AMSC/CMSC 460: HW \#12

Due: Thursday 5/9/19 (in class)

For problems 1-3 please use Matlab.
The solution to these problems should include the Matlab code, and a graph of the computed solution.

1. Write a program to solve each problem on the indicated intervals using Euler's method. Each problem should be solved 3 times, with different values of h. Use $h=1 / 10,1 / 100,1 / 1000$.
(a)

$$
\left\{\begin{array}{l}
x^{\prime}=t+x^{2}, \quad t \in[0,1] \\
x(0)=1
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
x^{\prime}=x-t, \quad t \in[1,2] \\
x(1)=1
\end{array}\right.
$$

2. Repeat problem (1) with the Modified Euler method.
3. Use Matlab's built-in RK45 routine to solve the ODEs in problem (1).
4. Let L be an exact quantity that is approximated by $D(h)$ such that

$$
L=D(h)+a_{1} h+a_{3} h^{3}+a_{5} h^{4}+\ldots
$$

Use Richardson's extrapolation to obtain a third-order approximation of L. Use again Richardson's extrapolation to obtain a fourth-order approximation of L.
5. Let I be an integral that is approximated by $A(h)$ usch that

$$
I=A(h)+a_{1} \sqrt{h}+a_{2} h+a_{3} h^{3 / 2}+\ldots
$$

Use Romberg's integration to find a first-order aprpoximation to I. Repeat the process to find an approximation of order $3 / 2$.

