Example file

Doron Levy

January 31, 2019

1. Newton's method. Newton's method for finding a root of a differentiable function $f(x)$ is given by:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

We note that for the formula (1) to be well-defined, we must require that $f^{\prime}\left(x_{n}\right) \neq 0$ for any x_{n}. To provide us with a list of successive approximation, Newton's method (1) should be supplemented with one initial guess, say x_{0}. The equation (1) will then provide the values of x_{1}, x_{2}, \ldots
One way of obtaining Newton's method is the following: Given a point x_{n} we are looking for the next point x_{n+1}. A linear approximation of $f(x)$ at x_{n+1} is

$$
f\left(x_{n+1}\right) \approx f\left(x_{n}\right)+\left(x_{n+1}-x_{n}\right) f^{\prime}\left(x_{n}\right)
$$

Since x_{n+1} should be an approximation to the root of $f(x)$, we set $f\left(x_{n+1}\right)=$ 0 , rearrange the terms and get (1).
2. The secant method. The secant method is obtained by replacing the derivative in Newton's method, $f^{\prime}\left(x_{n}\right)$, by the following finite difference approximation:

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}} \tag{2}
\end{equation*}
$$

The secant method is thus:

$$
\begin{equation*}
x_{n+1}=x_{n}-f\left(x_{n}\right)\left[\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\right] . \tag{3}
\end{equation*}
$$

The secant method (3) should be supplemented by two initial values, say x_{0}, and x_{1}. Using these two values, (3) will provide the values of x_{2}, x_{3}, \ldots.

