AMSC/CMSC 460: HW \#2
 Due: Tuesday 2/12/19 (in class)

Please submit the solution to at least one problem in LaTeX.

1. The function

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

has a unique root $f(x)=0$ at $x=0$.
(a) Show that Newton's method gives $x_{n+1}=-x_{n}^{3}$. Conclude that the method converges if and only if $\left|x_{0}\right|<1$.
(b) Draw graphs to illustrate the first 3 iterates $\left(x_{1}, x_{2}, x_{3}\right)$ when $x_{0}=.25, x_{0}=.5$, and $x_{0}=1.5$.
(c) Write the secant method for the same function $f(x)$. If $x_{0}=0.25$ and $x_{1}=0.35$, what is x_{2} ?
2. Let p be a positive number. What is the value of the following expression?

$$
x=\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}}
$$

Hint: observe that x can be written as the limit of a sequence for which the elements are defined as $x_{n+1}=\sqrt{p+x_{n}}$. Assume that x_{n} converges. What does it converge to? There is no need to prove convergence.
3. Let $p>1$. What is the value of the following continued fraction?

$$
x=\frac{2}{p+\frac{2}{p+\frac{2}{p+\cdots}}}
$$

Hint: use the same procedure as in the previous question.
4. Write down two different fixed-point procedures for finding a zero of the function $f(x)=$ $3 x^{2}+4 \sin (x)-2$.
5. Assume that R is a constant. If the following iterative methods converges, what will it converge to?

$$
x_{n+1}=\frac{x_{n}\left(3 x_{n}^{2}+R\right)}{x_{n}^{2}+3 R} .
$$

6. Write a Matlab program to implement Newton's method for root finding. Use your code to run 5 iterations of Newton's method for $f(x)=x^{3}-3 x^{2}+x-3$. Note that $f(3)=0$. Plot the error in each iteration as a function of the iteration number.
7. Write a Matlab program to implement the bisection method. Use this program to compute a positive root of $f(x)=x^{2}-4 x \sin x+(2 \sin x)^{2}-1$. Stop when $|f(x)|<0.01$.
