Due: Tuesday 2/26/19 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Assume that a and b are arbitrary constants. Show that every matrix of the form

$$
A=\left(\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right)
$$

has an LU factorization. Does it have a Doolittle factorization?
2. Find a Doolittle factorization of

$$
A=\left(\begin{array}{cc}
1 & 5 \\
3 & 15
\end{array}\right)
$$

(i.e., an LU factorization in which L is a unit lower triangular).
3. Verify that the following matrices are positive definite and find their Cholesky factorization:
i.

$$
A=\left(\begin{array}{ccc}
4 & -1 & 1 \\
-1 & 3 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

ii.

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 6 & 2 \\
2 & 2 & 5
\end{array}\right)
$$

4. Use Matlab to find the Cholesky factorization of
i.

$$
A=\left(\begin{array}{cccc}
4 & 0 & 2 & 1 \\
0 & 3 & -1 & 1 \\
2 & -1 & 6 & 3 \\
1 & 1 & 3 & 8
\end{array}\right)
$$

ii.

$$
A=\left(\begin{array}{cccc}
4 & 1 & 1 & 1 \\
1 & 3 & 0 & -1 \\
1 & 0 & 2 & 1 \\
1 & -1 & 1 & 4
\end{array}\right)
$$

5. Determine the LU factorization of

$$
A=\left(\begin{array}{ccc}
9 & 10 & 0 \\
12 & 26 & 4 \\
0 & 9 & 12
\end{array}\right)
$$

in which L is a lower triangular matrix with fours on its main diagonal.
6. If A has a Doolittle factorization, what is a simple formula for the determinant of A ?
7. Use Gaussian elimination with scaled row pivoting to solve the following linear systems. Round all calculations to three digits after the decimal point.
i.

$$
\begin{aligned}
& 2.12 x_{1}-2.12 x_{2}+51.3 x_{3}+100 x_{4}=\pi, \\
& 0.333 x_{1}-0.333 x_{2}-12.2 x_{3}+19.7 x_{4}=\sqrt{2}, \\
& 6.19 x_{1}+8.2 x_{2}-1.00 x_{3}-2.01 x_{4}=0, \\
& -5.73 x_{1}+6.12 x_{2}+x_{3}-x_{4}=-1 .
\end{aligned}
$$

ii.

$$
\begin{aligned}
& \pi x_{1}+\sqrt{2} x_{2}-x_{3}+x_{4}=0 \\
& e x_{1}-x_{2}+x_{3}+2 x_{4}=1 \\
& x_{1}+x_{2}-\sqrt{3} x_{3}+x_{4}=2 \\
& -x_{1}-x_{2}+x_{3}-\sqrt{5} x_{4}=3
\end{aligned}
$$

