AMSC/CMSC 460: HW \#7
Due: Thursday 3/28/19 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Read pages 41-44 in the lecture notes on Hermite interpolation. Find a quartic polynomial (written in Newton's form, i.e., using divided differences with repetitions) that takes these values: $p(0)=1, p^{\prime}(0)=-1, p(1)=-2, p^{\prime}(1)=2$, and $p(2)=2$, This is problem is very similar to Example 3.19 in the notes. Check that the polynomial you obtained satisfies these interpolation conditions.
2. A natural cubic spline is defined as a cubic spline for which the second derivative is zero at the first and last knots. Find a natural cubic spline function whose knots are $-3,0,1$ and that takes these values

$$
\begin{array}{c|c|c|c}
x & -3 & 0 & 1 \\
\hline y & 1 & -2 & 4
\end{array}
$$

3. Determine all the values of a, b, c, d, e for which the following function is a cubic spline

$$
f(x)= \begin{cases}a(x-2)^{2}+b(x-1)^{3}, & x \in(-\infty, 1], \\ c(x-2)^{2}, & x \in[1,3], \\ d(x-2)^{2}+e(x-3)^{3}, & x \in[3, \infty) .\end{cases}
$$

Next, determine the values of the parameters so that the cubic spline interpolates this table

x	0	1	4
y	3	-1	5

4. Use Matlab's built-in spline routine to plot a cubic spline function that interpolates the following 11 points:

$$
x_{i}=i / 10, \quad y_{i}=e^{x_{i}}, \quad i=0, \ldots 10
$$

If you have access to Matlab's spline toolbox, use the csape routine to plot the spline function that interpolates this exponential data with different boundary conditions (try not-a-knot, periodic, etc.). See https://www.mathworks.com/help/curvefit/csape.html

