AMSC/CMSC 460: HW \#11

Due: Thursday 5/2/19 (in class)

Please submit the solution to at least one problem in LaTeX.

Note: All problems should be done as Gaussian integration.

1. Find a formula of the form

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

that is exact for all polynomials of degree 5 .
2. Find a formula of the form

$$
\int_{0}^{\infty} f(x) e^{-x} d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree 3.
Hint: Use Laguerre polynomials.
3. Find a formula of the form

$$
\int_{0}^{1} f(x) x d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree 3.
Hint: Start with Grahm-Schmidt process to find the orthogonal polynomials. x_{0} and x_{1} are the roots of the quadratic polynomial that belongs to this orthogonal family.
4. Find a formula of the form

$$
\int_{0}^{1} f(x) x^{2} d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree 3 .

