right\rangle_{w}}{\left\|H_{0}\right\|_{w}^{2}}=\frac{\int_{-\infty}^{\infty} e^{-x^{2}} x^{2} d x}{\sqrt{\pi}}=\frac{\frac{\sqrt{\pi}}{2}}{\sqrt{\pi}}=\frac{1}{2} .
$$

$$
\begin{gathered}
c_{1}=\frac{\left\langle f, H_{1}\right\rangle_{w}}{\left\|H_{1}\right\|_{w}^{2}}=\frac{\int_{-\infty}^{\infty} e^{-x^{2}} x^{2} \cdot 2 x d x}{2 \sqrt{\pi}}=0 . \\
c_{2}=\frac{\left\langle f, H_{2}\right\rangle_{w}}{\left\|H_{2}\right\|_{w}^{2}}=\frac{\int_{-\infty}^{\infty} e^{-x^{2}} x^{2}\left(4 x^{2}-2\right) d x}{8 \sqrt{\pi}}=\frac{4 \Gamma\left(\frac{5}{2}\right)-2 \Gamma\left(\frac{3}{2}\right)}{8 \sqrt{\pi}}=\frac{4 \frac{3}{4} \sqrt{\pi}-2 \frac{1}{2} \sqrt{\pi}}{8 \sqrt{\pi}}=\frac{1}{4} .
\end{gathered}
$$

Hence

$$
Q_{2}^{*}(x)=\frac{1}{2} H_{0}(x)+\frac{1}{4} H_{2}(x)=\frac{1}{2}+\frac{1}{4}\left(4 x^{2}-2\right)=x^{2}
$$

as should be...

