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2 Methods for Solving Nonlinear Problems

2.1 Preliminary Discussion

In this chapter we will learn methods for approximating solutions of nonlinear algebraic
equations. We will limit our attention to the case of finding roots of a single equation
of one variable. Thus, given a function, f(x), we will be be interested in finding points
x⇤, for which f(x⇤) = 0. A classical example that we are all familiar with is the case in
which f(x) is a quadratic equation. If, f(x) = ax2 + bx + c, it is well known that the
roots of f(x) are given by

x⇤
1,2 =

�b ±
p
b2 � 4ac

2a
.

These roots may be complex or repeat (if the discriminant vanishes). This is a simple
case in which the can be computed using a closed analytic formula. There exist formulas
for finding roots of polynomials of degree 3 and 4, but these are rather complex. In more
general cases, when f(x) is a polynomial of degree that is > 5, formulas for the roots
no longer exist. Of course, there is no reason to limit ourselves to study polynomials,
and in most cases, when f(x) is an arbitrary function, there are no analytic tools for
calculating the desired roots. Instead, we must use approximation methods. In fact,
even in cases in which exact formulas are available (such as with polynomials of degree 3
or 4) an exact formula might be too complex to be used in practice, and approximation
methods may quickly provide an accurate solution.

An equation f(x) = 0 may or may not have solutions. We are not going to focus on
finding methods to decide whether an equation has a solutions or not, but we will look
for approximation methods assuming that solutions actually exist. We will also assume
that we are looking only for real roots. There are extensions of some of the methods that
we will describe to the case of complex roots but we will not deal with this case. Even
with the simple example of the quadratic equation, it is clear that a nonlinear equation
f(x) = 0 may have more than one root. We will not develop any general methods for
calculating the number of the roots. This issue will have to be dealt with on a case by
case basis. We will also not deal with general methods for finding all the solutions of a
given equation. Rather, we will focus on approximating one of the solutions.

The methods that we will describe, all belong to the category of iterative methods.
Such methods will typically start with an initial guess of the root (or of the neighborhood
of the root) and will gradually attempt to approach the root. In some cases, the sequence
of iterations will converge to a limit, in which case we will then ask if the limit point
is actually a solution of the equation. If this is indeed the case, another question of
interest is how fast does the method converge to the solution? To be more precise, this
question can be formulated in the following way: how many iterations of the method
are required to guarantee a certain accuracy in the approximation of the solution of the
equation.
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2.1.1 Are there any roots anywhere?

There really are not that many general tools to knowing up front whether the root-
finding problem can be solved. For our purposes, there most important issue will be to
obtain some information about whether a root exists or not, and if a root does exist, then
it will be important to make an attempt to estimate an interval to which such a solution
belongs. One of our first attempts in solving such a problem may be to try to plot the
function. After all, if the goal is to solve f(x) = 0, and the function f(x) can be plotted
in a way that the intersection of f(x) with the x-axis is visible, then we should have a
rather good idea as of where to look for for the root. There is absolutely nothing wrong
with such a method, but it is not always easy to plot the function. There are many
cases, in which it is rather easy to miss the root, and the situation always gets worse
when moving to higher dimensions (i.e., more equations that should simultaneously be
solved). Instead, something that is sometimes easier, is to verify that the function f(x)
is continuous (which hopefully it is) in which case all that we need is to find a point a
in which f(a) > 0, and a point b, in which f(b) < 0. The continuity will then guarantee
(due to the intermediate value theorem) that there exists a point c between a and b for
which f(c) = 0, and the hunt for that point can then begin. How to find such points
a and b? Again, there really is no general recipe. A combination of intuition, common
sense, graphics, thinking, and trial-and-error is typically helpful. We would now like to
consider several examples:

Example 2.1
A standard way of attempting to determine if a continuous function has a root in an
interval is to try to find a point in which it is positive, and a second point in which it
is negative. The intermediate value theorem for continuous functions then guarantees
the existence of at least one point for which the function vanishes. To demonstrate this
method, consider f(x) = sin(x) � x + 0.5. At x = 0, f(0) = 0.5 > 0, while at x = 5,
clearly f(x) must be negative. Hence the intermediate value theorem guarantees the
existence of at least one point x⇤ 2 (0, 5) for which f(x⇤) = 0.

Example 2.2
Consider the problem e�x = x, for which we are being asked to determine if a solution
exists. One possible way to approach this problem is to define a function f(x) = e�x�x,
rewrite the problem as f(x) = 0, and plot f(x). This is not so bad, but already requires
a graphic calculator or a calculus-like analysis of the function f(x) in order to plot
it. Instead, it is a reasonable idea to start with the original problem, and plot both
functions e�x and x. Clearly, these functions intersect each other, and the intersection
is the desirable root. Now, we can return to f(x) and use its continuity (as a di↵erence
between continuous functions) to check its sign at a couple of points. For example, at
x = 0, we have that f(0) = 1 > 0, while at x = 1, f(1) = 1/e � 1 < 0. Hence, due
to the intermediate value theorem, there must exist a point x⇤ in the interval (0, 1) for
which f(x⇤) = 0. At that point x⇤ we have e�x⇤

= x⇤. Note that while the graphical
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argument clearly indicates that there exists one and only one solution for the equation,
the argument that is based on the intermediate value theorem provides the existence of
at least one solution.

A tool that is related to the intermediate value theorem is Brouwer’s fixed point
theorem:

Theorem 2.3 (Brouwer’s Fixed Point Theorem) Assume that g(x) is continuous
on the closed interval [a, b]. Assume that the interval [a, b] is mapped to itself by g(x),
i.e., for any x 2 [a, b], g(x) 2 [a, b]. Then there exists a point c 2 [a, b] such that
g(c) = c. The point c is a fixed point of g(x).

The theorem is demonstrated in Figure 2.1. Since the interval [a, b] is mapped to
itself, the continuity of g(x) implies that it must intersect the line x in the interval [a, b]
at least once. Such intersection points are the desirable fixed points of the function g(x),
as guaranteed by Theorem 2.3.

Figure 2.1: An illustration of the Brouwer fixed point theorem

Proof. Let f(x) = x � g(x). Since g(a) 2 [a, b] and also g(b) 2 [a, b], we know that
f(a) = a � g(a) 6 0 while f(b) = b � g(b) > 0. Since g(x) is continuous in [a, b], so is
f(x), and hence according to the intermediate value theorem, there must exist a point
c 2 [a, b] at which f(c) = 0. At this point g(c) = c. ⌅

How much does Theorem 2.3 add in terms of tools for proving that a root exists
in a certain interval? In practice, the actual contribution is rather marginal, but there
are cases where it adds something. Clearly if we are looking for roots of a function
f(x), we can always reformulate the problem as a fixed point problem for a function
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g(x) by defining g(x) = f(x) + x. Usually this is not the only way in which a root
finding problem can be converted into a fixed point problem. In order to be able to
use Theorem 2.3, the key point is always to look for a fixed point problem in which the
interval of interest is mapped to itself.

Example 2.4
To demonstrate how the fixed point theorem can be used, consider the function f(x) =
ex � x2 � 3 for x 2 [1, 2]. Define g(x) = ln(x2 + 3). Fixed points of g(x) is a root of
f(x). Clearly, g(1) = ln 4 > ln e = 1 and g(2) = ln(7) < ln(e2) = 2, and since g(x) is
continuous and monotone in [1, 2], we have that g([1, 2]) ⇢ [1, 2]. Hence the conditions
of Theorem 2.3 are satisfied and f(x) must have a root in the interval [1, 2].

2.1.2 Examples of root-finding methods

So far our focus has been on attempting to figure out if a given function has any roots,
and if it does have roots, approximately where can they be. However, we have not went
into any details in developing methods for approximating the values of such roots. Before
we start with a detailed study of such methods, we would like to go over a couple of the
methods that will be studied later on, emphasizing that they are all iterative methods.
The methods that we will briefly describe are Newton’s method and the secant method.
A more detailed study of these methods will be conducted in the following sections.

1. Newton’s method. Newton’s method for finding a root of a di↵erentiable func-
tion f(x) is given by:

xn+1 = xn � f(xn)

f 0(xn)
. (2.1)

We note that for the formula (2.1) to be well-defined, we must require that
f 0(xn) 6= 0 for any xn. To provide us with a list of successive approximation,
Newton’s method (2.1) should be supplemented with one initial guess, say x0.
The equation (2.1) will then provide the values of x1, x2, . . .

One way of obtaining Newton’s method is the following: Given a point xn we are
looking for the next point xn+1. A linear approximation of f(x) at xn+1 is

f(xn+1) ⇡ f(xn) + (xn+1 � xn)f
0(xn).

Since xn+1 should be an approximation to the root of f(x), we set f(xn+1) = 0,
rearrange the terms and get (2.1).

2. The secant method. The secant method is obtained by replacing the derivative
in Newton’s method, f 0(xn), by the following finite di↵erence approximation:

f 0(xn) ⇡ f(xn) � f(xn�1)

xn � xn�1
. (2.2)

5
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The secant method is thus:

xn+1 = xn � f(xn)


xn � xn�1

f(xn) � f(xn�1)

�
. (2.3)

The secant method (2.3) should be supplemented by two initial values, say x0, and
x1. Using these two values, (2.3) will provide the values of x2, x3, . . ..

2.2 Iterative Methods

At this point we would like to explore more tools for studying iterative methods. We
start by considering simple iterates, in which given an initial value x0, the iterates are
given by the following recursion:

xn+1 = g(xn), n = 0, 1, . . . (2.4)

If the sequence {xn} in (2.4) converges, and if the function g(x) is continuous, the limit
must be a fixed point of the function g(x). This is obvious, since if xn ! x⇤ as n ! 1,
then the continuity of g(x) implies that in the limit we have

x⇤ = g(x⇤).

Since things seem to work well when the sequence {xn} converges, we are now interested
in studying exactly how can the convergence of this sequence be guaranteed? Intuitively,
we expect that a convergence of the sequence will occur if the function g(x) is “shrinking”
the distance between any two points in a given interval. Formally, such a concept is
known as “contraction” and is given by the following definition:

Definition 2.5 Assume that g(x) is a continuous function in [a, b]. Then g(x) is a
contraction on [a, b] if there exists a constant L such that 0 < L < 1 for which for any
x and y in [a, b]:

|g(x) � g(y)| 6 L|x � y|. (2.5)

The equation (2.5) is referred to as a Lipschitz condition and the constant L is the
Lipschitz constant.

Indeed, if the function g(x) is a contraction, i.e., if it satisfies the Lipschitz con-
dition (2.5), we can expect the iterates (2.4) to converge as given by the Contraction
Mapping Theorem.

Theorem 2.6 (Contraction Mapping) Assume that g(x) is a continuous function
on [a, b]. Assume that g(x) satisfies the Lipschitz condition (2.5), and that g([a, b]) ⇢
[a, b]. Then g(x) has a unique fixed point c 2 [a, b]. Also, the sequence {xn} defined
in (2.4) converges to c as n ! 1 for any x0 2 [a, b].

6
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Proof. We know that the function g(x) must have at least one fixed point due to
Theorem 2.3. To prove the uniqueness of the fixed point, we assume that there are two
fixed points c1 and c2. We will prove that these two points must be identical.

|c1 � c2| = |g(c1) � g(c2)| 6 L|c1 � c2|,

and since 0 < L < 1, c1 must be equal to c2.
Finally, we prove that the iterates in (2.4) converge to c for any x0 2 [a, b].

|xn+1 � c| = |g(xn) � g(c)| 6 L|xn � c| 6 . . .  Ln+1|x0 � c|. (2.6)

Since 0 < L < 1, we have that as n ! 1, |xn+1 � c| ! 0, and we have convergence of
the iterates to the fixed point of g(x) independently of the starting point x0. ⌅

Remarks.

1. In order to use the Contraction Mapping Theorem, we must verify that the
function g(x) satisfies the Lipschitz condition, but what does it mean? The
Lipschitz condition provides information about the “slope” of the function. The
quotation marks are being used here, because we never required that the
function g(x) is di↵erentiable. Our only requirement had to do with the
continuity of g(x). The Lipschitz condition can be rewritten as:

|g(x) � g(y)|
|x � y| 6 L, 8x, y 2 [a, b], x 6= y,

with 0 < L < 1. The term on the LHS is a discrete approximation to the slope of
g(x). In fact, if the function g(x) is di↵erentiable, according to the Mean Value
Theorem, there exists a point ⇠ between x and y such that

g0(⇠) =
g(x) � g(y)

x � y
.

Hence, in practice, if the function g(x) is di↵erentiable in the interval (a, b), and
if there exists L 2 (0, 1), such that |g0(x)| < L for any x 2 (a, b), then the
assumptions on g(x) satisfying the Lipshitz condition in Theorem 2.6 hold.
Having g(x) di↵erentiable is more than the theorem requires but in many
practical cases, we anyhow deal with di↵erentiable g’s so it is straightforward to
use the condition that involves the derivative.

2. Another typical thing that can happen is that the function g(x) will be
di↵erentiable, and |g0(x)| will be less than 1, but only in a neighborhood of the
fixed point. In this case, we can still formulate a “local” version of the
contraction mapping theorem. This theorem will guarantee convergence to a
fixed point, c, of g(x) if we start the iterations su�ciently close to that point c.

7
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Starting “far” from c may or may not lead to a convergence to c. Also, since we
consider only a neighborhood of the fixed point c, we can no longer guarantee
the uniqueness of the fixed point, as away from there, we do not post any
restriction on the slope of g(x) and therefore anything can happen.

3. When the contraction mapping theorem holds, and convergence of the iterates to
the unique fixed point follows, it is of interest to know how many iterations are
required in order to approximate the fixed point with a given accuracy. If our
goal is to approximate c within a distance ", then this means that we are looking
for n such that

|xn � c| 6 ".

We know from (2.6) that

|xn � c| 6 Ln|x0 � c|, n > 1. (2.7)

In order to get rid of c from the RHS of (2.7), we compute

|x0 � c| = |xc � x1 + x1 � c| 6 |x0 � x1| + |x1 � c| 6 L|x0 � c| + |x1 � x0|.

Hence

|x0 � c| 6 |x1 � x0|
1 � L

.

We thus have

|xn � c| 6 Ln

1 � L
|x1 � x0|,

and for |xn � c| < " we require that

Ln 6 "(1 � L)

|x1 � x0|
,

which implies that the number of iterations that will guarantee that the
approximation error will be under " must exceed

n > 1

ln(L)
· ln


(1 � L)"

|x1 � x0|

�
. (2.8)

2.3 The Bisection Method

Before returning to Newton’s method, we would like to present and study a method for
finding roots which is one of the most intuitive methods one can easily come up with.
The method we will consider is known as the “bisection method” .

8
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We are looking for a root of a function f(x) which we assume is continuous on the
interval [a, b]. We also assume that it has opposite signs at both edges of the interval,
i.e., f(a)f(b) < 0. We then know that f(x) has at least one zero in [a, b]. Of course
f(x) may have more than one zero in the interval. The bisection method is only going
to converge to one of the zeros of f(x). There will also be no indication as of how many
zeros f(x) has in the interval, and no hints regarding where can we actually hope to
find more roots, if indeed there are additional roots.

The first step is to divide the interval into two equal subintervals,

c =
a+ b

2
.

This generates two subintervals, [a, c] and [c, b], of equal lengths. We want to keep the
subinterval that is guaranteed to contain a root. Of course, in the rare event where
f(c) = 0 we are done. Otherwise, we check if f(a)f(c) < 0. If yes, we keep the left
subinterval [a, c]. If f(a)f(c) > 0, we keep the right subinterval [c, b]. This procedure
repeats until the stopping criterion is satisfied: we fix a small parameter " > 0 and stop
when |f(c)| < ". To simplify the notation, we denote the successive intervals by [a0, b0],
[a1, b1],... The first two iterations in the bisection method are shown in Figure 2.2. Note
that in the case that is shown in the figure, the function f(x) has multiple roots but the
method converges to only one of them.

0

a0 c b0
x

f(a0)

f(c)
f(b0)

0

a1 c b1
x

f(a1)
f(c)

f(b1)

Figure 2.2: The first two iterations in a bisection root-finding method

We would now like to understand if the bisection method always converges to a root.
We would also like to figure out how close we are to a root after iterating the algorithm

9



2.3 The Bisection Method D. Levy

several times. We first note that

a0 6 a1 6 a2 6 . . . 6 b0,

and

b0 > b1 > b2 > . . . > a0.

We also know that every iteration shrinks the length of the interval by a half, i.e.,

bn+1 � an+1 =
1

2
(bn � an), n > 0,

which means that

bn � an = 2�n(b0 � a0).

The sequences {an}n>0 and {bn}n>0 are monotone and bounded, and hence converge.
Also

lim
n!1

bn � lim
n!1

an = lim
n!1

2�n(b0 � a0) = 0,

so that both sequences converge to the same value. We denote that value by r, i.e.,

r = lim
n!1

an = lim
n!1

bn.

Since f(an)f(bn) < 0, we know that (f(r))2 6 0, which means that f(r) = 0, i.e., r is a
root of f(x).

We now assume that we stop in the interval [an, bn]. This means that r 2 [an, bn].
Given such an interval, if we have to guess where is the root (which we know is in the
interval), it is easy to see that the best estimate for the location of the root is the center
of the interval, i.e.,

cn =
an + bn

2
.

In this case, we have

|r � cn| 6
1

2
(bn � an) = 2�(n+1)(b0 � a0).

We summarize this result with the following theorem.

Theorem 2.7 If [an, bn] is the interval that is obtained in the nth iteration of the bisec-
tion method, then the limits limn!1 an and limn!1 bn exist, and

lim
n!1

an = lim
n!1

bn = r,

where f(r) = 0. In addition, if

cn =
an + bn

2
,

then

|r � cn| 6 2�(n+1)(b0 � a0).

10



D. Levy 2.4 Newton’s Method

2.4 Newton’s Method

Newton’s method is a relatively simple, practical, and widely-used root finding method.
It is easy to see that while in some cases the method rapidly converges to a root of the
function, in some other cases it may fail to converge at all. This is one reason as of why
it is so important not only to understand the construction of the method, but also to
understand its limitations.

As always, we assume that f(x) has at least one (real) root, and denote it by r. We
start with an initial guess for the location of the root, say x0. We then let l(x) be the
tangent line to f(x) at x0, i.e.,

l(x) � f(x0) = f 0(x0)(x � x0).

The intersection of l(x) with the x-axis serves as the next estimate of the root. We
denote this point by x1 and write

0 � f(x0) = f 0(x0)(x1 � x0),

which means that

x1 = x0 � f(x0)

f 0(x0)
. (2.9)

In general, the Newton method (also known as the Newton-Raphson method) for
finding a root is given by iterating (2.9) repeatedly, i.e.,

xn+1 = xn � f(xn)

f 0(xn)
. (2.10)

Two sample iterations of the method are shown in Figure 2.3. Starting from a point xn,
we find the next approximation of the root xn+1, from which we find xn+2 and so on. In
this case, we do converge to the root of f(x).

It is easy to see that Newton’s method does not always converge. We demonstrate
such a case in Figure 2.4. Here we consider the function f(x) = tan�1(x) and show what
happens if we start with a point which is a fixed point of Newton’s method, iterated
twice. In this case, x0 ⇡ 1.3917 is such a point.

In order to analyze the error in Newton’s method we let the error in the nth iteration
be

en = xn � r.

We assume that f 00(x) is continuous and that f 0(r) 6= 0, i.e., that r is a simple root of
f(x). We will show that the method has a quadratic convergence rate, i.e.,

en+1 ⇡ ce2n. (2.11)

11
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0
r xn+2 xn+1 xn

x

f(x) �!

Figure 2.3: Two iterations in Newton’s root-finding method. r is the root of f(x) we
approach by starting from xn, computing xn+1, then xn+2, etc.

0

x1, x3, x5, ... x0, x2, x4, ...

x

ta
n�

1 (
x)

Figure 2.4: Newton’s method does not always converge. In this case, the starting point
is a fixed point of Newton’s method iterated twice

12



D. Levy 2.4 Newton’s Method

A convergence rate estimate of the type (2.11) makes sense, of course, only if the method
converges. Indeed, we will prove the convergence of the method for certain functions
f(x), but before we get to the convergence issue, let’s derive the estimate (2.11). We
rewrite en+1 as

en+1 = xn+1 � r = xn � f(xn)

f 0(xn)
� r = en � f(xn)

f 0(xn)
=

enf 0(xn) � f(xn)

f 0(xn)
.

Writing a Taylor expansion of f(r) about x = xn we have

0 = f(r) = f(xn � en) = f(xn) � enf
0(xn) +

1

2
e2nf

00(⇠n),

which means that

enf
0(xn) � f(xn) =

1

2
f 00(⇠n)e

2
n.

Hence, the relation (2.11), en+1 ⇡ ce2n, holds with

c =
1

2

f 00(⇠n)

f 0(xn)
(2.12)

Since we assume that the method converges, in the limit as n ! 1 we can replace
(2.12) by

c =
1

2

f 00(r)

f 0(r)
. (2.13)

We now return to the issue of convergence and prove that for certain functions
Newton’s method converges regardless of the starting point.

Theorem 2.8 Assume that f(x) has two continuous derivatives, is monotonically in-
creasing, convex, and has a zero. Then the zero is unique and Newton’s method will
converge to it from every starting point.

Proof. The assumptions on the function f(x) imply that 8x, f 00(x) > 0 and f 0(x) > 0.
By (2.12), the error at the (n+ 1)th iteration, en+1, is given by

en+1 =
1

2

f 00(⇠n)

f 0(xn)
e2n,

and hence it is positive, i.e., en+1 > 0. This implies that 8n > 1, xn > r, Since
f 0(x) > 0, we have

f(xn) > f(r) = 0.

13
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Now, subtracting r from both sides of (2.10) we may write

en+1 = en � f(xn)

f 0(xn)
, (2.14)

which means that en+1 < en (and hence xn+1 < xn). Hence, both {en}n>0 and {xn}n>0

are decreasing and bounded from below. This means that both series converge, i.e.,
there exists e⇤ such that,

e⇤ = lim
n!1

en,

and there exists x⇤ such that

x⇤ = lim
n!1

xn.

By (2.14) we have

e⇤ = e⇤ � f(x⇤)

f 0(x⇤)
,

so that f(x⇤) = 0, and hence x⇤ = r. ⌅
Theorem 2.8 guarantees global convergence to the unique root of a monotonically

increasing, convex smooth function. If we relax some of the requirements on the function,
Newton’s method may still converge. The price that we will have to pay is that the
convergence theorem will no longer be global. Convergence to a root will happen only
if we start su�ciently close to it. Such a result is formulated in the following theorem.

Theorem 2.9 Assume f(x) is a continuous function with a continuous second deriva-
tive, that is defined on an interval I = [r � �, r + �], with � > 0. Assume that f(r) = 0,
and that f 00(r) 6= 0. Assume that there exists a constant A such that

|f 00(x)|
|f 0(y)| 6 A, 8x, y 2 I.

If the initial guess x0 is su�ciently close to the root r, i.e., if |r � x0|  min{�, 1/A},
then the sequence {xn} defined in (2.10) converges quadratically to the root r.

Proof. We assume that xn 2 I. Since f(r) = 0, a Taylor expansion of f(x) at x = xn,
evaluated at x = r is:

0 = f(r) = f(xn) + (r � xn)f
0(xn) +

(r � xn)2

2
f 00(⇠n), (2.15)

where ⇠n is between r and xn, and hence ⇠ 2 I. Equation (2.15) implies that

r � xn =
�2f(xn) � (r � xn)2f 00(⇠n)

2f 0(xn)
.

14
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Since xn+1 are the Newton iterates and hence satisfy (2.10), we have

r � xn+1 = r � xn +
f(xn)

f 0(xn)
= �(r � xn)2f 00(⇠n)

2f 0(xn)
. (2.16)

Hence

|r � xn+1| 6
(r � xn)2

2
A 6 |r � xn|

2
6 . . . 6 2�(n�1)|r � x0, |

which implies that xn ! r as n ! 1.
It remains to show that the convergence rate of {xn} to r is quadratic. Since ⇠n is
between the root r and xn, it also converges to r as n ! 1. The derivatives f 0 and f 00

are continuous and therefore we can take the limit of (2.16) as n ! 1 and write

lim
n!1

|xn+1 � r|
|xn � r|2 =

����
f 00(r)

2f 0(r)

���� ,

which implies the quadratic convergence of {xn} to r. ⌅

2.5 The Secant Method

We recall that Newton’s root finding method is given by equation (2.10), i.e.,

xn+1 = xn � f(xn)

f 0(xn)
.

We now assume that we do not know that the function f(x) is di↵erentiable at xn, and
thus can not use Newton’s method as is. Instead, we can replace the derivative f 0(xn)
that appears in Newton’s method by a di↵erence approximation. A particular choice of
such an approximation,

f 0(xn) ⇡ f(xn) � f(xn�1)

xn � xn�1
,

leads to the secant method which is given by

xn+1 = xn � f(xn)


xn � xn�1

f(xn) � f(xn�1)

�
, n > 1. (2.17)

A geometric interpretation of the secant method is shown in Figure 2.5. Given two
points, (xn�1, f(xn�1)) and (xn, f(xn)), the line l(x) that connects them satisfies

l(x) � f(xn) =
f(xn�1) � f(xn)

xn�1 � xn
(x � xn).

15
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0
r xn+1 xn xn�1

x

f(x) �!

Figure 2.5: The Secant root-finding method. The points xn�1 and xn are used to obtain
xn+1, which is the next approximation of the root r

The next approximation of the root, xn+1, is defined as the intersection of l(x) and the
x-axis, i.e.,

0 � f(xn) =
f(xn�1) � f(xn)

xn�1 � xn
(xn+1 � xn). (2.18)

Rearranging the terms in (2.18) we end up with the secant method (2.17).
We note that the secant method (2.17) requires two initial points. While this is

an extra requirement compared with, e.g., Newton’s method, we note that in the se-
cant method there is no need to evaluate any derivatives. In addition, if implemented
properly, every stage requires only one new function evaluation.

We now proceed with an error analysis for the secant method. As usual, we denote
the error at the nth iteration by en = xn � r. We claim that the rate of convergence of
the secant method is superlinear (meaning, better than linear but less than quadratic).
More precisely, we will show that it is given by

|en+1| ⇡ |en|↵, (2.19)

with

↵ =
1 +

p
5

2
. (2.20)
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We start by rewriting en+1 as

en+1 = xn+1 � r =
f(xn)xn�1 � f(xn�1)xn

f(xn) � f(xn�1)
� r =

f(xn)en�1 � f(xn�1)en
f(xn) � f(xn�1)

.

Hence

en+1 = enen�1


xn � xn�1

f(xn) � f(xn�1)

� " f(xn)
en

� f(xn�1)
en�1

xn � xn�1

#
. (2.21)

A Taylor expansion of f(xn) about x = r reads

f(xn) = f(r + en) = f(r) + enf
0(r) +

1

2
e2nf

00(r) +O(e3n),

and hence

f(xn)

en
= f 0(r) +

1

2
enf

00(r) +O(e2n).

We thus have

f(xn)

en
� f(xn�1)

en�1
=

1

2
(en � en�1)f

00(r) +O(e2n�1) +O(e2n)

=
1

2
(xn � xn�1)f

00(r) +O(e2n�1) +O(e2n).

Therefore,

f(xn)
en

� f(xn�1)
en�1

xn � xn�1
⇡ 1

2
f 00(r),

and

xn � xn�1

f(xn) � f(xn�1)
⇡ 1

f 0(r)
.

The error expression (2.21) can be now simplified to

en+1 ⇡ 1

2

f 00(r)

f 0(r)
enen�1 = cenen�1. (2.22)

Equation (2.22) expresses the error at iteration n+1 in terms of the errors at iterations
n and n � 1. In order to turn this into a relation between the error at the (n + 1)th

iteration and the error at the nth iteration, we now assume that the order of convergence
is ↵, i.e.,

|en+1| ⇠ A|en|↵. (2.23)
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Since (2.23) also means that |en| ⇠ A|en�1|↵, we have

A|en|↵ ⇠ C|en|A� 1
↵ |en|

1
↵ .

This implies that

A1+ 1
↵C�1 ⇠ |en|1�↵+ 1

↵ . (2.24)

The left-hand-side of (2.24) is non-zero while the right-hand-side of (2.24) tends to zero
as n ! 1 (assuming, of course, that the method converges). This is possible only if

1 � ↵ +
1

↵
= 0,

which, in turn, means that

↵ =
1 +

p
5

2
.

The constant A in (2.23) is thus given by

A = C
1

1+ 1
↵ = C

1
↵ = C↵�1 =


f 00(r)

2f 0(r)

�↵�1

.

We summarize this result with the theorem:

Theorem 2.10 Assume that f 00(x) is continuous 8x in an interval I. Assume that
f(r) = 0 and that f 0(r) 6= 0. If x0, x1 are su�ciently close to the root r, then xn ! r.

In this case, the convergence is of order 1+
p
5

2 .
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D. Levy

3 Interpolation

3.1 What is Interpolation?

Imagine that there is an unknown function f(x) for which someone supplies you with
its (exact) values at (n+1) distinct points x0 < x1 < · · · < xn, i.e., f(x0), . . . , f(xn) are
given. The interpolation problem is to construct a function Q(x) that passes through
these points, i.e., to find a function Q(x) such that the interpolation requirements

Q(xj) = f(xj), 0 6 j 6 n, (3.1)

are satisfied (see Figure 3.1). One easy way of obtaining such a function, is to connect the
given points with straight lines. While this is a legitimate solution of the interpolation
problem, usually (though not always) we are interested in a di↵erent kind of a solution,
e.g., a smoother function. We therefore always specify a certain class of functions from
which we would like to find one that solves the interpolation problem. For example,
we may look for a function Q(x) that is a polynomial, Q(x). Alternatively, the function
Q(x) can be a trigonometric function or a piecewise-smooth polynomial, and so on.

x0 x1 x2

f(x0)

f(x1)

f(x2)

f(x)

Q(x)

Figure 3.1: The function f(x), the interpolation points x0, x1, x2, and the interpolating
polynomial Q(x)

As a simple example let’s consider values of a function that are prescribed at two
points: (x0, f(x0)) and (x1, f(x1)). There are infinitely many functions that pass through
these two points. However, if we limit ourselves to polynomials of degree less than or
equal to one, there is only one such function that passes through these two points: the
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line that connects them. A line, in general, is a polynomial of degree one, but if the
two given values are equal, f(x0) = f(x1), the line that connects them is the constant
Q0(x) ⌘ f(x0), which is a polynomial of degree zero. This is why we say that there is a
unique polynomial of degree 6 1 that connects these two points (and not “a polynomial
of degree 1”).

The points x0, . . . , xn are called the interpolation points. The property of “passing
through these points” is referred to as interpolating the data. The function that
interpolates the data is an interpolant or an interpolating polynomial (or whatever
function is being used).

There are cases were the interpolation problem has no solution, e.g., if we look for a
linear polynomial that interpolates three points that do not lie on a straight line. When
a solution exists, it can be unique (a linear polynomial and two points), or the problem
can have more than one solution (a quadratic polynomial and two points). What we are
going to study in this section is precisely how to distinguish between these cases. We
are also going to present di↵erent approaches to constructing the interpolant.

Other than agreeing at the interpolation points, the interpolant Q(x) and the under-
lying function f(x) are generally di↵erent. The interpolation error is a measure on
how di↵erent these two functions are. We will study ways of estimating the interpolation
error. We will also discuss strategies on how to minimize this error.

It is important to note that it is possible to formulate the interpolation problem
without referring to (or even assuming the existence of) any underlying function f(x).
For example, you may have a list of interpolation points x0, . . . , xn, and data that is
experimentally collected at these points, y0, y1, . . . , yn, which you would like to interpo-
late. The solution to this interpolation problem is identical to the one where the values
are taken from an underlying function.

3.2 The Interpolation Problem

We begin our study with the problem of polynomial interpolation: Given n + 1
distinct points x0, . . . , xn, we seek a polynomial Qn(x) of the lowest degree such that
the following interpolation conditions are satisfied:

Qn(xj) = f(xj), j = 0, . . . , n. (3.2)

Note that we do not assume any ordering between the points x0, . . . , xn, as such an order
will make no di↵erence. If we do not limit the degree of the interpolation polynomial
it is easy to see that there any infinitely many polynomials that interpolate the data.
However, limiting the degree of Qn(x) to be deg(Qn(x)) 6 n, singles out precisely one
interpolant that will do the job. For example, if n = 1, there are infinitely many
polynomials that interpolate (x0, f(x0)) and (x1, f(x1)). However, there is only one
polynomial Qn(x) with deg(Qn(x)) 6 1 that does the job. This result is formally stated
in the following theorem:
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Theorem 3.1 If x0, . . . , xn 2 R are distinct, then for any f(x0), . . . f(xn) there exists a
unique polynomial Qn(x) of degree 6 n such that the interpolation conditions (3.2) are
satisfied.

Proof. We start with the existence part and prove the result by induction. For n = 0,
Q0 = f(x0). Suppose that Qn�1 is a polynomial of degree 6 n � 1, and suppose also
that

Qn�1(xj) = f(xj), 0 6 j 6 n � 1.

Let us now construct from Qn�1(x) a new polynomial, Qn(x), in the following way:

Qn(x) = Qn�1(x) + c(x � x0) · . . . · (x � xn�1). (3.3)

The constant c in (3.3) is yet to be determined. Clearly, the construction of Qn(x)
implies that deg(Qn(x)) 6 n. (Since we might end up with c = 0, Qn(x) could actually
be of degree that is less than n.) In addition, the polynomial Qn(x) satisfies the
interpolation requirements Qn(xj) = f(xj) for 0 6 j 6 n � 1. All that remains is to
determine the constant c in such a way that the last interpolation condition,
Qn(xn) = f(xn), is satisfied, i.e.,

Qn(xn) = Qn�1(xn) + c(xn � x0) · . . . · · · (xn � xn�1). (3.4)

The condition (3.4) implies that c should be defined as

c =
f(xn) � Qn�1(xn)

n�1Y

j=0

(xn � xj)

, (3.5)

and we are done with the proof of existence.
As for uniqueness, suppose that there are two polynomials Qn(x), Pn(x) of degree 6 n
that satisfy the interpolation conditions (3.2). Define a polynomial Hn(x) as the
di↵erence

Hn(x) = Qn(x) � Pn(x).

The degree of Hn(x) is at most n which means that it can have at most n zeros (unless
it is identically zero). However, since both Qn(x) and Pn(x) satisfy all the
interpolation requirements (3.2), we have

Hn(xj) = (Qn � Pn)(xj) = 0, 0 6 j 6 n,

which means that Hn(x) has n+ 1 distinct zeros. This contradiction can be resolved
only if Hn(x) is the zero polynomial, i.e.,

Pn(x) ⌘ Qn(x),

and uniqueness is established. ⌅
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3.3 Newton’s Form of the Interpolation Polynomial

One good thing about the proof of Theorem 3.1 is that it is constructive. In other
words, we can use the proof to write down a formula for the interpolation polynomial.
We follow the procedure given by (3.4) for reconstructing the interpolation polynomial.
We do it in the following way:

• Let

Q0(x) = a0,

where a0 = f(x0).

• Let

Q1(x) = a0 + a1(x � x0).

Following (3.5) we have

a1 =
f(x1) � Q0(x1)

x1 � x0
=

f(x1) � f(x0)

x1 � x0
.

We note that Q1(x) is nothing but the straight line connecting the two points
(x0, f(x0)) and (x1, f(x1)).

In general, let

Qn(x) = a0 + a1(x � x0) + . . .+ an(x � x0) · . . . · (x � xn�1) (3.6)

= a0 +
nX

j=1

aj

j�1Y

k=0

(x � xk).

The coe�cients aj in (3.6) are given by

a0 = f(x0),

aj =
f(xj) � Qj�1(xj)Qj�1

k=0(xj � xk)
, 1 6 j 6 n.

(3.7)

We refer to the interpolation polynomial when written in the form (3.6)–(3.7) as
the Newton form of the interpolation polynomial. As we shall see below,
there are various ways of writing the interpolation polynomial. The uniqueness of the
interpolation polynomial as guaranteed by Theorem 3.1 implies that we will only be
rewriting the same polynomial in di↵erent ways.

Example 3.2
The Newton form of the polynomial that interpolates (x0, f(x0)) and (x1, f(x1)) is

Q1(x) = f(x0) +
f(x1) � f(x0)

x1 � x0
(x � x0).
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Example 3.3
The Newton form of the polynomial that interpolates the three points (x0, f(x0)),
(x1, f(x1)), and (x2, f(x2)) is

Q2(x) = f(x0)+
f(x1) � f(x0)

x1 � x0
(x�x0)+

f(x2) �
h
f(x0) +

f(x1)�f(x0)
x1�x0

(x2 � x0)
i

(x2 � x0)(x2 � x1)
(x�x0)(x�x1).

3.4 The Interpolation Problem and the Vandermonde Deter-
minant

An alternative approach to the interpolation problem is to consider directly a polynomial
of the form

Qn(x) =
nX

k=0

bkx
k, (3.8)

and require that the following interpolation conditions are satisfied

Qn(xj) = f(xj), 0 6 j 6 n. (3.9)

In view of Theorem 3.1 we already know that this problem has a unique solution, so we
should be able to compute the coe�cients of the polynomial directly from (3.8). Indeed,
the interpolation conditions, (3.9), imply that the following equations should hold:

b0 + b1xj + . . .+ bnx
n
j = f(xj), j = 0, . . . , n. (3.10)

In matrix form, (3.10) can be rewritten as
0

BBB@

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

1

CCCA

0

BBB@

b0
b1
...
bn

1

CCCA
=

0

BBB@

f(x0)
f(x1)

...
f(xn)

1

CCCA
. (3.11)

In order for the system (3.11) to have a unique solution, it has to be nonsingular.
This means, e.g., that the determinant of its coe�cients matrix must not vanish, i.e.

���������

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

���������

6= 0. (3.12)

The determinant (3.12), is known as the Vandermonde determinant. In Lemma 3.4
we will show that the Vandermonde determinant equals to the product of terms of the
form xi � xj for i > j. Since we assume that the points x0, . . . , xn are distinct, the
determinant in (3.12) is indeed non zero. Hence, the system (3.11) has a solution that
is also unique, which confirms what we already know according to Theorem 3.1.
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Lemma 3.4���������

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

���������

=
Y

i>j

(xi � xj). (3.13)

Proof. We will prove (3.13) by induction. First we verify that the result holds in the
2 ⇥ 2 case. Indeed,

����
1 x0

1 x1

���� = x1 � x0.

We now assume that the result holds for n � 1 and consider n. We note that the index
n corresponds to a matrix of dimensions (n+ 1) ⇥ (n+ 1), hence our induction
assumption is that (3.13) holds for any Vandermonde determinant of dimension n ⇥ n.
We subtract the first row from all other rows, and expand the determinant along the
first column:���������

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

���������

=

���������

1 x0 . . . xn
0

0 x1 � x0 . . . xn
1 � xn

0
...

...
...

0 xn � x0 . . . xn
n � xn

0

���������

=

�������

x1 � x0 . . . xn
1 � xn

0
...

...
xn � x0 . . . xn

n � xn
0

�������

For every row k we factor out a term xk � x0:

�������

x1 � x0 . . . xn
1 � xn

0
...

...
xn � x0 . . . xn

n � xn
0

�������
=

nY

k=1

(xk � x0)

������������������

1 x1 + x0 . . .
n�1X

i=0

xn�1�i
1 xi

0

1 x2 + x0 . . .
n�1X

i=0

xn�1�i
2 xi

0

...
...

...

1 xn + x0 . . .
n�1X

i=0

xn�1�i
n xi

0

������������������

Here, we used the expansion

xn
1 � xn

0 = (x1 � x0)(x
n�1
1 + xn�2

1 x0 + xn�3
1 x2

0 + . . .+ xn�1
0 ),

for the first row, and similar expansions for all other rows. For every column l, starting
from the second one, subtracting the sum of xi

0 times column i (summing only over
“previous” columns, i.e., columns i with i < l), we end up with

nY

k=1

(xk � x0)

���������

1 x1 . . . xn�1
1

1 x2 . . . xn�1
2

...
...

...
1 xn . . . xn�1

n

���������

. (3.14)
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Since now we have on the RHS of (3.14) a Vandermonde determinant of dimension n⇥n,
we can use the induction to conclude with the desired result. ⌅

3.5 The Lagrange Form of the Interpolation Polynomial

The form of the interpolation polynomial that we used in (3.8) assumed a linear com-
bination of polynomials of degrees 0, . . . , n, in which the coe�cients were unknown. In
this section we take a di↵erent approach and assume that the interpolation polyno-
mial is given as a linear combination of n + 1 polynomials of degree n. This time, we
set the coe�cients as the interpolated values, {f(xj)}n

j=0, while the unknowns are the
polynomials. We thus let

Qn(x) =
nX

j=0

f(xj)l
n
j (x), (3.15)

where lnj (x) are n+1 polynomials of degree6 n. We use two indices in these polynomials:
the subscript j enumerates lnj (x) from 0 to n and the superscript n is used to remind
us that the degree of lnj (x) is n. Note that in this particular case, the polynomials lnj (x)
are precisely of degree n (and not 6 n). However, Qn(x), given by (3.15) may have a
lower degree. In either case, the degree of Qn(x) is n at the most. We now require that
Qn(x) satisfies the interpolation conditions

Qn(xi) = f(xi), 0 6 i 6 n. (3.16)

By substituting xi for x in (3.15) we have

Qn(xi) =
nX

j=0

f(xj)l
n
j (xi), 0 6 i 6 n.

In view of (3.16) we may conclude that lnj (x) must satisfy

lnj (xi) = �ij, i, j = 0, . . . , n, (3.17)

where �ij is the Krönecker delta, defined as

�ij =

⇢
1, i = j,
0, i 6= j.

Each polynomial lnj (x) has n + 1 unknown coe�cients. The conditions (3.17) provide
exactly n+1 equations that the polynomials lnj (x) must satisfy and these equations can
be solved in order to determine all lnj (x)’s. Fortunately there is a shortcut. An obvious
way of constructing polynomials lnj (x) of degree 6 n that satisfy (3.17) is the following:

lnj (x) =
(x � x0) · . . . · (x � xj�1)(x � xj+1) · . . . · (x � xn)

(xj � x0) · . . . · (xj � xj�1)(xj � xj+1) · . . . · (xj � xn)
, 0 6 j 6 n. (3.18)
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The uniqueness of the interpolating polynomial of degree 6 n given n + 1 distinct
interpolation points implies that the polynomials lnj (x) given by (3.17) are the only
polynomials of degree 6 n that satisfy (3.17).

Note that the denominator in (3.18) does not vanish since we assume that all inter-
polation points are distinct. The Lagrange form of the interpolation polynomial
is the polynomial Qn(x) given by (3.15), where the polynomials lnj (x) of degree 6 n are
given by (3.18). A compact form of rewriting (3.18) using the product notation is

lnj (x) =

nY

i=0
i 6=j

(x � xi)

nY

i=0
i 6=j

(xj � xi)

, j = 0, . . . , n. (3.19)

Example 3.5
We are interested in finding the Lagrange form of the interpolation polynomial that
interpolates two points: (x0, f(x0)) and (x1, f(x1)). We know that the unique interpola-
tion polynomial through these two points is the line that connects the two points. Such
a line can be written in many di↵erent forms. In order to obtain the Lagrange form we
let

l10(x) =
x � x1

x0 � x1
, l11(x) =

x � x0

x1 � x0
.

The desired polynomial is therefore given by the familiar formula

Q1(x) = f(x0)l
1
0(x) + f(x1)l

1
1(x) = f(x0)

x � x1

x0 � x1
+ f(x1)

x � x0

x1 � x0
.

Example 3.6
This time we are looking for the Lagrange form of the interpolation polynomial, Q2(x),
that interpolates three points: (x0, f(x0)), (x1, f(x1)), (x2, f(x2)). Unfortunately, the
Lagrange form of the interpolation polynomial does not let us use the interpolation
polynomial through the first two points, Q1(x), as a building block for Q2(x). This
means that we have to compute all the polynomials lnj (x) from scratch. We start with

l20(x) =
(x � x1)(x � x2)

(x0 � x1)(x0 � x2)
,

l21(x) =
(x � x0)(x � x2)

(x1 � x0)(x1 � x2)
,

l22(x) =
(x � x0)(x � x1)

(x2 � x0)(x2 � x1)
.
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The interpolation polynomial is therefore given by

Q2(x) = f(x0)l
2
0(x) + f(x1)l

2
1(x) + f(x2)l

2
2(x)

= f(x0)
(x � x1)(x � x2)

(x0 � x1)(x0 � x2)
+ f(x1)

(x � x0)(x � x2)

(x1 � x0)(x1 � x2)
+ f(x2)

(x � x0)(x � x1)

(x2 � x0)(x2 � x1)
.

It is easy to verify that indeed Q2(xj) = f(xj) for j = 0, 1, 2, as desired.

Remarks.

1. One instance where the Lagrange form of the interpolation polynomial may seem
to be advantageous when compared with the Newton form is when there is a
need to solve several interpolation problems, all given at the same interpolation
points x0, . . . xn but with di↵erent values f(x0), . . . , f(xn). In this case, the
polynomials lnj (x) are identical for all problems since they depend only on the
points but not on the values of the function at these points. Therefore, they have
to be constructed only once.

2. An alternative form for lnj (x) can be obtained in the following way. Define the
polynomials wn(x) of degree n+ 1 by

wn(x) =
nY

i=0

(x � xi).

Then it its derivative is

w0
n(x) =

nX

j=0

nY

i=0
i 6=j

(x � xi). (3.20)

When w0
x(x) is evaluated at an interpolation point, xj, there is only one term in

the sum in (3.20) that does not vanish:

w0
n(xj) =

nY

i=0
i 6=j

(xj � xi).

Hence, in view of (3.19), lnj (x) can be rewritten as

lnj (x) =
wn(x)

(x � xj)w0
n(xj)

, 0 6 j 6 n. (3.21)

3. For future reference we note that the coe�cient of xn in the interpolation
polynomial Qn(x) is

nX

j=0

f(xj)
nY

k=0
k 6=j

(xj � xk)

. (3.22)
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For example, the coe�cient of x in Q1(x) in Example 3.5 is

f(x0)

x0 � x1
+

f(x1)

x1 � x0
.

3.6 Divided Di↵erences

We recall that Newton’s form of the interpolation polynomial is given by (see (3.6)–(3.7))

Qn(x) = a0 + a1(x � x0) + . . .+ an(x � x0) · . . . · (x � xn�1),

with a0 = f(x0) and

aj =
f(xj) � Qj�1(xj)

j�1Y

k=0

(xj � xk)

, 1 6 j 6 n.

From now on, we will refer to the coe�cient, aj, as the jth-order divided di↵erence.
The jth-order divided di↵erence, aj, is based on the points x0, . . . , xj and on the values
of the function at these points f(x0), . . . , f(xj). To emphasize this dependence, we use
the following notation:

aj = f [x0, . . . , xj], 1 6 j 6 n. (3.23)

We also denote the zeroth-order divided di↵erence as

a0 = f [x0],

where

f [x0] = f(x0).

Using the divided di↵erences notation (3.23), the Newton form of the interpolation
polynomial becomes

Qn(x) = f [x0] + f [x0, x1](x � x0) + . . .+ f [x0, . . . xn]
n�1Y

k=0

(x � xk). (3.24)

There is a simple recursive way of computing the jth-order divided di↵erence from
divided di↵erences of lower order, as shown by the following lemma:

Lemma 3.7 The divided di↵erences satisfy:

f [x0, . . . xn] =
f [x1, . . . xn] � f [x0, . . . xn�1]

xn � x0
. (3.25)
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Proof. For any k, we denote by Qk(x), a polynomial of degree 6 k, that interpolates
f(x) at x0, . . . , xk, i.e.,

Qk(xj) = f(xj), 0 6 j 6 k.

We now consider the unique polynomial P (x) of degree 6 n � 1 that interpolates f(x)
at x1, . . . , xn, and claim that

Qn(x) = P (x) +
x � xn

xn � x0
[P (x) � Qn�1(x)]. (3.26)

In order to verify this equality, we note that for i = 1, . . . , n � 1, P (xi) = Qn�1(xi) so
that

RHS(xi) = P (xi) = f(xi).

At xn, RHS(xn) = P (xn) = f(xn). Finally, at x0,

RHS(x0) = P (x0) +
x0 � xn

xn � x0
[P (x0) � Qn�1(x0)] = Qn�1(x0) = f(x0).

Hence, the RHS of (3.26) interpolates f(x) at the n+ 1 points x0, . . . , xn, which is also
true for Qn(x) due to its definition. Since the RHS and the LHS in equation (3.26) are
both polynomials of degree 6 n, the uniqueness of the interpolating polynomial (in
this case through n+ 1 points) implies the equality in (3.26).
Once we established the equality in (3.26) we can compare the coe�cients of the
monomials on both sides of the equation. The coe�cient of xn on the left-hand-side of
(3.26) is f [x0, . . . , xn]. The coe�cient of xn�1 in P (x) is f [x1, . . . , xn] and the
coe�cient of xn�1 in Qn�1(x) is f [x0, . . . , xn�1]. Hence, the coe�cient of xn on the
right-hand-side of (3.26) is

1

xn � x0
(f [x1, . . . , xn] � f [x0, . . . , xn�1]),

which means that

f [x0, . . . xn] =
f [x1, . . . xn] � f [x0, . . . xn�1]

xn � x0
. ⌅

Remark. In some books, instead of defining the divided di↵erence in such a way that
they satisfy (3.25), the divided di↵erences are defined by the formula

f [x0, . . . xn] = f [x1, . . . xn] � f [x0, . . . xn�1].

If this is the case, all our results on divided di↵erences should be adjusted accordingly
as to account for the missing factor in the denominator.
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Example 3.8
The second-order divided di↵erence is

f [x0, x1, x2] =
f [x1, x2] � f [x0, x1]

x2 � x0
=

f(x2)�f(x1)
x2�x1

� f(x1)�f(x0)
x1�x0

x2 � x0
.

Hence, the unique polynomial that interpolates (x0, f(x0)), (x1, f(x1)), and (x2, f(x2))
is

Q2(x) = f [x0] + f [x0, x1](x � x0) + f [x0, x1, x2](x � x0)(x � x1)

= f(x0) +
f(x1) � f(x0)

x1 � x0
(x � x0) +

f(x2)�f(x1)
x2�x1

� f(x1)�f(x0)
x1�x0

x2 � x0
(x � x0)(x � x1).

For example, if we want to find the polynomial of degree 6 2 that interpolates (�1, 9),
(0, 5), and (1, 3), we have

f(�1) = 9,

f [�1, 0] =
5 � 9

0 � (�1)
= �4, f [0, 1] =

3 � 5

1 � 0
= �2,

f [�1, 0, 1] =
f [0, 1] � f [�1, 0]

1 � (�1)
=

�2 + 4

2
= 1.

so that

Q2(x) = 9 � 4(x+ 1) + (x+ 1)x = 5 � 3x+ x2.

The relations between the divided di↵erences are schematically portrayed in Table 3.1
(up to third-order). We note that the divided di↵erences that are being used as the
coe�cients in the interpolation polynomial are those that are located in the top of every
column. The recursive structure of the divided di↵erences implies that it is required to
compute all the low order coe�cients in the table in order to get the high-order ones.

One important property of any divided di↵erence is that it is a symmetric function
of its arguments. This means that if we assume that y0, . . . , yn is any permutation of
x0, . . . , xn, then

f [y0, . . . , yn] = f [x0, . . . , xn].

This property can be clearly explained by recalling that f [x0, . . . , xn] plays the role of
the coe�cient of xn in the polynomial that interpolates f(x) at x0, . . . , xn. At the same
time, f [y0, . . . , yn] is the coe�cient of xn at the polynomial that interpolates f(x) at the
same points. Since the interpolation polynomial is unique for any given data set, the
order of the points does not matter, and hence these two coe�cients must be identical.
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x0 f(x0)
&

f [x0, x1]
% &

x1 f(x1) f [x0, x1, x2]
& % &

f [x1, x2] f [x0, x1, x2, x3]
% & %

x2 f(x2) f [x1, x2, x3]
& %

f [x2, x3]
%

x3 f(x3)

Table 3.1: Divided Di↵erences

3.7 The Error in Polynomial Interpolation

Our goal in this section is to provide estimates on the “error” we make when interpolating
data that is taken from sampling an underlying function f(x). While the interpolant and
the function agree with each other at the interpolation points, there is, in general, no
reason to expect them to be close to each other elsewhere. Nevertheless, we can estimate
the di↵erence between them, a di↵erence which we refer to as the interpolation error.
We let ⇧n denote the space of polynomials of degree 6 n, and let Cn+1[a, b] denote the
space of functions that have n+ 1 continuous derivatives on the interval [a, b].

Theorem 3.9 Let f(x) 2 Cn+1[a, b]. Let Qn(x) 2 ⇧n such that it interpolates f(x) at
the n+ 1 distinct points x0, . . . , xn 2 [a, b]. Then 8x 2 [a, b], 9⇠n 2 (a, b) such that

f(x) � Qn(x) =
1

(n+ 1)!
f (n+1)(⇠n)

nY

j=0

(x � xj). (3.27)

Proof. Fix a point x 2 [a, b]. If x is one of the interpolation points x0, . . . , xn, then the
left-hand-side and the right-hand-side of (3.27) are both zero, and the result holds
trivially. We therefore assume that x 6= xj 0 6 j 6 n, and let

w(x) =
nY

j=0

(x � xj).

We now let

F (y) = f(y) � Qn(y) � �w(y),
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where � is chosen as to guarantee that F (x) = 0, i.e.,

� =
f(x) � Qn(x)

w(x)
.

Since the interpolation points x0, . . . , xn and x are distinct, w(x) does not vanish and
� is well defined. We now note that since f 2 Cn+1[a, b] and since Qn and w are
polynomials, then also F 2 Cn+1[a, b]. In addition, F vanishes at n+ 2 points:
x0, . . . , xn and x. According to Rolle’s theorem, F 0 has at least n+ 1 distinct zeros in
(a, b), F 00 has at least n distinct zeros in (a, b), and similarly, F (n+1) has at least one
zero in (a, b), which we denote by ⇠n. We have

0 = F (n+1)(⇠n) = f (n+1)(⇠n) � Q(n+1)
n (⇠n) � �(x)w(n+1)(⇠n) (3.28)

= f (n+1)(⇠n) � f(x) � Qn(x)

w(x)
(n+ 1)!

Here, we used the fact that the leading term of w(x) is xn+1, which guarantees that its
(n+ 1)th derivative is

w(n+1)(x) = (n+ 1)! (3.29)

Reordering the terms in (3.28) we conclude with

f(x) � Qn(x) =
1

(n+ 1)!
f (n+1)(⇠n)w(x). ⌅

In addition to the interpretation of the divided di↵erence of order n as the coe�cient
of xn in some interpolation polynomial, it can also be characterized in another important
way. Consider, e.g., the first-order divided di↵erence

f [x0, x1] =
f(x1) � f(x0)

x1 � x0
.

Since the order of the points does not change the value of the divided di↵erence, we can
assume, without any loss of generality, that x0 < x1. If we assume, in addition, that
f(x) is continuously di↵erentiable in the interval [x0, x1], then this divided di↵erence
equals to the derivative of f(x) at an intermediate point, i.e.,

f [x0, x1] = f 0(⇠), ⇠ 2 (x0, x1).

In other words, the first-order divided di↵erence can be viewed as an approximation
of the first derivative of f(x) in the interval. It is important to note that while this
interpretation is based on additional smoothness requirements from f(x) (i.e. its be-
ing di↵erentiable), the divided di↵erences are well defined also for non-di↵erentiable
functions.

This notion can be extended to divided di↵erences of higher order as stated by the
following lemma.
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Lemma 3.10 Let x, x0, . . . , xn�1 be n+ 1 distinct points. Let a = min(x, x0, . . . , xn�1)
and b = max(x, x0, . . . , xn�1). Assume that f(y) has a continuous derivative of order n
in the interval (a, b). Then

f [x0, . . . , xn�1, x] =
f (n)(⇠)

n!
, (3.30)

where ⇠ 2 (a, b).

Proof. Let Qn(y) interpolate f(y) at x0, . . . , xn�1, x. Then according to the
construction of the Newton form of the interpolation polynomial (3.24), we know that

Qn(y) = Qn�1(y) + f [x0, . . . , xn�1, x]
n�1Y

j=0

(y � xj).

Since Qn(y) interpolated f(y) at x, we have

f(x) = Qn�1(x) + f [x0, . . . , xn�1, x]
n�1Y

j=0

(x � xj).

By Theorem 3.9 we know that the interpolation error is given by

f(x) � Qn�1(x) =
1

n!
f (n)(⇠n�1)

n�1Y

j=0

(x � xj),

which implies the result (3.30). ⌅

Remark. In equation (3.30), we could as well think of the interpolation point x as
any other interpolation point, and name it, e.g., xn. In this case, the equation (3.30)
takes the somewhat more natural form of

f [x0, . . . , xn] =
f (n)(⇠)

n!
.

In other words, the nth-order divided di↵erence is an nth-derivative of the function f(x)
at an intermediate point, assuming that the function has n continuous derivatives. Sim-
ilarly to the first-order divided di↵erence, we would like to emphasize that the nth-order
divided di↵erence is also well defined in cases where the function is not as smooth as
required in the theorem, though if this is the case, we can no longer consider this divided
di↵erence to represent a nth-order derivative of the function.
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3.8 Interpolation at the Chebyshev Points

In the entire discussion up to now, we assumed that the interpolation points are given.
There may be cases where one may have the flexibility of choosing the interpolation
points. If this is the case, it would be reasonable to use this degree of freedom to
minimize the interpolation error.

We recall that if we are interpolating values of a function f(x) that has n continuous
derivatives, the interpolation error is of the form

f(x) � Qn(x) =
1

(n+ 1)!
f (n+1)(⇠n)

nY

j=0

(x � xj). (3.31)

Here, Qn(x) is the interpolating polynomial and ⇠n is an intermediate point in the
interval of interest (see (3.27)).

It is important to note that the interpolation points influence two terms on the
right-hand-side of (3.31). The obvious one is the product

nY

j=0

(x � xj). (3.32)

The second term that depends on the interpolation points is f (n+1)(⇠n) since the value
of the intermediate point ⇠n depends on {xj}. Due to the implicit dependence of ⇠n
on the interpolation points, minimizing the interpolation error is not an easy task. We
will return to this “full” problem later on in the context of the minimax approximation
problem. For the time being, we are going to focus on a simpler problem, namely, how
to choose the interpolation points x0, . . . , xn such that the product (3.32) is minimized.
The solution of this problem is the topic of this section. Once again, we would like to
emphasize that a solution of this problem does not (in general) provide an optimal choice
of interpolation points that minimizes the interpolation error. All that it guarantees is
that the product part of the interpolation error is minimal.

The tool that we are going to use is the Chebyshev polynomials. The solution of
the problem will be to choose the interpolation points as the Chebyshev points. We will
first introduce the Chebyshev polynomials and the Chebyshev points and then explain
why interpolating at these points minimizes (3.32).

The Chebyshev polynomials can be defined using the following recursion relation:

8
<

:

T0(x) = 1,
T1(x) = x,
Tn+1(x) = 2xTn(x) � Tn�1(x), n > 1.

(3.33)

For example, T2(x) = 2xT1(x)�T0(x) = 2x2�1, and T3(x) = 4x3�3x. The polynomials
T1(x), T2(x) and T3(x) are plotted in Figure 3.2.

Instead of writing the recursion formula, (3.33), it is possible to write an explicit
formula for the Chebyshev polynomials:
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Figure 3.2: The Chebyshev polynomials T1(x), T2(x) and T3(x)

Lemma 3.11 For x 2 [�1, 1],

Tn(x) = cos(n cos�1 x), n > 0. (3.34)

Proof. Standard trigonometric identities imply that

cos(n+ 1)✓ = cos ✓ cosn✓ � sin ✓ sinn✓,

cos(n � 1)✓ = cos ✓ cosn✓ + sin ✓ sinn✓.

Hence

cos(n+ 1)✓ = 2 cos ✓ cosn✓ � cos(n � 1)✓. (3.35)

We now let ✓ = cos�1 x, i.e., x = cos ✓, and define

tn(x) = cos(n cos�1 x) = cos(n✓).

Then by (3.35)

8
<

:

t0(x) = 1,
t1(x) = x,
tn+1(x) = 2xtn(x) � tn�1(x), n > 1.

Hence tn(x) = Tn(x). ⌅
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3.8 Interpolation at the Chebyshev Points D. Levy

What is so special about the Chebyshev polynomials, and what is the connection
between these polynomials and minimizing the interpolation error? We are about to
answer these questions, but before doing so, there is one more issue that we must
clarify.

We define a monic polynomial as a polynomial for which the coe�cient of the
leading term is one, i.e., a polynomial of degree n is monic, if it is of the form

pn(x) = xn + an�1x
n�1 + . . .+ a1x+ a0.

Note that Chebyshev polynomials are not monic: the definition (3.33) implies that the
Chebyshev polynomial of degree n is of the form

Tn(x) = 2n�1xn + . . .

This means that Tn(x) divided by 2n�1 is monic, i.e.,

21�nTn(x) = xn + . . .

A general result about monic polynomials is given by the following theorem

Theorem 3.12 If pn(x) is a monic polynomial of degree n, then

max
�16x61

|pn(x)| > 21�n. (3.36)

Proof. We prove (3.36) by contradiction. Suppose that

|pn(x)| < 21�n, |x| 6 1.

Let

qn(x) = 21�nTn(x),

and let xj be the following n+ 1 points

xj = cos

✓
j⇡

n

◆
, 0 6 j 6 n.

Since

Tn

✓
cos

j⇡

n

◆
= (�1)j,

we have

(�1)jqn(xj) = 21�n.
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D. Levy 3.8 Interpolation at the Chebyshev Points

Hence

(�1)jpn(xj) 6 |pn(xj)| < 21�n = (�1)jqn(xj).

This means that

(�1)j(qn(xj) � pn(xj)) > 0, 0 6 j 6 n.

Hence, the polynomial (qn � pn)(x) oscillates (n+1) times in the interval [�1, 1], which
means that (qn �pn)(x) has at least n distinct roots in the interval. However, pn(x) and
qn(x) are both monic polynomials which means that their di↵erence is a polynomial of
degree n � 1 at most. Such a polynomial cannot have more than n � 1 distinct roots,
which leads to a contradiction. Note that pn�qn cannot be the zero polynomial because
that will imply that pn(x) and qn(x) are identical which again is not possible due to the
assumptions on their maximum values. ⌅

We are now ready to use Theorem 3.12 to figure out how to reduce the interpolation
error. We know by Theorem 3.9 that if the interpolation points x0, . . . , xn 2 [�1, 1],
then there exists ⇠n 2 (�1, 1) such that the distance between the function whose values
we interpolate, f(x), and the interpolation polynomial, Qn(x), is

max
|x|61

|f(x) � Qn(x)| 6
1

(n+ 1)!
max
|x|61

|f (n+1)(⇠n)|max
|x|61

�����

nY

j=0

(x � xj)

����� .

We are interested in minimizing

max
|x|61

�����

nY

j=0

(x � xj)

����� .

We note that
Qn

j=0(x � xj) is a monic polynomial of degree n + 1 and hence by Theo-
rem 3.12

max
|x|61

�����

nY

j=0

(x � xj)

����� > 2�n.

The minimal value of 2�n can be actually obtained if we set

2�nTn+1(x) =
nY

j=0

(x � xj),

which is equivalent to choosing xj as the roots of the Chebyshev polynomial Tn+1(x).
Here, we have used the obvious fact that |Tn(x)| 6 1.
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3.8 Interpolation at the Chebyshev Points D. Levy

What are the roots of the Chebyshev polynomial Tn+1(x)? By Lemma 3.11

Tn+1(x) = cos((n+ 1) cos�1 x).

The roots of Tn+1(x), x0, . . . , xn, are therefore obtained if

(n+ 1) cos�1(xj) =

✓
j +

1

2

◆
⇡, 0 6 j 6 n,

i.e., the (n+ 1) roots of Tn+1(x) are

xj = cos

✓
2j + 1

2n+ 2
⇡

◆
, 0 6 j 6 n. (3.37)

The roots of the Chebyshev polynomials are sometimes referred to as the Chebyshev
points. The formula (3.37) for the roots of the Chebyshev polynomial has the following
geometrical interpretation. In order to find the roots of Tn(x), define ↵ = ⇡/n. Divide
the upper half of the unit circle into n + 1 parts such that the two side angles are ↵/2
and the other angles are ↵. The Chebyshev points are then obtained by projecting these
points on the x-axis. This procedure is demonstrated in Figure 3.3 for T4(x).

-1 x0 x1 0 x2 x3 1

The unit circle

7π
8

5π
8

3π
8

π
8

x

Figure 3.3: The roots of the Chebyshev polynomial T4(x), x0, . . . , x3. Note that they
become dense next to the boundary of the interval

The following theorem summarizes the discussion on interpolation at the Chebyshev
points. It also provides an estimate of the error for this case.
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D. Levy 3.8 Interpolation at the Chebyshev Points

Theorem 3.13 Assume that Qn(x) interpolates f(x) at x0, . . . , xn. Assume also that
these (n + 1) interpolation points are the (n + 1) roots of the Chebyshev polynomial of
degree n+ 1, Tn+1(x), i.e.,

xj = cos

✓
2j + 1

2n+ 2
⇡

◆
, 0 6 j 6 n.

Then 8|x| 6 1,

|f(x) � Qn(x)| 6
1

2n(n+ 1)!
max
|⇠|61

��f (n+1)(⇠)
�� . (3.38)

Example 3.14
Problem: Let f(x) = sin(⇡x) in the interval [�1, 1]. Find Q2(x) which interpolates f(x)
in the Chebyshev points. Estimate the error.

Solution: Since we are asked to find an interpolation polynomial of degree 6 2, we need
3 interpolation points. We are also asked to interpolate at the Chebyshev points, and
hence we first need to compute the 3 roots of the Chebyshev polynomial of degree 3,

T3(x) = 4x3 � 3x.

The roots of T3(x) can be easily found from x(4x2 � 3) = 0, i.e.,

x0 = �
p
3

2
, , x1 = 0, x2 =

p
3

2
.

The corresponding values of f(x) at these interpolation points are

f(x0) = sin

 
�

p
3

2
⇡

!
⇡ �0.4086,

f(x1) = 0,

f(x2) = sin

 p
3

2
⇡

!
⇡ 0.4086.

The first-order divided di↵erences are

f [x0, x1] =
f(x1) � f(x0)

x1 � x0
⇡ 0.4718,

f [x1, x2] =
f(x2) � f(x1)

x2 � x1
⇡ 0.4718,

and the second-order divided di↵erence is

f [x0, x1, x2] =
f [x1, x2] � f [x0, x1]

x2 � x0
= 0.

39



3.8 Interpolation at the Chebyshev Points D. Levy

The interpolation polynomial is

Q2(x) = f(x0) + f [x0, x1](x � x0) + f [x0, x1, x2](x � x0)(x � x1) ⇡ 0.4718x.

The original function f(x) and the interpolant at the Chebyshev points, Q2(x), are
plotted in Figure 3.4.
As of the error estimate, 8|x| 6 1,

| sin ⇡x � Q2(x)| 6
1

223!
max
|⇠|61

|(sin ⇡t)(3)| 6 ⇡3

223!
6 1.292

A brief examination of Figure 3.4 reveals that while this error estimate is correct, it is
far from being sharp.

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Q2(x)

f(x)

x

Figure 3.4: The function f(x) = sin(⇡(x)) and the interpolation polynomial Q2(x) that
interpolates f(x) at the Chebyshev points. See Example 3.14.

Remark. In the more general case where the interpolation interval for the function
f(x) is x 2 [a, b], it is still possible to use the previous results by following the
following steps: Start by converting the interpolation interval to y 2 [�1, 1]:

x =
(b � a)y + (a+ b)

2
.

This converts the interpolation problem for f(x) on [a, b] into an interpolation problem
for f(x) = g(x(y)) in y 2 [�1, 1]. The Chebyshev points in the interval y 2 [�1, 1] are
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D. Levy 3.9 Hermite Interpolation

the roots of the Chebyshev polynomial Tn+1(x), i.e.,

yj = cos

✓
2j + 1

2n+ 2
⇡

◆
, 0 6 j 6 n.

The corresponding n+ 1 interpolation points in the interval [a, b] are

xj =
(b � a)yj + (a+ b)

2
, 0 6 j 6 n.

In this case, the product term in the interpolation error is

max
x2[a,b]

�����

nY

j=0

(x � xj)

����� =
����
b � a

2

����
n+1

max
|y|61

�����

nY

j=0

(x � yj)

����� ,

and the interpolation error is given by

|f(x) � Qn(x)| 6
1

2n(n+ 1)!

����
b � a

2

����
n+1

max
⇠2[a,b]

��f (n+1)(⇠)
�� . (3.39)

3.9 Hermite Interpolation

We now turn to a slightly di↵erent interpolation problem in which we assume that
in addition to interpolating the values of the function at certain points, we are also
interested in interpolating its derivatives. Interpolation that involves the derivatives is
called Hermite interpolation. Such an interpolation problem is demonstrated in the
following example:

Example 3.15
Problem: Find a polynomials p(x) such that p(1) = �1, p0(1) = �1, and p(0) = 1.

Solution: Since three conditions have to be satisfied, we can use these conditions to
determine three degrees of freedom, which means that it is reasonable to expect that
these conditions uniquely determine a polynomial of degree 6 2. We therefore let

p(x) = a0 + a1x+ a2x
2.

The conditions of the problem then imply that
8
<

:

a0 + a1 + a2 = �1,
a1 + 2a2 = �1,
a0 = 1.

Hence, there is indeed a unique polynomial that satisfies the interpolation conditions
and it is

p(x) = x2 � 3x+ 1.

41



3.9 Hermite Interpolation D. Levy

In general, we may have to interpolate high-order derivatives and not only first-
order derivatives. Also, we assume that for any point xj in which we have to satisfy an
interpolation condition of the form

p(l)(xj) = f(xj),

(with p(l) being the lth-order derivative of p(x)), we are also given all the values of the
lower-order derivatives up to l as part of the interpolation requirements, i.e.,

p(i)(xj) = f (i)(xj), 0 6 i 6 l.

If this is not the case, it may not be possible to find a unique interpolant as demonstrated
in the following example.

Example 3.16
Problem: Find p(x) such that p0(0) = 1 and p0(1) = �1.

Solution: Since we are asked to interpolate two conditions, we may expect them to
uniquely determine a linear function, say

p(x) = a0 + a1x.

However, both conditions specify the derivative of p(x) at two distinct points to be
of di↵erent values, which amounts to a contradicting information on the value of a1.
Hence, a linear polynomial cannot interpolate the data and we must consider higher-
order polynomials. Unfortunately, a polynomial of order > 2 will no longer be unique
because not enough information is given. Note that even if the prescribed values of the
derivatives were identical, we will not have problems with the coe�cient of the linear
term a1, but we will still not have enough information to determine the constant a0.

A simple case that you are probably already familiar with is the Taylor series.
When viewed from the point of view that we advocate in this section, one can consider
the Taylor series as an interpolation problem in which one has to interpolate the value
of the function and its first n derivatives at a given point, say x0, i.e., the interpolation
conditions are:

p(j)(x0) = f (j)(x0), 0 6 j 6 n.

The unique solution of this problem in terms of a polynomial of degree 6 n is

p(x) = f(x0) + f 0(x0)(x � x0) + . . .+
f (n)(x0)

n!
(x � x0)

n =
nX

j=0

f (j)(x0)

j!
(x � x0)

j,

which is the Taylor series of f(x) expanded about x = x0.
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D. Levy 3.9 Hermite Interpolation

3.9.1 Divided di↵erences with repetitions

We are now ready to consider the Hermite interpolation problem. The first form we
study is the Newton form of the Hermite interpolation polynomial. We start by extend-
ing the definition of divided di↵erences in such a way that they can handle derivatives.
We already know that the first derivative is connected with the first-order divided dif-
ference by

f 0(x0) = lim
x!x0

f(x) � f(x0)

x � x0
= lim

x!x0

f [x, x0].

Hence, it is natural to extend the notion of divided di↵erences by the following definition.

Definition 3.17 The first-order divided di↵erence with repetitions is defined as

f [x0, x0] = f 0(x0). (3.40)

In a similar way, we can extend the notion of divided di↵erences to high-order derivatives:

Definition 3.18 Let x0 6 x1 6 . . . 6 xn. Then the divided di↵erences satisfy

f [x0, . . . xn] =

8
><

>:

f [x1, . . . , xn] � f [x0, . . . , xn�1]

xn � x0
, xn 6= x0,

f (n)(x0)

n!
, xn = x0.

(3.41)

We now consider the following Hermite interpolation problem: The interpolation
points are x0, . . . , xl (which we assume are ordered from small to large). At each inter-
polation point xj, we have to satisfy the interpolation conditions:

p(i)(xj) = f (i)(xj), 0 6 i 6 mj.

Here, mj denotes the number of derivatives that we have to interpolate for each point
xj (with the standard notation that zero derivatives refers to the value of the function
only). In general, the number of derivatives that we have to interpolate may change
from point to point. The extended notion of divided di↵erences allows us to write the
solution to this problem in the following way:

We let n denote the total number of points including their multiplicities (that cor-
respond to the number of derivatives we have to interpolate at each point), i.e.,

n = m0 +m1 + . . .+ml.

We then list all the points including their multiplicities (that correspond to the number
of derivatives we have to interpolate). To simplify the notations we identify these points
with a new ordered list of points yi:

{y0, . . . , yn�1} = {x0, . . . , x0| {z }
m0

, x1, . . . , x1| {z }
m1

, . . . , xl, . . . , xl| {z }
ml

}.
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3.9 Hermite Interpolation D. Levy

The interpolation polynomial pn�1(x) is given by

pn�1(x) = f [y0] +
n�1X

j=1

f [y0, . . . , yj]
j�1Y

k=0

(x � yk). (3.42)

Whenever a point repeats in f [y0, . . . , yj], we interpret this divided di↵erence in terms
of the extended definition (3.41). In practice, there is no need to shift the notations to
y’s and we work directly with the original points. We demonstrate this interpolation
procedure in the following example.

Example 3.19
Problem: Find an interpolation polynomial p(x) that satisfies

8
<

:

p(x0) = f(x0),
p(x1) = f(x1),
p0(x1) = f 0(x1).

Solution: The interpolation polynomial p(x) is

p(x) = f(x0) + f [x0, x1](x � x0) + f [x0, x1, x1](x � x0)(x � x1).

The divided di↵erences:

f [x0, x1] =
f(x1) � f(x0)

x1 � x0
.

f [x0, x1, x1] =
f [x1, x1] � f [x1, x0]

x1 � x0
=

f 0(x1) � f(x1)�f(x0)
x1�x0

x1 � x0
.

Hence

p(x) = f(x0)+
f(x1) � f(x0)

x1 � x0
(x�x0)+

(x1 � x0)f 0(x1) � [f(x1) � f(x0)]

(x1 � x0)2
(x�x0)(x�x1).

3.9.2 The Lagrange form of the Hermite interpolant

In this section we are interested in writing the Lagrange form of the Hermite interpolant
in the special case in which the nodes are x0, . . . , xn and the interpolation conditions
are

p(xi) = f(xi), p0(xi) = f 0(xi), 0 6 i 6 n. (3.43)

We look for an interpolant of the form

p(x) =
nX

i=0

f(xi)Ai(x) +
nX

i=0

f 0(xi)Bi(x). (3.44)
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D. Levy 3.9 Hermite Interpolation

In order to satisfy the interpolation conditions (3.43), the polynomials p(x) in (3.44)
must satisfy the 2n+ 2 conditions:

8
<

:

Ai(xj) = �ij, Bi(xj) = 0,
i, j = 0, . . . , n.

A0
i(xj) = 0, B0

i(xj) = �ij,
(3.45)

We thus expect to have a unique polynomial p(x) that satisfies the constraints (3.45)
assuming that we limit its degree to be 6 2n+ 1.

It is convenient to start the construction with the functions we have used in the
Lagrange form of the standard interpolation problem (Section 3.5). We already know
that

li(x) =
nY

j=0
j 6=i

x � xj

xi � xj
,

satisfy li(xj) = �ij. In addition, for i 6= j,

l2i (xj) = 0, (l2i (xj))
0 = 0.

The degree of li(x) is n, which means that the degree of l2i (x) is 2n. We will thus
assume that the unknown polynomials Ai(x) and Bi(x) in (3.45) can be written as

⇢
Ai(x) = ri(x)l2i (x),
Bi(x) = si(x)l2i (x).

The functions ri(x) and si(x) are both assumed to be linear, which implies that deg(Ai) =
deg(Bi) = 2n+ 1, as desired. Now, according to (3.45)

�ij = Ai(xj) = ri(xj)l
2
i (xj) = ri(xj)�ij.

Hence

ri(xi) = 1. (3.46)

Also,

0 = A0
i(xj) = r0i(xj)[li(xj)]

2 + 2ri(xj)li(xJ)l
0
i(xj) = r0i(xj)�ij + 2ri(xj)�ijl

0
i(xj),

and thus

r0i(xi) + 2l0i(xi) = 0. (3.47)

Assuming that ri(x) is linear, ri(x) = ax+ b, equations (3.46),(3.47), imply that

a = �2l0i(xi), b = 1 + 2l0i(xi)xi.

45
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Therefore

Ai(x) = [1 + 2l0i(xi)(xi � x)]l2i (x).

As of Bi(x) in (3.44), the conditions (3.45) imply that

0 = Bi(xj) = si(xj)l
2
i (xj) =) si(xi) = 0, (3.48)

and

�ij = B0
i(xj) = s0i(xj)l

2
i (xj) + 2si(xj)(l

2
i (xj))

0 =) s0i(xi) = 1. (3.49)

Combining (3.48) and (3.49), we obtain

si(x) = x � xi,

so that

Bi(x) = (x � xi)l
2
i (x).

To summarize, the Lagrange form of the Hermite interpolation polynomial is given by

p(x) =
nX

i=0

f(xi)[1 + 2l0i(xi)(xi � x)]l2i (x) +
nX

i=0

f 0(xi)(x � xi)l
2
i (x). (3.50)

The error in the Hermite interpolation (3.50) is given by the following theorem.

Theorem 3.20 Let x0, . . . , xn be distinct nodes in [a, b] and f 2 C2n+2[a, b]. If p 2
⇧2n+1, such that 80 6 i 6 n,

p(xi) = f(xi), p0(xi) = f 0(xi),

then 8x 2 [a, b], there exists ⇠ 2 (a, b) such that

f(x) � p(x) =
f (2n+2)(⇠)

(2n+ 2)!

nY

i=0

(x � xi)
2. (3.51)

Proof. The proof follows the same techniques we used in proving Theorem 3.9. If x is
one of the interpolation points, the result trivially holds. We thus fix x as a
non-interpolation point and define

w(y) =
nY

i=0

(y � xi)
2.

We also have

�(y) = f(y) � p(y) � �w(y),
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and select � such that �(x) = 0, i.e.,

� =
f(x) � p(x)

w(x)
.

� has (at least) n+ 2 zeros in [a, b]: (x, x0, . . . , xn). By Rolle’s theorem, we know that
�0 has (at least) n+ 1 zeros that are di↵erent than (x, x0, . . . , xn). Also, �0 vanishes at
x0, . . . , xn, which means that �0 has at least 2n+ 2 zeros in [a, b].
Similarly, Rolle’s theorem implies that �00 has at least 2n+ 1 zeros in (a, b), and by
induction, �(2n+2) has at least one zero in (a, b), say ⇠.
Hence

0 = �(2n+2)(⇠) = f (2n+2)(⇠) � p(2n+2)(⇠) � �w(2n+2)(⇠).

Since the leading term in w(y) is x2n+2, w(2n+2)(⇠) = (2n+ 2)!. Also, since
p(x) 2 ⇧2n+1, p(2n+2)(⇠) = 0. We recall that x was an arbitrary (non-interpolation)
point and hence we have

f(x) � p(x) =
f (2n+2)(⇠)

(2n+ 2)!

nY

i=0

(x � xi)
2. ⌅

Example 3.21
Assume that we would like to find the Hermite interpolation polynomial that satisfies:

p(x0) = y0, p0(x0) = d0, p(x1) = y1, p0(x1) = d1.

In this case n = 1, and

l0(x) =
x � x1

x0 � x1
, l00(x) =

1

x0 � x1
, l1(x) =

x � x0

x1 � x0
, l01(x) =

1

x1 � x0
.

According to (3.50), the desired polynomial is given by (check!)

p(x) = y0


1 +

2

x0 � x1
(x0 � x)

�✓
x � x1

x0 � x1

◆2

+ y1


1 +

2

x1 � x0
(x1 � x)

�✓
x � x0

x1 � x0

◆2

+d0(x � x0)

✓
x � x1

x0 � x1

◆2

+ d1(x � x1)

✓
x � x0

x1 � x0

◆2

.

3.10 Spline Interpolation

So far, the only type of interpolation we were dealing with was polynomial interpolation.
In this section we discuss a di↵erent type of interpolation: piecewise-polynomial interpo-
lation. A simple example of such interpolants will be the function we get by connecting
data with straight lines (see Figure 3.5). Of course, we would like to generate functions
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(x0, f(x0))

(x1, f(x1))

(x2, f(x2))

(x3, f(x3))

(x4, f(x4))

x

Figure 3.5: A piecewise-linear spline. In every subinterval the function is linear. Overall
it is continuous where the regularity is lost at the knots

that are somewhat smoother than piecewise-linear functions, and still interpolate the
data. The functions we will discuss in this section are splines.

You may still wonder why are we interested in such functions at all? It is easy to
motivate this discussion by looking at Figure 3.6. In this figure we demonstrate what a
high-order interpolant looks like. Even though the data that we interpolate has only one
extrema in the domain, we have no control over the oscillatory nature of the high-order
interpolating polynomial. In general, high-order polynomials are oscillatory, which rules
them as non-practical for many applications. That is why we focus our attention in this
section on splines.

Splines, should be thought of as polynomials on subintervals that are connected in
a “smooth way”. We will be more rigorous when we define precisely what we mean by
smooth. First, we pick n+ 1 points which we refer to as the knots: t0 < t1 < · · · < tn.
A spline of degree k having knots t0, . . . , tn is a function s(x) that satisfies the

following two properties:

1. On [ti�1, ti) s(x) is a polynomial of degree 6 k, i.e., s(x) is a polynomial on every
subinterval that is defined by the knots.

2. Smoothness: s(x) has a continuous (k � 1)th derivative on the interval [t0, tn].

A spline of degree 0 is a piecewise-constant function (see Figure 3.7). A spline of
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�5 �4 �3 �2 �1 0 1 2 3 4 5
�0.5

0

0.5

1

1.5

2

1
1+x2

Q10(x)

x

Figure 3.6: An interpolant “goes bad”. In this example we interpolate 11 equally spaced
samples of f(x) = 1

1+x2 with a polynomial of degree 10, Q10(x)

(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.7: A zeroth-order (piecewise-constant) spline. The knots are at the interpola-
tion points. Since the spline is of degree zero, the function is not even continuous
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3.10 Spline Interpolation D. Levy

degree 1 is a piecewise-linear function that can be explicitly written as

s(x) =

8
>>><

>>>:

s0(x) = a0x+ b0, x 2 [t0, t1),
s1(x) = a1x+ b1, x 2 [t1, t2),
...

...
sn�1(x) = an�1x+ bn�1, x 2 [tn�1, tn],

(see Figure 3.5 where the knots {ti} and the interpolation points {xi} are assumed to
be identical). It is now obvious why the points t0, . . . , tn are called knots: these are
the points that connect the di↵erent polynomials with each other. To qualify as an
interpolating function, s(x) will have to satisfy interpolation conditions that we will
discuss below. We would like to comment already at this point that knots should not be
confused with the interpolation points. Sometimes it is convenient to choose the knots
to coincide with the interpolation points but this is only optional, and other choices can
be made.

3.10.1 Cubic splines

A special case (which is the most common spline function that is used in practice) is
the cubic spline. A cubic spline is a spline for which the function is a polynomial of
degree 6 3 on every subinterval, and a function with two continuous derivatives overall
(see Figure 3.8).

Let’s denote such a function by s(x), i.e.,

s(x) =

8
>>><

>>>:

s0(x), x 2 [t0, t1),
s1(x), x 2 [t1, t2),
...

...
sn�1(x), x 2 [tn�1, tn],

where 8i, the degree of si(x) is 6 3.
We now assume that some data (that s(x) should interpolate) is given at the knots,

i.e.,

s(ti) = yi, 0 6 i 6 n. (3.52)

The interpolation conditions (3.52) in addition to requiring that s(x) is continuous,
imply that

si�1(ti) = yi = si(ti), 1 6 i 6 n � 1. (3.53)

We also require the continuity of the first and the second derivatives, i.e.,

s0i(ti+1) = s0i+1(ti+1), 0 6 i 6 n � 2, (3.54)

s00i (ti+1) = s00i+1(ti+1), 0 6 i 6 n � 2.
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(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.8: A cubic spline. In every subinterval [ti�1, ti, the function is a polynomial of
degree 6 2. The polynomials on the di↵erent subintervals are connected to each other
in such a way that the spline has a second-order continuous derivative. In this example
we use the not-a-knot condition.
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3.10 Spline Interpolation D. Levy

Before actually computing the spline, let’s check if we have enough equations to
determine a unique solution for the problem. There are n subintervals, and in each
subinterval we have to determine a polynomial of degree 6 3. Each such polynomial
has 4 coe�cients, which leaves us with 4n coe�cients to determine. The interpolation
and continuity conditions (3.53) for si(ti) and si(ti+1) amount to 2n equations. The
continuity of the first and the second derivatives (3.54) add 2(n�1) = 2n�2 equations.
Altogether we have 4n � 2 equations but 4n unknowns which leaves us with 2 degrees
of freedom. These indeed are two degrees of freedom that can be determined in various
ways as we shall see below.

We are now ready to compute the spline. We will use the following notation:

hi = ti+1 � ti.

We also set

zi = s00(ti).

Since the second derivative of a cubic function is linear, we observe that s00i (x) is the line
connecting (ti, zi) and (ti+1, zi+1), i.e.,

s00i (x) =
x � ti
hi

zi+1 � x � ti+1

hi
zi. (3.55)

Integrating (3.55) once, we have

s0i(x) =
1

2
(x � ti)

2 zi+1

hi
� 1

2
(x � ti+1)

2 zi
hi

+ c̃.

Integrating again

si(x) =
zi+1

6hi
(x � ti)

3 +
zi
6hi

(ti+1 � x)3 + C(x � ti) +D(ti+1 � x).

The interpolation condition, s(ti) = yi, implies that

yi =
zi
6hi

h3
i +Dhi,

i.e.,

D =
yi
hi

� zihi

6
.

Similarly, si(ti+1) = yi+1, implies that

yi+1 =
zi+1

6hi
h3
i + Chi,
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i.e.,

C =
yi+1

hi
� zi+1

6
hi.

This means that we can rewrite si(x) as

si(x) =
zi+1

6hi
(x�ti)

3+
zi
6hi

(ti+1�x)3+

✓
yi+1

hi
� zi+1

6
hi

◆
(x�ti)+

✓
yi
hi

� zi
6
hi

◆
(ti+1�x).

All that remains to determine is the second derivatives of s(x), z0, . . . , zn. We can set
z1, . . . , zn�1 using the continuity conditions on s0(x), i.e., s0i(ti) = s0i�1(ti). We first
compute s0i(x) and s0i�1(x):

s0i(x) =
zi+1

2hi
(x � ti)

2 � zi
2hi

(ti+1 � x)2 +
yi+1

hi
� zi+1

6
hi � yi

hi
+

zihi

6
.

s0i�1(x) =
zi

2hi�1
(x � ti�1)

2 � zi�1

2hi�1
(ti � x)2 +

yi
hi�1

� zi
6
hi�1 � yi�1

hi�1
+

zi�1hi�1

6
.

So that

s0i(ti) = � zi
2hi

h2
i +

yi+1

hi
� zi+1

6
hi � yi

hi
+

zihi

6

= �hi

3
zi � hi

6
zi+1 � yi

hi
+

yi+1

hi
,

s0i�1(ti) =
zi

2hi�1
h2
i�1 +

yi
hi�1

� zi
6
hi�1 � yi�1

hi�1
+

zi�1hi�1

6

=
hi�1

6
zi�1 +

hi�1

3
zi � yi�1

hi�1
+

yi
h i�1

.

Hence, for 1 6 i 6 n � 1, we obtain the system of equations

hi�1

6
zi�1 +

hi + hi�1

3
zi +

hi

6
zi+1 =

1

hi
(yi+1 � yi) � 1

hi�1
(yi � yi�1). (3.56)

These are n� 1 equations for the n+1 unknowns, z0, . . . , zn, which means that we have
2 degrees of freedom. Without any additional information about the problem, the only
way to proceed is by making an arbitrary choice. There are several standard ways to
proceed. One option is to set the end values to zero, i.e.,

z0 = zn = 0. (3.57)

This choice of the second derivative at the end points leads to the so-called, natural
cubic spline. We will explain later in what sense this spline is “natural”. In this case,
we end up with the following linear system of equations

0

BBBBB@

h0+h1
3

h1
6

h1
6

h1+h2
3

h2
6

. . . . . . . . .
hn�3

6
hn�3+hn�2

3
hn�2

6
hn�2

6
hn�2+hn�1

3

1

CCCCCA

0

BBBBB@

z1
z2
...

zn�2

zn�1

1

CCCCCA
=

0

BBBBB@

y2�y1
h1

� y1�y0
h0

y3�y2
h2

� y2�y1
h1

...
yn�1�yn�2

hn�2
� yn�2�yn�3

hn�3
yn�yn�1

hn�1
� yn�1�yn�2

hn�2

1

CCCCCA
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The coe�cients matrix is symmetric, tridiagonal, and diagonally dominant (i.e., |aii| >Pn
j=1,j 6=i |aij|, 8i), which means that it can always be (e�ciently) inverted.
In the special case where the points are equally spaced, i.e., hi = h, 8i, the system

becomes
0

BBBBB@

4 1
1 4 1

. . . . . . . . .
1 4 1

1 4

1

CCCCCA

0

BBBBB@

z1
z2
...

zn�2

zn�1

1

CCCCCA
=

6

h2

0

BBBBB@

y2 � 2y1 + y0
y3 � 2y2 + y1

...
yn�1 � 2yn�2 + yn�3

yn � 2yn�1 + yn�2

1

CCCCCA
(3.58)

In addition to the natural spline (3.57), there are other standard options:

1. If the values of the derivatives at the endpoints are known, one can specify them

s0(t0) = y00, s0(tn) = y0n.

2. The not-a-knot condition. Here, we require the third-derivative s(3)(x) to be
continuous at the points t1, tn�1. In this case we end up with a cubic spline with
knots t0, t2, t3, . . . , tn�2, tn. The points t1 and tn�1 no longer function as knots.
The interpolation requirements are still satisfied at t0, t1, . . . , tn�1, tn. Figure 3.9
shows two di↵erent cubic splines that interpolate the same initial data. The spline
that is plotted with a solid line is the not-a-knot spline. The spline that is plotted
with a dashed line is obtained by setting the derivatives at both end-points to
zero.

3.10.2 What is natural about the natural spline?

The following theorem states that the natural spline cannot have a larger L2-norm of
the second-derivative than the function it interpolates (assuming that that function has
a continuous second-derivative). In fact, we are minimizing the L2-norm of the second-
derivative not only with respect to the “original” function which we are interpolating,
but with respect to any function that interpolates the data (and has a continuous second-
derivative). In that sense, we refer to the natural spline as “natural”.

Theorem 3.22 Assume that f 00(x) is continuous in [a, b], and let a = t0 < t1 < · · · <
tn = b. If s(x) is the natural cubic spline interpolating f(x) at the knots {ti} then

Z b

a

(s00(x))2dx 6
Z b

a

(f 00(x))2dx.

Proof. Define g(x) = f(x) � s(x). Then since s(x) interpolates f(x) at the knots {ti}
their di↵erence vanishes at these points, i.e.,

g(ti) = 0, 0 6 i 6 n.
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(t0, f(t0))

(t1, f(t1))

(t2, f(t2))

(t3, f(t3))

(t4, f(t4))

x

Figure 3.9: Two cubic splines that interpolate the same data. Solid line: a not-a-knot
spline; Dashed line: the derivative is set to zero at both end-points

Now
Z b

a

(f 00)2dx =

Z b

a

(s00)2dx+

Z b

a

(g00)2dx+ 2

Z b

a

s00g00dx. (3.59)

We will show that the last term on the right-hand-side of (3.59) is zero, which will
conclude the proof as the other two terms on the right-hand-side of (3.59) are
non-negative. Splitting that term into a sum of integrals on the subintervals and
integrating by parts on every subinterval, we have

Z b

a

s00g00dx =
nX

i=1

Z ti

ti�1

s00g00dx =
nX

i=1

"
(s00g0)

����
ti

ti�1

�
Z ti

ti�1

s000g0dx

#
.

Since we are dealing with the “natural” choice s00(t0) = s00(tn) = 0, and since s000(x) is
constant on [ti�1, ti] (say ci), we end up with
Z b

a

s00g00dx = �
nX

i=1

Z ti

ti�1

s000g0dx = �
nX

i=1

ci

Z ti

ti�1

g0dx = �
nX

i=1

ci(g(ti)�g(ti�1)) = 0. ⌅

We note that f 00(x) can be viewed as a linear approximation of the curvature

|f 00(x)|
(1 + (f 0(x))2)

3
2

.
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3.10 Spline Interpolation D. Levy

From that point of view, minimizing
R b

a (f
00(x))2dx, can be viewed as finding the curve

with a minimal |f 00(x)| over an interval.

56



D. Levy

4 Approximations

4.1 Background

In this chapter we are interested in approximation problems. Generally speaking, start-
ing from a function f(x) we would like to find a di↵erent function g(x) that belongs
to a given class of functions and is “close” to f(x) in some sense. As far as the class
of functions that g(x) belongs to, we will typically assume that g(x) is a polynomial
of a given degree (though it can be a trigonometric function, or any other function).
A typical approximation problem, will therefore be: find the “closest” polynomial of
degree 6 n to f(x).

What do we mean by “close”? There are di↵erent ways of measuring the “distance”
between two functions. We will focus on two such measurements (among many): the L1-
norm and the L2-norm. We chose to focus on these two examples because of the di↵erent
mathematical techniques that are required to solve the corresponding approximation
problems.

We start with several definitions. We recall that a norm on a vector space V over
R is a function k · k : V ! R with the following properties:

1. k�fk = |�|kfk, 8� 2 R and 8f 2 V .

2. kfk > 0, 8f 2 V . Also kfk = 0 i↵ f is the zero element of V .

3. The triangle inequality: kf + gk 6 kfk + kgk, 8f, g 2 V .

We assume that the function f(x) 2 C0[a, b] (continuous on [a, b]). A continuous
function on a closed interval obtains a maximum in the interval. We can therefore define
the L1 norm (also known as the maximum norm) of such a function by

kfk1 = max
a6x6b

|f(x)|. (4.1)

The L1-distance between two functions f(x), g(x) 2 C0[a, b] is thus given by

kf � gk1 = max
a6x6b

|f(x) � g(x)|. (4.2)

We note that the definition of the L1-norm can be extended to functions that are less
regular than continuous functions. This generalization requires some subtleties that
we would like to avoid in the following discussion, hence, we will limit ourselves to
continuous functions.

We proceed by defining the L2-norm of a continuous function f(x) as

kfk2 =

sZ b

a

|f(x)|2dx. (4.3)
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4.1 Background D. Levy

The L2 function space is the collection of functions f(x) for which kfk2 < 1. Of
course, we do not have to assume that f(x) is continuous for the definition (4.3) to
make sense. However, if we allow f(x) to be discontinuous, we then have to be more
rigorous in terms of the definition of the interval so that we end up with a norm (the
problem is, e.g., in defining what is the “zero” element in the space). We therefore limit
ourselves also in this case to continuous functions only. The L2-distance between two
functions f(x) and g(x) is

kf � gk2 =

sZ b

a

|f(x) � g(x)|2 dx. (4.4)

At this point, a natural question is how important is the choice of norm in terms of
the solution of the approximation problem. It is easy to see that the value of the norm
of a function may vary substantially based on the function as well as the choice of the
norm. For example, assume that kfk1 < 1. Then, clearly

kfk2 =

sZ b

a

|f |2dx  (b � a)kfk1.

On the other hand, it is easy to construct a function with an arbitrary small kfk2 and
an arbitrarily large kfk1. Hence, the choice of norm may have a significant impact on
the solution of the approximation problem.

As you have probably already anticipated, there is a strong connection between some
approximation problems and interpolation problems. For example, one possible method
of constructing an approximation to a given function is by sampling it at certain points
and then interpolating the sampled data. Is that the best we can do? Sometimes the
answer is positive, but the problem still remains di�cult because we have to determine
the best sampling points. We will address these issues in the following sections.

The following theorem, the Weierstrass approximation theorem, plays a central role
in any discussion of approximations of functions. Loosely speaking, this theorem states
that any continuous function can be approached as close as we want to with polynomials,
assuming that the polynomials can be of any degree. We formulate this theorem in the
L1 norm and note that a similar theorem holds also in the L2 sense. We let ⇧n denote
the space of polynomials of degree 6 n.

Theorem 4.1 (Weierstrass Approximation Theorem) Let f(x) be a continuous
function on [a, b]. Then there exists a sequence of polynomials Pn(x) that converges
uniformly to f(x) on [a, b], i.e., 8" > 0, there exists an N 2 N and polynomials Pn(x) 2
⇧n, such that 8x 2 [a, b]

|f(x) � Pn(x)| < ", 8n > N.
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D. Levy 4.1 Background

We will provide a constructive proof of the Weierstrass approximation theorem: first,
we will define a family of polynomials, known as the Bernstein polynomials, and then
we will show that they uniformly converge to f(x).

We start with the definition. Given a continuous function f(x) in [0, 1], we define
the Bernstein polynomials as

(Bnf)(x) =
nX

j=0

f

✓
j

n

◆✓
n

j

◆
xj(1 � x)n�j, 0 6 x 6 1.

We emphasize that the Bernstein polynomials depend on the function f(x).

Example 4.2
Three Bernstein polynomials B6(x), B10(x), and B20(x) for the function

f(x) =
1

1 + 10(x � 0.5)2

on the interval [0, 1] are shown in Figure 4.1. Note the gradual convergence of Bn(x) to
f(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)
B6(x)

B10(x)

B20(x)

Figure 4.1: The Bernstein polynomials B6(x), B10(x), and B20(x) for the function f(x) =
1

1+10(x�0.5)2 on the interval [0, 1]

We now state and prove several properties of Bn(x) that will be used when we prove
Theorem 4.1.
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Lemma 4.3 The following relations hold:

1. (Bn1)(x) = 1

2. (Bnx)(x) = x

3. (Bnx2)(x) =
n � 1

n
x2 +

x

n
.

Proof.

(Bn1)(x) =
nX

j=0

✓
n

j

◆
xj(1 � x)n�j = (x+ (1 � x))n = 1.

(Bnx)(x) =
nX

j=0

j

n

✓
n

j

◆
xj(1 � x)n�j = x

nX

j=1

✓
n � 1

j � 1

◆
xj�1(1 � x)n�j

= x
n�1X

j=0

✓
n � 1

j

◆
xj(1 � x)n�1�j = x[x+ (1 � x)]n�1 = x.

Finally,
✓
j

n

◆2✓n
j

◆
=

j

n

(n � 1)!

(n � j)!(j � 1)!
=

n � 1

n � 1

j � 1

n

(n � 1)!

(n � j)!(j � 1)!
+

1

n

(n � 1)!

(n � j)!(j � 1)!

=
n � 1

n

✓
n � 2

j � 2

◆
+

1

n

✓
n � 1

j � 1

◆
.

Hence

(Bnx
2)(x) =

nX

j=0

✓
j

n

◆2✓n
j

◆
xj(1 � x)n�j

=
n � 1

n
x2

nX

j=2

✓
n � 2

j � 2

◆
xj�2(1 � x)n�j +

1

n
x

nX

j=1

✓
n � 1

j � 1

◆
xj�1(1 � x)n�j

=
n � 1

n
x2(x+ (1 � x))n�2 +

1

n
x(x+ (1 � x))n�1 =

n � 1

n
x2 +

x

n
. ⌅

In the following lemma we state several additional properties of the Bernstein poly-
nomials. The proof is left as an exercise.

Lemma 4.4 For all functions f(x), g(x) that are continuous in [0, 1], and 8↵ 2 R

1. Linearity.

(Bn(↵f + g))(x) = ↵(Bnf)(x) + (Bng)(x).
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D. Levy 4.1 Background

2. Monotonicity. If f(x) 6 g(x) 8x 2 [0, 1], then

(Bnf)(x) 6 (Bng)(x).

Also, if |f(x)| 6 g(x) 8x 2 [0, 1] then

|(Bnf)(x)| 6 (Bng)(x).

3. Positivity. If f(x) > 0 then

(Bnf)(x) > 0.

We are now ready to prove the Weierstrass approximation theorem, Theorem 4.1.

Proof. We will prove the theorem in the interval [0, 1]. The extension to [a, b] is left as
an exercise. Since f(x) is continuous on a closed interval, it is uniformly continuous.
Hence 8x, y 2 [0, 1], such that |x � y| 6 �,

|f(x) � f(y)| 6 ". (4.5)

In addition, since f(x) is continuous on a closed interval, it is also bounded. Let

M = max
x2[0,1]

|f(x)|.

Fix any point a 2 [0, 1]. If |x � a| 6 � then (4.5) holds. If |x � a| > � then

|f(x) � f(a)| 6 2M 6 2M

✓
x � a

�

◆2

.

(at first sight this seems to be a strange way of upper bounding a function. We will
use it later on to our advantage). Combining the estimates for both cases we have

|f(x) � f(a)| 6 "+
2M

�2
(x � a)2.

We would now like to estimate the di↵erence between Bnf and f . The linearity of Bn

and the property (Bn1)(x) = 1 imply that

Bn(f � f(a))(x) = (Bnf)(x) � f(a).

Hence using the monotonicity of Bn and the mapping properties of x and x2, we have,

|Bnf(x) � f(a)| 6 Bn

✓
"+

2M

�2
(x � a)2

◆
= "+

2M

�2

✓
n � 1

n
x2 +

x

n
� 2ax+ a2

◆

= "+
2M

�2
(x � a)2 +

2M

�2
x � x2

n
.
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Evaluating at x = a we have (observing that maxa2[0,1](a � a2) = 1
4)

|Bnf(a) � f(a)| 6 "+
2M

�2
a � a2

n
6 "+

M

2�2n
. (4.6)

The point a was arbitrary so the result (4.6) holds for any point a 2 [0, 1]. Choosing
N > M

2�2" we have 8n > N ,

kBnf � fk1 6 "+
M

2�2N
6 2". ⌅

• Is interpolation a good way of approximating functions in the 1-norm? Not
necessarily. Discuss Runge’s example...

4.2 The Minimax Approximation Problem

We assume that the function f(x) is continuous on [a, b], and assume that Pn(x) is a
polynomial of degree 6 n. We recall that the L1-distance between f(x) and Pn(x) on
the interval [a, b] is given by

kf � Pnk1 = max
a6x6b

|f(x) � Pn(x)|. (4.7)

Clearly, we can construct polynomials that will have an arbitrary large distance from
f(x). The question we would like to address is how close can we get to f(x) (in the L1

sense) with polynomials of a given degree. We define dn(f) as the infimum of (4.7) over
all polynomials of degree 6 n, i.e.,

dn(f) = inf
Pn2⇧n

kf � Pnk1 (4.8)

The goal is to find a polynomial P ⇤
n(x) for which the infimum (4.8) is actually ob-

tained, i.e.,

dn(f) = kf � P ⇤
n(x)k1. (4.9)

We will refer to a polynomial P ⇤
n(x) that satisfies (4.9) as a polynomial of best

approximation or the minimax polynomial. The minimal distance in (4.9) will
be referred to as the minimax error.

The theory we will explore in the following sections will show that the minimax
polynomial always exists and is unique. We will also provide a characterization of
the minimax polynomial that will allow us to identify it if we actually see it. The
general construction of the minimax polynomial will not be addressed in this text as it
is relatively technically involved. We will limit ourselves to simple examples.
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Example 4.5
We let f(x) be a monotonically increasing and continuous function on the interval [a, b]
and are interested in finding the minimax polynomial of degree zero to f(x) in that
interval. We denote this minimax polynomial by

P ⇤
0 (x) ⌘ c.

Clearly, the smallest distance between f(x) and P ⇤
0 in the L1-norm will be obtained if

c =
f(a) + f(b)

2
.

The maximal distance between f(x) and P ⇤
0 will be attained at both edges and will be

equal to

±f(b) � f(a)

2
.

4.2.1 Existence of the minimax polynomial

The existence of the minimax polynomial is provided by the following theorem.

Theorem 4.6 (Existence) Let f 2 C0[a, b]. Then for any n 2 N there exists P ⇤
n(x) 2

⇧n, that minimizes kf(x) � Pn(x)k1 among all polynomials P (x) 2 ⇧n.

Proof. We follow the proof as given in [7]. Let ⌘ = (⌘0, . . . , ⌘n) be an arbitrary point in
Rn+1 and let

Pn(x) =
nX

i=0

⌘ix
i 2 ⇧n.

We also let

�(⌘) = �(⌘0, . . . , ⌘n) = kf � Pnk1.

Our goal is to show that � obtains a minimum in Rn+1, i.e., that there exists a point
⌘⇤ = (⌘⇤0, . . . , ⌘

⇤
n) such that

�(⌘⇤) = min
⌘2Rn+1

�(⌘).

Step 1. We first show that �(⌘) is a continuous function on Rn+1. For an arbitrary
� = (�0, . . . , �n) 2 Rn+1, define

qn(x) =
nX

i=0

�ix
i.
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4.2 The Minimax Approximation Problem D. Levy

Then

�(⌘ + �) = kf � (Pn + qn)k1  kf � Pnk1 + kqnk1 = �(⌘) + kqnk1.

Hence

�(⌘ + �) � �(⌘)  kqnk1  max
x2[a,b]

(|�0| + |�1||x| + . . .+ |�n||x|n).

For any " > 0, let �̃ = "/(1 + c+ . . .+ cn), where c = max(|a|, |b|). Then for any
� = (�0, . . . , �n) such that max |�i| 6 �̃, 0 6 i 6 n,

�(⌘ + �) � �(⌘) 6 ". (4.10)

Similarly

�(⌘) = kf�Pnk1 = kf�(Pn+qn)+qnk1 6 kf�(Pn+qn)k1+kqnk1 = �(⌘+�)+kqnk1,

which implies that under the same conditions as in (4.10) we also get

�(⌘) � �(⌘ + �) 6 ",

Altogether,

|�(⌘ + �) � �(⌘)| 6 ",

which means that � is continuous at ⌘. Since ⌘ was an arbitrary point in Rn+1, � is
continuous in the entire Rn+1.

Step 2. We now construct a compact set in Rn+1 on which � obtains a minimum. We
let

S =
�
⌘ 2 Rn+1

�� �(⌘)  kfk1
 
.

We have

�(0) = kfk1,

hence, 0 2 S, and the set S is nonempty. We also note that the set S is bounded and
closed (check!). Since � is continuous on the entire Rn+1, it is also continuous on S,
and hence it must obtain a minimum on S, say at ⌘⇤ 2 Rn+1, i.e.,

min
⌘2S

�(⌘) = �(⌘⇤).
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D. Levy 4.2 The Minimax Approximation Problem

Step 3. Since 0 2 S, we know that

min
⌘2S

�(⌘) 6 �(0) = kfk1.

Hence, if ⌘ 2 Rn+1 but ⌘ 62 S then

�(⌘) > kfk1 > min
⌘2S

�(⌘).

This means that the minimum of � over S is the same as the minimum over the entire
Rn+1. Therefore

P ⇤
n(x) =

nX

i=0

⌘⇤i x
i, (4.11)

is the best approximation of f(x) in the L1 norm on [a, b], i.e., it is the minimax
polynomial, and hence the minimax polynomial exists. ⌅

We note that the proof of Theorem 4.6 is not a constructive proof. The proof does
not tell us what the point ⌘⇤ is, and hence, we do not know the coe�cients of the
minimax polynomial as written in (4.11). We will discuss the characterization of the
minimax polynomial and some simple cases of its construction in the following sections.

4.2.2 Bounds on the minimax error

It is trivial to obtain an upper bound on the minimax error, since by the definition of
dn(f) in (4.8) we have

dn(f) 6 kf � Pnk1, 8Pn(x) 2 ⇧n.

A lower bound is provided by the following theorem.

Theorem 4.7 (de la Vallée-Poussin) Let a 6 x0 < x1 < · · · < xn+1 6 b. Let Pn(x)
be a polynomial of degree 6 n. Suppose that

f(xj) � Pn(xj) = (�1)jej, j = 0, . . . , n+ 1,

where all ej 6= 0 and are of an identical sign. Then

min
j

|ej| 6 dn(f).

Proof. By contradiction. Assume for some Qn(x) that

kf � Qnk1 < min
j

|ej|.

Then the polynomial

(Qn � Pn)(x) = (f � Pn)(x) � (f � Qn)(x),

is a polynomial of degree 6 n that has the same sign at xj as does f(x) � Pn(x). This
implies that (Qn � Pn)(x) changes sign at least n + 2 times, and hence it has at least
n + 1 zeros. Being a polynomial of degree 6 n this is possible only if it is identically
zero, i.e., if Pn(x) ⌘ Qn(x), which contradicts the assumptions on Qn(x) and Pn(x). ⌅
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4.2 The Minimax Approximation Problem D. Levy

4.2.3 Characterization of the minimax polynomial

The following theorem provides a characterization of the minimax polynomial in terms
of its oscillations property.

Theorem 4.8 (The oscillating theorem) Suppose that f(x) is continuous in [a, b].
The polynomial P ⇤

n(x) 2 ⇧n is the minimax polynomial of degree n to f(x) in [a, b] if
and only if f(x)�P ⇤

n(x) assumes the values ±kf �P ⇤
nk1 with an alternating change of

sign at least n+ 2 times in [a, b].

Proof. We prove here only the su�ciency part of the theorem. For the necessary part
of the theorem we refer to [7].
Without loss of generality, suppose that

(f � P ⇤
n)(xi) = (�1)ikf � P ⇤

nk1, 0 6 i 6 n+ 1.

Let

D⇤ = kf � P ⇤
nk1,

and let

dn(f) = min
Pn2⇧n

kf � Pnk1.

We replace the infimum in the original definition of dn(f) by a minimum because we
already know that a minimum exists. de la Vallée-Poussin’s theorem (Theorem 4.7)
implies that D⇤ 6 dn. On the other hand, the definition of dn implies that dn 6 D⇤.
Hence D⇤ = dn and P ⇤

n(x) is the minimax polynomial. ⌅

Remark. In view of these theorems it is obvious why the Taylor expansion is a poor
uniform approximation. The sum is non oscillatory.

4.2.4 Uniqueness of the minimax polynomial

Theorem 4.9 (Uniqueness) Let f(x) be continuous on [a, b]. Then its minimax poly-
nomial P ⇤

n(x) 2 ⇧n is unique.

Proof. Let

dn(f) = min
Pn2⇧n

kf � Pnk1.

Assume that Qn(x) is also a minimax polynomial. Then

kf � P ⇤
nk1 = kf � Qnk1 = dn(f).
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D. Levy 4.2 The Minimax Approximation Problem

The triangle inequality implies that

kf � 1

2
(P ⇤

n +Qn)k1  1

2
kf � P ⇤

nk1 +
1

2
kf � Qnk1 = dn(f).

Hence, 1
2(P

⇤
n +Qn) 2 ⇧n is also a minimax polynomial. The oscillating theorem

(Theorem 4.8) implies that there exist x0, . . . , xn+1 2 [a, b] such that

|f(xi) � 1

2
(P ⇤

n(xi) +Qn(xi))| = dn(f), 0 6 i 6 n+ 1. (4.12)

Equation (4.12) can be rewritten as

|f(xi) � P ⇤
n(xi) + f(xi) � Qn(xi)| = 2dn(f), 0 6 i 6 n+ 1. (4.13)

Since P ⇤
n(x) and Qn(x) are both minimax polynomials, we have

|f(xi) � P ⇤
n(xi)|  kf � P ⇤

nk1 = dn(f), 0 6 i 6 n+ 1. (4.14)

and

|f(xi) � Qn(xi)|  kf � Qnk1 = dn(f), 0 6 i 6 n+ 1. (4.15)

For any i, equations (4.13)–(4.15) mean that the absolute value of two numbers that
are 6 dn(f) add up to 2dn(f). This is possible only if they are equal to each other, i.e.,

f(xi) � P ⇤
n(xi) = f(xi) � Qn(xi), 0 6 i 6 n+ 1,

i.e.,

(P ⇤
n � Qn)(xi) = 0, 0 6 i 6 n+ 1.

Hence, the polynomial (P ⇤
n �Qn)(x) 2 ⇧n has n+ 2 distinct roots which is possible for

a polynomial of degree 6 n only if it is identically zero. Hence

Qn(x) ⌘ P ⇤
n(x),

and the uniqueness of the minimax polynomial is established. ⌅

4.2.5 The near-minimax polynomial

We now connect between the minimax approximation problem and polynomial interpo-
lation. In order for f(x) � Pn(x) to change its sign n + 2 times, there should be n + 1
points on which f(x) and Pn(x) agree with each other. In other words, we can think
of Pn(x) as a function that interpolates f(x) at (least in) n + 1 points, say x0, . . . , xn.
What can we say about these points?
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4.2 The Minimax Approximation Problem D. Levy

We recall that the interpolation error is given by (3.27),

f(x) � Pn(x) =
1

(n+ 1)!
f (n+1)(⇠)

nY

i=0

(x � xi).

If Pn(x) is indeed the minimax polynomial, we know that the maximum of

f (n+1)(⇠)
nY

i=0

(x � xi), (4.16)

will oscillate with equal values. Due to the dependency of f (n+1)(⇠) on the intermediate
point ⇠, we know that minimizing the error term (4.16) is a di�cult task. We recall that
interpolation at the Chebyshev points minimizes the multiplicative part of the error
term, i.e.,

nY

i=0

(x � xi).

Hence, choosing x0, . . . , xn to be the Chebyshev points will not result with the minimax
polynomial, but nevertheless, this relation motivates us to refer to the interpolant at
the Chebyshev points as the near-minimax polynomial. We note that the term
“near-minimax” does not mean that the near-minimax polynomial is actually close to
the minimax polynomial.

4.2.6 Construction of the minimax polynomial

The characterization of the minimax polynomial in terms of the number of points in
which the maximum distance should be obtained with oscillating signs allows us to
construct the minimax polynomial in simple cases by a direct computation.

We are not going to deal with the construction of the minimax polynomial in the
general case. The algorithm for doing so is known as the Remez algorithm, and we refer
the interested reader to [2] and the references therein.

A simple case where we can demonstrate a direct construction of the polynomial is
when the function is convex, as done in the following example.

Example 4.10
Problem: Let f(x) = ex, x 2 [1, 3]. Find the minimax polynomial of degree 6 1, P ⇤

1 (x).

Solution: Based on the characterization of the minimax polynomial, we will be looking
for a linear function P ⇤

1 (x) such that its maximal distance between P ⇤
1 (x) and f(x) is

obtained 3 times with alternative signs. Clearly, in the case of the present problem,
since the function is convex, the maximal distance will be obtained at both edges and
at one interior point. We will use this observation in the construction that follows.
The construction itself is graphically shown in Figure 4.2.
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1 a 3
x

e1

f(a)

ȳ

l1(a)

e3

�� l2(x)

ex

l1(x) �!

P �
1 (x)

Figure 4.2: A construction of the linear minimax polynomial for the convex function ex

on [1, 3]

We let l1(x) denote the line that connects the endpoints (1, e) and (3, e3), i.e.,

l1(x) = e+m(x � 1).

Here, the slope m is given by

m =
e3 � e

2
. (4.17)

Let l2(x) denote the tangent to f(x) at a point a that is identified such that the slope
is m. Since f 0(x) = ex, we have ea = m, i.e.,

a = logm.

Now

f(a) = elogm = m,

and

l1(a) = e+m(logm � 1).

Hence, the average between f(a) and l1(a) which we denote by ȳ is given by

ȳ =
f(a) + l1(a)

2
=

m+ e+m logm � m

2
=

e+m logm

2
.
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The minimax polynomial P ⇤
1 (x) is the line of slope m that passes through (a, ȳ),

P ⇤
1 (x) � e+m logm

2
= m(x � logm),

i.e.,

P ⇤
1 (x) = mx+

e � m logm

2
,

where the slope m is given by (4.17). We note that the maximal di↵erence between
P ⇤
1 (x) and f(x) is obtained at x = 1, a, 3.

4.3 Least-squares Approximations

4.3.1 The least-squares approximation problem

We recall that the L2-norm of a function f(x) is defined as

kfk2 =

sZ b

a

|f(x)|2dx.

As before, we let ⇧n denote the space of all polynomials of degree 6 n. The least-
squares approximation problem is to find the polynomial that is closest to f(x) in
the L2-norm among all polynomials of degree 6 n, i.e., to find Q⇤

n(x) 2 ⇧n such that

kf(x) � Q⇤
n(x)k2 = min

Qn(x)2⇧n

kf(x) � Qn(x)k2 = min
Qn(x)2⇧n

sZ b

a

|f(x) � Qn(x)|2.

4.3.2 Solving the least-squares problem: a direct method

Our goal is to find a polynomial in ⇧n that minimizes the distance kf(x) � Qn(x)k2

among all polynomials Qn 2 ⇧n. We thus consider

Qn(x) =
nX

j=0

cjx
j.

For convenience, instead of minimizing the L2 norm of the di↵erence, we will minimize
its square, i.e., we will find a polynomial Qn(x) 2 ⇧n that minimizes:

Z b

a

(f(x) � Qn(x))
2.
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We thus let � denote the square of the L2-distance between f(x) and Qn(x), i.e.,

�(c0, . . . , cn) =

Z b

a

(f(x) � Qn(x))
2dx =

Z b

a

 
f(x) �

nX

j=0

cjx
j

!2

dx =

=

Z b

a

(f(x))2dx � 2
nX

j=0

cj

Z b

a

xjf(x)dx+
nX

i=0

nX

j=0

cicj

Z b

a

xi+jdx.

� is a function of the n + 1 coe�cients in the polynomial Qn(x). We want to find a
point c⇤ = (c⇤0, . . . , c

⇤
n) 2 Rn+1 for which � obtains a minimum. At this point, the partial

derivative with respect to all variables should vanish:

@�

@ck

����
c=c⇤

= 0. (4.18)

The condition (4.18) implies that

0 = �2

Z b

a

xkf(x)dx+
nX

i=0

c⇤i

Z b

a

xi+kdx+
nX

j=0

c⇤j

Z b

a

xj+kdx (4.19)

= 2

"
nX

j=0

c⇤j

Z b

a

xj+kdx �
Z b

a

xkf(x)dx

#
.

Since the function f(x) is known, equation (4.19) is a linear system for the n + 1
unknowns (c⇤0, . . . , c

⇤
n):

nX

j=0

c⇤j

Z b

a

xj+kdx =

Z b

a

xkf(x), k = 0, . . . , n. (4.20)

In matrix form, the linear system (4.20) can be written as

Hn+1c
⇤ = g, (4.21)

The coe�cients matrix, Hn+1(a, b) is the (n+ 1) ⇥ (n+ 1) matrix:

(Hn+1(a, b))j,k =

Z b

a

xj+kdx, 0 6 j, k 6 n. (4.22)

c⇤ is the vector of unknowns, c⇤ = (c⇤0, . . . , c
⇤
n), and the components of g = (g0, . . . , gn),

are the RHS of (4.20):

gk =

Z b

a

xkf(x), k = 0, . . . , n.
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For example, in the case where [a, b] = [0, 1],

Hn(0, 1) =

0

BBB@

1/1 1/2 . . . 1/n
1/2 1/3 . . . 1/(n+ 1)
...

...
1/n 1/(n+ 1) . . . 1/(2n � 1)

1

CCCA
(4.23)

The matrix (4.23) is known as the Hilbert matrix. It can be shown that the deter-
minant of Hn is given by

det(Hn) =
(1!2! · · · (n � 1)!)4

1!2! · · · (2n � 1)!
.

Hence, det(Hn) 6= 0 and Hn is invertible.
We thus know that the solution of the least-squares problem is the polynomial

Q⇤
n(x) =

nX

j=0

c⇤jx
j,

where the coe�cients c⇤j , j = 0, . . . , n, are the solution of the linear system (4.20). Since
the coe�cients matrix, Hn+1 is invertible, the system (4.20) has a unique solution, which
proves that not only the least-squares problem has a solution, but it is also unique.

Is solving the system (4.21), i.e., inverting the Hilbert matrix, a good way of solving
the least-squares problem? Unfortunately not. There are numerical instabilities that
are associated with inverting H. We demonstrate this with the following example.

Example 4.11
The Hilbert matrix H5 is

H5 =

0

BBBB@

1/1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

1

CCCCA

The inverse of H5 is

H5 =

0

BBBB@

25 �300 1050 �1400 630
�300 4800 �18900 26880 �12600
1050 �18900 79380 �117600 56700

�1400 26880 �117600 179200 �88200
630 �12600 56700 �88200 44100

1

CCCCA

The condition number of H5 is 4.77 · 105, which indicates that the Hilbert matrix is
ill-conditioned. In fact, the condition number of Hn increases with the dimension n so
inverting it becomes more di�cult with an increasing dimension.
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4.3.3 Solving the least-squares problem with orthogonal polynomials

In Section 4.3.2 we showed that the least squares problem can be solved by considering
a polynomial of the form:

Q⇤
n(x) =

nX

j=0

c⇤jx
j, (4.24)

Unfortunately computing the coe�cients c⇤0, . . . , c
⇤
n require inverting the ill-posed Hilbert

matrix (4.22).
In this section we provide an alternative approach for solving the least-squares prob-

lem. Now that we know that the least-squares problem has a solution and it is unique,
our goal is to find a better computational approach for computing it. We are still look-
ing for a polynomial of degree  n, but instead of insisting that it is written in the
form (4.24), i.e., as a linear combination of the functions 1, x, x2, . . . , xn, we will write
the polynomial Qn(x) as a linear combination of more general polynomials:

Qn(x) =
nX

j=0

cjPj(x). (4.25)

Here, every Pk(x) is a polynomial of deg(Pk(x)) = k. These polynomials are yet to
be determined, but for the time being we assume they are given, known polynomials.
Clearly, since Qn(x) is written as a linear combination of polynomials of degree k =
0, . . . , n, Qn(x) is a polynomial of degree 6 n.

We repeat the calculations of Section 4.3.2, only that this time, the unknowns
(c0, . . . , cn) are the coe�cients of the linear combination (4.25). Our goal is to min-
imize

�(c0, . . . , cn) =

Z b

a

(f(x) � Qn(x))
2 dx.

At the minimum, c⇤ = (c⇤0, . . . , c
⇤
n), we have

0 =
@�

@ck

����
c=c⇤

= �2

Z b

a

Pk(x)f(x)dx+ 2
nX

j=0

c⇤j

Z b

a

Pj(x)Pk(x)dx,

i.e.,

nX

j=0

c⇤j

Z b

a

Pj(x)Pk(x)dx =

Z b

a

Pk(x)f(x)dx, k = 0, . . . , n. (4.26)

Note the similarity between equation (4.26) and (4.20). In (4.20), we used the basis
functions {xk}n

k=0 (a basis of ⇧n), while here we work with the polynomials {Pk(x)}n
k=0

instead.
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The key idea is to choose the polynomials {Pk(x)}n
k=0 such that the system (4.26)

can be easily solved. We would like to choose polynomials that satisfy:
Z b

a

Pj(x)Pk(x)dx = �jk =

⇢
1, j = k,
0, j 6= k.

(4.27)

Polynomials that satisfy (4.27) are called orthonormal polynomials. If, indeed, the
polynomials {Pk(x)}n

k=0 are orthonormal, then (4.26) implies that

c⇤j =

Z b

a

Pj(x)f(x)dx, j = 0, . . . , n. (4.28)

The solution of the least-squares problem is a polynomial

Q⇤
n(x) =

nX

j=0

c⇤jPj(x), (4.29)

with coe�cients c⇤j , j = 0, . . . , n, that are given by (4.28).

Remark. Polynomials that satisfy

Z b

a

Pj(x)Pk(x)dx =

8
<

:

R b

a (Pj(x))2, j = k,

0, otherwise,

with
R b

a (Pj(x))2dx that is not necessarily 1 are called orthogonal polynomials. In
this case, the solution of the least-squares problem is given by the polynomial Q⇤

n(x) in
(4.29) with the coe�cients

c⇤j =

R b

a Pj(x)f(x)dxR b

a (Pj(x))2dx
, j = 0, . . . , n. (4.30)

At this point we know how to solve the least-squares problem if the orthogonal (or
orthonormal) polynomials are given. We still have to discuss how such polynomials can
be found. Before doing so, we will briefly comment on a more general framework for
the least-squares problem, the weighted least-squares problem.

4.3.4 The weighted least-squares problem

A more general least-squares problem is the weighted least squares approximation
problem. We consider a weight function, w(x), to be a non-negative continuous
function on (a, b), with a positive mass, i.e.,

Z b

a

w(x)dx > 0.
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Note that w(x) may be singular at the edges of the interval since we do not require
it to be continuous on the closed interval [a, b]. For any weight w(x), we define the
corresponding weighted L2-norm of a function f(x) as

kfk2,w =

sZ b

a

(f(x))2w(x)dx.

The weighted least-squares problem is to find the closest polynomial Q⇤
n(x) 2 ⇧n to

f(x), this time in the weighted L2-norm sense, i.e., we look for a polynomial Q⇤
n(x) of

degree 6 n such that

kf � Q⇤
nk2,w = min

Qn2⇧n

kf � Qnk2,w = min
Qn2⇧n

sZ b

a

(f(x) � Qn(x))2w(x)dx. (4.31)

In order to solve the weighted least-squares problem (4.31) we follow the approach
of Section 4.3.3, and consider polynomials {Pk}n

k=0 such that deg(Pk(x)) = k. We then
consider a polynomial Qn(x) that is written as their linear combination:

Qn(x) =
nX

j=0

cjPj(x).

By repeating the calculations of Section 4.3.3, we obtain for the coe�cients of the
minimizer Q⇤

n,

nX

j=0

c⇤j

Z b

a

w(x)Pj(x)Pk(x)dx =

Z b

a

w(x)Pk(x)f(x)dx, k = 0, . . . , n, (4.32)

(compare with (4.26)). The system (4.32) can be easily solved if we choose {Pk(x)} to
be orthonormal with respect to the weight w(x), i.e.,

Z b

a

Pj(x)Pk(x)w(x)dx = �jk.

Hence, the solution of the weighted least-squares problem is given by

Q⇤
n(x) =

nX

j=0

c⇤jPj(x), (4.33)

with coe�cients that are given by

c⇤j =

Z b

a

Pj(x)f(x)w(x)dx, j = 0, . . . , n. (4.34)
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Remark. In the case where {Pk(x)} are orthogonal but not necessarily normalized,
the solution of the weighted least-squares problem is given by

Q⇤
n(x) =

nX

j=0

c⇤jPj(x)

with

c⇤j =

R b

a Pj(x)f(x)w(x)dxR b

a (Pj(x))2w(x)dx
, j = 0, . . . , n.

4.3.5 Orthogonal polynomials

At this point we already know that orthogonal polynomials play a central role in the
solution of least-squares problems. In this section we will focus on the construction of
orthogonal polynomials. The properties of orthogonal polynomials will be studies in
Section 4.4.2.

We start by defining the weighted inner product between two functions f(x) and
g(x) (with respect to the weight w(x)):

hf, giw =

Z b

a

f(x)g(x)w(x)dx.

To simplify the notations, even in the weighted case, we will typically write hf, gi instead
of hf, giw. Some properties of the weighted inner product include

1. h↵f, gi = hf,↵gi = ↵ hf, gi , 8↵ 2 R.

2. hf1 + f2, gi = hf1, gi + hf2, gi.

3. hf, gi = hg, fi

4. hf, fi > 0 and hf, fi = 0 i↵ f ⌘ 0. Here we must assume that f(x) is continuous
in the interval [a, b]. If it is not continuous, we can have hf, fi = 0 and f(x) can
still be non-zero (e.g., in one point).

The weighted L2-norm can be obtained from the weighted inner product by

kfk2,w =
q

hf, fiw.

Given a weight w(x), we are interested in constructing orthogonal (or orthonor-
mal) polynomials. This can be done using the Gram-Schmidt orthogonalization
process, which we now describe in detail.
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In the general context of linear algebra, the Gram-Schmidt process is being used to
convert one set of linearly independent vectors to an orthogonal set of vectors that spans
the same subspace as the original set. In our context, we should think about the process
as converting one set of polynomials that span the space of polynomials of degree 6 n
to an orthogonal set of polynomials that spans the same space ⇧n. Accordingly, we
set the initial set of polynomials as {1, x, x2, . . . , xn}, which we would like to convert to
orthogonal polynomials (of an increasing degree) with respect to the weight w(x).

We will first demonstrate the process with the weight w(x) ⌘ 1. We will generate a
set of orthogonal polynomials {P0(x), . . . , Pn(x)} from {1, x, . . . , xn}. The degree of the
polynomials Pi is i.

We start by setting

P0(x) = 1.

We then let

P1(x) = x � c01P0(x) = x � c01.

The orthogonality condition
R b

a P1P0dx = 0, implies that

Z b

a

1 · (x � c01)dx = 0,

from which c= (a+b)/2, and thus

P1(x) = x � a+ b

2
.

The computation continues in a similar fashion. We set

P2(x) = x2 � c02P0(x) � c12(x).

The two unknown coe�cients, c02 and c12, are computed from the orthogonality condi-
tions. This time, P2(x) should be orthogonal to P0(x) and to P1(x), i.e.,

Z b

a

P2(x)P0(x)dx = 0, and

Z b

a

P2(x)P1(x)dx = 0,

and so on. If, in addition to the orthogonality condition, we would like the polynomials
to be orthonormal, all that remains is to normalize:

P̂n(x) =
Pn(x)

kPn(x)k
=

Pn(x)qR b

a (Pn(x))2dx
, 8n.

The orthogonalization process is identical to the process that we described even when
the weight w(x) is not uniformly one. In this case, every integral will contain the weight.
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4.4 Examples of orthogonal polynomials

This section includes several examples of orthogonal polynomials and a very brief sum-
mary of some of their properties.

1. Legendre polynomials. We start with the Legendre polynomials. This is a
family of polynomials that are orthogonal with respect to the weight

w(x) ⌘ 1,

on the interval [�1, 1].

In addition to deriving the Legendre polynomials through the Gram-Schmidt or-
thogonalization process, it can be shown that the Legendre polynomials can be
obtained from the recurrence relation

(n+ 1)Pn+1(x) � (2n+ 1)xPn(x) + nPn�1(x) = 0, n > 1, (4.35)

starting from the first two polynomials:

P0(x) = 1, P1(x) = x.

Instead of calculating these polynomials one by one from the recurrence relation,
they can be obtained directly from Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn

⇥
(x2 � 1)n

⇤
, n > 0. (4.36)

The Legendre polynomials satisfy the orthogonality condition

hPn, Pmi = 2

2n+ 1
�nm. (4.37)

2. Chebyshev polynomials. Our second example is of the Chebyshev polynomi-
als. These polynomials are orthogonal with respect to the weight

w(x) =
1p

1 � x2
,

on the interval [�1, 1]. They satisfy the recurrence relation

Tn+1(x) = 2xTn(x) � Tn�1(x), n > 1, (4.38)

together with T0(x) = 1 and T1(x) = x (see (3.33)). They and are explicitly given
by

Tn(x) = cos(n cos�1 x), n > 0. (4.39)

78



D. Levy 4.4 Examples of orthogonal polynomials

(see (3.34)). The orthogonality relation that they satisfy is

hTn, Tmi =

8
>>>><

>>>>:

0, n 6= m,

⇡, n = m = 0,

⇡
2 , n = m 6= 0.

(4.40)

3. Laguerre polynomials. We proceed with the Laguerre polynomials. Here the
interval is given by [0,1) with the weight function

w(x) = e�x.

The Laguerre polynomials are given by

Ln(x) =
ex

n!

dn

dxn
(xne�x), n > 0. (4.41)

The normalization condition is

kLnk = 1. (4.42)

A more general form of the Laguerre polynomials is obtained when the weight is
taken as

e�xx↵,

for an arbitrary real ↵ > �1, on the interval [0,1).

4. Hermite polynomials. The Hermite polynomials are orthogonal with respect
to the weight

w(x) = e�x2
,

on the interval (�1,1). The can be explicitly written as

Hn(x) = (�1)nex
2 dne�x2

dxn
, n > 0. (4.43)

Another way of expressing them is by

Hn(x) =
[n/2]X

k=0

(�1)kn!

k!(n � 2k)!
(2x)n�2k, (4.44)

where [x] denotes the largest integer that is 6 x. The Hermite polynomials satisfy
the recurrence relation

Hn+1(x) � 2xHn(x) + 2nHn�1(x) = 0, n > 1, (4.45)
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together with

H0(x) = 1, H1(x) = 2x.

They satisfy the orthogonality relation
Z 1

�1
e�x2

Hn(x)Hm(x)dx = 2nn!
p
⇡�nm. (4.46)

4.4.1 Another approach to the least-squares problem

In this section we present yet another way of deriving the solution of the least-squares
problem. Along the way, we will be able to derive some new results. We recall that our
goal is to minimize kf(x) � Qn(x)k2,w, 8Qn 2 ⇧n, i.e., to minimize the integral

Z b

a

w(x)(f(x) � Qn(x))
2dx (4.47)

among all the polynomials Qn(x) of degree 6 n. The minimizer of (4.47) is denoted by
Q⇤

n(x).
Assume that {Pk(x)}k>0 is an orthogonal family of polynomials with respect to w(x),

and let

Qn(x) =
nX

j=0

cjPj(x).

Then

kf � Qnk2
2,w =

Z b

a

w(x)

 
f(x) �

nX

j=0

cjPj(x)

!2

dx.

Hence

0 6
*
f �

nX

j=0

cjPj, f �
nX

j=0

cjPj

+

w

= hf, fiw � 2
nX

j=0

cj hf, Pjiw +
nX

i=0

nX

j=0

cicj hPi, Pjiw

= kfk2
2,w � 2

nX

j=0

cj hf, Pjiw +
nX

j=0

c2jkPjk2
2,w

= kfk2
2,w �

nX

j=0

hf, Pji2w
kPjk2

2,w

+
nX

j=0

✓
hf, Pjiw
kPjk2,w

� cjkPjk2,w

◆2

.

The last expression is minimal i↵

hf, Pjiw
kPjk2,w

� cjkPjk2,w = 0, 80 6 j 6 n,
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i.e., if

cj =
hf, Pjiw
kPjk2

2,w

.

Hence, there exists a unique least-squares approximation which is given by

Q⇤
n(x) =

nX

j=0

hf, Pjiw
kPjk2

2,w

Pj(x). (4.48)

If the polynomials {Pj(x)} are also normalized so that kPjk2,w = 1, then the minimizer
Q⇤

n(x) in (4.48) becomes

Q⇤
n(x) =

nX

j=0

hf, Pjiw Pj(x).

Remarks.

1. We can write

kf � Q⇤
nk2

2,w =

Z b

a

w(x)

 
f(x) �

nX

j=0

cjPj(x)

!2

dx =

= kfk2
2,w � 2

nX

j=0

hf, Pjiw cj +
nX

j=0

kPjk2
2,wc

2
j .

Since kPjk2,w = 1, cj = hf, Pjiw, so that

kf � Q⇤
nk2

2,w = kfk2
2,w �

nX

j=0

hf, Pji2w .

Hence

nX

j=0

hf, Pji2w = kfk2 � kf � Q⇤
nk2 6 kfk2,

i.e.,

nX

j=0

hf, Pji2w 6 kfk2
2,w. (4.49)

The inequality (4.49) is called Bessel’s inequality.
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2. Assuming that [a, b] is finite, we have

lim
n!1

kf � Q⇤
nk2,w = 0.

Hence

kfk2
2,w =

1X

j=0

hf, Pji2w , (4.50)

which is known as Parseval’s equality.

Remark. An informal, quick way to find out the formula for the coe�cients of the
least-squares solution is the following. We are looking for a least-squares
approximation of f(x) of the form:

Qn(x) =
nX

j

cjPj(x). (4.51)

We assume that {Pj(x)} are orthogonal polynomials of degree j, j = 0, . . . , n. We let

f(x) ⇡ Qn(x),

and multiply both sides by Pk using the weighted inner product h·iw. This leads to

hf(x), Pk(x)iw ⇡ hQn(x), Pk(x)iw =
X

j

cj hPj(x), Pk(x)iw

which due to the orthogonality is equal to ckkPkk2. Hence, the coe�cients ck are given
by

ck =
hf(x), Pk(x)iw

kPk(x)k2
w

=

R b

a f(x)Pk(x)w(x)dxR b

a (Pk(x))2w(x)dx
.

Example 4.12
Problem: Let f(x) = cos x on [�1, 1]. Find the polynomial in ⇧2, that minimizes

Z 1

�1

[f(x) � Q2(x)]
2dx.

Solution: The weight w(x) ⌘ 1 on [�1, 1] implies that the orthogonal polynomials we
need to use are the Legendre polynomials. We are seeking for polynomials of degree
6 2 so we write the first three Legendre polynomials

P0(x) ⌘ 1, P1(x) = x, P2(x) =
1

2
(3x2 � 1).
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The normalization factor satisfies, in general,

Z 1

�1

P 2
n(x) =

2

2n+ 1
.

Hence
Z 1

�1

P 2
0 (x)dx = 2,

Z 1

�1

P1(x)dx =
2

3
,

Z 1

�1

P 2
2 (x)dx =

2

5
.

We can then replace the Legendre polynomials by their normalized counterparts:

P0(x) ⌘ 1p
2
, P1(x) =

r
3

2
x, P2(x) =

p
5

2
p
2
(3x2 � 1).

We now have

hf, P0i =
Z 1

�1

cos x
1p
2
dx =

1p
2
sin x

����
1

�1

=
p
2 sin 1.

Hence

Q⇤
0(x) ⌘ sin 1.

We also have

hf, P1i =
Z 1

�1

cos x

r
3

2
xdx = 0.

which means that Q⇤
1(x) = Q⇤

0(x). Finally,

hf, P2i =
Z 1

�1

cos x

r
5

2

3x2 � 1

2
=

1

2

r
5

2
(12 cos 1 � 8 sin 1),

and hence the desired polynomial, Q⇤
2(x), is given by

Q⇤
2(x) = sin 1 +

✓
15

2
cos 1 � 5 sin 1

◆
(3x2 � 1).

In Figure 4.3 we plot the original function f(x) = cos x (solid line) and its approximation
Q⇤

2(x) (dashed line). We zoom on the interval x 2 [0, 1].

Remark. If the weight is w(x) ⌘ 1 but the interval is [a, b], we can still use the
Legendre polynomials if we make the following change of variables. Define

x =
b+ a+ (b � a)t

2
.
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Figure 4.3: A second-order L2-approximation of f(x) = cosx. Solid line: f(x); Dashed
line: its approximation Q⇤

2(x)

Then the interval �1 6 t 6 1 is mapped to a 6 x 6 b. Now, define

F (t) = f

✓
b+ a+ (b � a)t

2

◆
= f(x).

Hence
Z b

a

[f(x) � Qn(x)]
2dx =

b � a

2

Z 1

�1

[F (t) � qn(t)]
2dt.

Example 4.13
Problem: Let f(x) = cos x on [0, ⇡]. Find the polynomial in ⇧1 that minimizes

Z ⇡

0

[f(x) � Q1(x)]
2dx.

Solution:
Z ⇡

0

(f(x) � Q⇤
1(x))

2dx =
⇡

2

Z 1

�1

[F (t) � qn(t)]
2dt.

Letting

x =
⇡ + ⇡t

2
=

⇡

2
(1 + t),
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we have

F (t) = cos
⇣⇡
2
(1 + t)

⌘
= � sin

⇡t

2
.

We already know that the first two normalized Legendre polynomials are

P0(t) =
1p
2
, P1(t) =

r
3

2
t.

Hence

hF, P0i = �
Z 1

�1

1p
2
sin

⇡t

2
dt = 0,

which means that Q⇤
0(t) = 0. Also

hF, P1i = �
Z 1

�1

sin
⇡t

2

r
3

2
tdt = �

r
3

2

"
sin ⇡t

2�
⇡
2

�2 �
t cos ⇡t

2
⇡
2

#1

�1

= �
r

3

2
· 8

⇡2
.

Hence

q⇤1(t) = �3

2
· 8

⇡2
t = �12

⇡2
t =) Q⇤

1(x) = �12

⇡2

✓
2

⇡
x � 1

◆
.

In Figure 4.4 we plot the original function f(x) = cos x (solid line) and its approximation
Q⇤

1(x) (dashed line).

Example 4.14
Problem: Let f(x) = cos x in [0,1). Find the polynomial in ⇧1 that minimizes

Z 1

0

e�x[f(x) � Q1(x)]
2dx.

Solution: The family of orthogonal polynomials that correspond to this weight on
[0,1) are Laguerre polynomials. Since we are looking for the minimizer of the
weighted L2 norm among polynomials of degree 6 1, we will need to use the first two
Laguerre polynomials:

L0(x) = 1, L1(x) = 1 � x.

We thus have

hf, L0iw =

Z 1

0

e�x cos xdx =
e�x(� cos x+ sin x)

2

����
1

0

=
1

2
.

Also

hf, L1iw =

Z 1

0

e�x cos x(1�x)dx =
1

2
�

xe�x(� cos x+ sin x)

2
� e�x(�2 sin x)

4

�1

0

=
1

2
.

This means that

Q⇤
1(x) = hf, L0iw L0(x) + hf, L1iw L1(x) =

1

2
+

1

2
(1 � x) = 1 � x

2
.
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Figure 4.4: A first-order L2-approximation of f(x) = cosx on the interval [0, ⇡]. Solid
line: f(x), Dashed line: its approximation Q⇤

1(x)

4.4.2 Properties of orthogonal polynomials

We start with a theorem that deals with some of the properties of the roots of orthogonal
polynomials. This theorem will become handy when we discuss Gaussian quadratures
in Section 6.7. We let {Pn(x)}n>0 be orthogonal polynomials in [a, b] with respect to
the weight w(x).

Theorem 4.15 The roots xj, j = 1, . . . , n of Pn(x) are all real, simple, and are in
(a, b).

Proof. Let x1, . . . , xr be the roots of Pn(x) in (a, b). Let

Qr(x) = (x � x1) · . . . · (x � xr).

Then Qr(x) and Pn(x) change their signs together in (a, b). Also

deg(Qr(x)) = r 6 n.

Hence (PnQr)(x) is a polynomial with one sign in (a, b). This implies that

Z b

a

Pn(x)Qr(x)w(x)dx 6= 0,

and hence r = n since Pn(x) is orthogonal to polynomials of degree less than n.
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Without loss of generality we now assume that x1 is a multiple root, i.e.,

Pn(x) = (x � x1)
2Pn�2(x).

Hence

Pn(x)Pn�2(x) =

✓
Pn(x)

x � x1

◆2

> 0,

which implies that

Z b

a

Pn(x)Pn�2(x)dx > 0.

This is not possible since Pn is orthogonal to Pn�2. Hence roots can not repeat. ⌅

Another important property of orthogonal polynomials is that they can all be written
in terms of recursion relations. We have already seen specific examples of such relations
for the Legendre, Chebyshev, and Hermite polynomials (see (4.35), (4.38), and (4.45)).
The following theorem states such relations always hold.

Theorem 4.16 (Triple Recursion Relation) Any three consecutive orthonormal poly-
nomials are related by a recursion formula of the form

Pn+1(x) = (Anx+Bn)Pn(x) � CnPn�1(x).

If ak and bk are the coe�cients of the terms of degree k and degree k � 1 in Pk(x), then

An =
an+1

an
, Bn =

an+1

an

✓
bn+1

an+1
� bn

an

◆
, Cn =

an+1an�1

a2n
.

Proof. For

An =
an+1

an
,

let

Qn(x) = Pn+1(x) � AnxPn(x)

= (an+1x
n+1 + bn+1x

n + . . .) � an+1

an
x(anx

n + bnx
n�1 + . . .)

=

✓
bn+1 � an+1bn

an

◆
xn + . . .

Hence deg(Q(x)) 6 n, which means that there exists ↵0, . . . ,↵n such that

Q(x) =
nX

i=0

↵iPi(x).
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For 0 6 i 6 n � 2,

↵i =
hQ,Pii
hPi, Pii

= hQ,Pii = hPn+1 � AnxPn, Pii = �An hxPn, Pii = 0.

Hence

Qn(x) = ↵nPn(x) + ↵n�1Pn�1(x).

Set ↵n = Bn and ↵n�1 = �Cn. Then, since

xPn�1 =
an�1

an
Pn + qn�1,

we have

Cn = An hxPn, Pn�1i = An hPn, xPn�1i = An

⌧
Pn,

an�1

an
Pn + qn�1

�
= An

an�1

an
.

Finally

Pn+1 = (Anx+Bn)Pn � CnPn�1,

can be explicitly written as

an+1x
n+1+bn+1x

n+. . . = (Anx+Bn)(anx
n+bnx

n�1+. . .)�Cn(an�1x
n�1+bn�1x

n�2+. . .).

The coe�cient of xn is

bn+1 = Anbn +Bnan,

which means that

Bn = (bn+1 � Anbn)
1

an
. ⌅
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5 Numerical Di↵erentiation

5.1 Basic Concepts

This chapter deals with numerical approximations of derivatives. The first questions
that comes up to mind is: why do we need to approximate derivatives at all? After
all, we do know how to analytically di↵erentiate every function. Nevertheless, there are
several reasons as of why we still need to approximate derivatives:

• Even if there exists an underlying function that we need to di↵erentiate, we might
know its values only at a sampled data set without knowing the function itself.

• There are some cases where it may not be obvious that an underlying function
exists and all that we have is a discrete data set. We may still be interested in
studying changes in the data, which are related, of course, to derivatives.

• There are times in which exact formulas are available but they are very complicated
to the point that an exact computation of the derivative requires a lot of function
evaluations. It might be significantly simpler to approximate the derivative instead
of computing its exact value.

• When approximating solutions to ordinary (or partial) di↵erential equations, we
typically represent the solution as a discrete approximation that is defined on a
grid. Since we then have to evaluate derivatives at the grid points, we need to be
able to come up with methods for approximating the derivatives at these points,
and again, this will typically be done using only values that are defined on a lattice.
The underlying function itself (which in this cased is the solution of the equation)
is unknown.

A simple approximation of the first derivative is

f 0(x) ⇡ f(x+ h) � f(x)

h
, (5.1)

where we assume that h > 0. What do we mean when we say that the expression on
the right-hand-side of (5.1) is an approximation of the derivative? For linear functions
(5.1) is actually an exact expression for the derivative. For almost all other functions,
(5.1) is not the exact derivative.

Let’s compute the approximation error. We write a Taylor expansion of f(x + h)
about x, i.e.,

f(x+ h) = f(x) + hf 0(x) +
h2

2
f 00(⇠), ⇠ 2 (x, x+ h). (5.2)

For such an expansion to be valid, we assume that f(x) has two continuous derivatives.
The Taylor expansion (5.2) means that we can now replace the approximation (5.1) with
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an exact formula of the form

f 0(x) =
f(x+ h) � f(x)

h
� h

2
f 00(⇠), ⇠ 2 (x, x+ h). (5.3)

Since this approximation of the derivative at x is based on the values of the function at
x and x + h, the approximation (5.1) is called a forward di↵erencing or one-sided
di↵erencing. The approximation of the derivative at x that is based on the values of
the function at x � h and x, i.e.,

f 0(x) ⇡ f(x) � f(x � h)

h
,

is called a backward di↵erencing (which is obviously also a one-sided di↵erencing
formula).

The second term on the right-hand-side of (5.3) is the error term. Since the ap-
proximation (5.1) can be thought of as being obtained by truncating this term from the
exact formula (5.3), this error is called the truncation error. The small parameter h
denotes the distance between the two points x and x+h. As this distance tends to zero,
i.e., h ! 0, the two points approach each other and we expect the approximation (5.1)
to improve. This is indeed the case if the truncation error goes to zero, which in turn is
the case if f 00(⇠) is well defined in the interval (x, x+h). The “speed” in which the error
goes to zero as h ! 0 is called the rate of convergence. When the truncation error is
of the order of O(h), we say that the method is a first order method. We refer to a
methods as a pth-order method if the truncation error is of the order of O(hp).

It is possible to write more accurate formulas than (5.3) for the first derivative. For
example, a more accurate approximation for the first derivative that is based on the
values of the function at the points f(x�h) and f(x+h) is the centered di↵erencing
formula

f 0(x) ⇡ f(x+ h) � f(x � h)

2h
. (5.4)

Let’s verify that this is indeed a more accurate formula than (5.1). Taylor expansions
of the terms on the right-hand-side of (5.4) are

f(x+ h) = f(x) + hf 0(x) +
h2

2
f 00(x) +

h3

6
f 000(⇠1),

f(x � h) = f(x) � hf 0(x) +
h2

2
f 00(x) � h3

6
f 000(⇠2).

Here ⇠1 2 (x, x+ h) and ⇠2 2 (x � h, x). Hence

f 0(x) =
f(x+ h) � f(x � h)

2h
� h2

12
[f 000(⇠1) + f 000(⇠2)],
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which means that the truncation error in the approximation (5.4) is

�h2

12
[f 000(⇠1) + f 000(⇠2)].

If the third-order derivative f 000(x) is a continuous function in the interval [x�h, x+h],
then the intermediate value theorem implies that there exists a point ⇠ 2 (x� h, x+ h)
such that

f 000(⇠) =
1

2
[f 000(⇠1) + f 000(⇠2)].

Hence

f 0(x) =
f(x+ h) � f(x � h)

2h
� h2

6
f 000(⇠), (5.5)

which means that the expression (5.4) is a second-order approximation of the first deriva-
tive.

In a similar way we can approximate the values of higher-order derivatives. For
example, it is easy to verify that the following is a second-order approximation of the
second derivative

f 00(x) ⇡ f(x+ h) � 2f(x) + f(x � h)

h2
. (5.6)

To verify the consistency and the order of approximation of (5.6) we expand

f(x ± h) = f(x) ± hf 0(x) +
h2

2
f 00(x) ± h3

6
f 000(x) +

h4

24
f (4)(⇠±).

Here, ⇠� 2 (x � h, x) and ⇠+ 2 (x, x+ h). Hence

f(x+ h) � 2f(x) + f(x � h)

h2
= f 00(x)+

h2

24

�
f (4)(⇠�) + f (4)(⇠+)

�
= f 00(x)+

h2

12
f (4)(⇠),

where we assume that ⇠ 2 (x � h, x+ h) and that f(x) has four continuous derivatives
in the interval. Hence, the approximation (5.6) is indeed a second-order approximation
of the derivative, with a truncation error that is given by

�h2

12
f (4)(⇠), ⇠ 2 (x � h, x+ h).

5.2 Di↵erentiation Via Interpolation

In this section we demonstrate how to generate di↵erentiation formulas by di↵erentiating
an interpolant. The idea is straightforward: The first step is to construct an interpo-
lating polynomial from the data. An approximation of the derivative at any point can
then be obtained by directly di↵erentiating the interpolant.
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We follow this procedure and assume that f(x0), . . . , f(xn) are given. The Lagrange
form of the interpolation polynomial through these points is

Qn(x) =
nX

j=0

f(xj)lj(x).

Here we simplify the notation and replace lni (x) which is the notation we used in Sec-
tion 3.5 by li(x). According to the error analysis of Section 3.7 we know that the
interpolation error is

f(x) � Qn(x) =
1

(n+ 1)!
f (n+1)(⇠n)

nY

j=0

(x � xj),

where ⇠n 2 (min(x, x0, . . . , xn),max(x, x0, . . . , xn)). Since here we are assuming that the
points x0, . . . , xn are fixed, we would like to emphasize the dependence of ⇠n on x and
hence replace the ⇠n notation by ⇠x. We that have:

f(x) =
nX

j=0

f(xj)lj(x) +
1

(n+ 1)!
f (n+1)(⇠x)w(x), (5.7)

where

w(x) =
nY

i=0

(x � xi).

Di↵erentiating the interpolant (5.7):

f 0(x) =
nX

j=0

f(xj)l
0
j(x) +

1

(n+ 1)!
f (n+1)(⇠x)w

0(x) +
1

(n+ 1)!
w(x)

d

dx
f (n+1)(⇠x). (5.8)

We now assume that x is one of the interpolation points, i.e., x 2 {x0, . . . , xn}, say xk,
so that

f 0(xk) =
nX

j=0

f(xj)l
0
j(xk) +

1

(n+ 1)!
f (n+1)(⇠xk

)w0(xk). (5.9)

Now,

w0(x) =
nX

i=0

nY

j=0
j 6=i

(x � xj) =
nX

i=0

[(x � x0) · . . . · (x � xi�1)(x � xi+1) · . . . · · · (x � xn)].

Hence, when w0(x) is evaluated at an interpolation point xk, there is only one term in
w0(x) that does not vanish, i.e.,

w0(xk) =
nY

j=0
j 6=k

(xk � xj).
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The numerical di↵erentiation formula, (5.9), then becomes

f 0(xk) =
nX

j=0

f(xj)l
0
j(xk) +

1

(n+ 1)!
f (n+1)(⇠xk

)
Y

j=0
j 6=k

(xk � xj). (5.10)

We refer to the formula (5.10) as a di↵erentiation by interpolation algorithm.

Example 5.1
We demonstrate how to use the di↵erentiation by integration formula (5.10) in the case
where n = 1 and k = 0. This means that we use two interpolation points (x0, f(x0)) and
(x1, f(x1)), and want to approximate f 0(x0). The Lagrange interpolation polynomial in
this case is

Q1(x) = f(x0)l0(x) + f(x1)l1(x),

where

l0(x) =
x � x1

x0 � x1
, l1(x) =

x � x0

x1 � x0
.

Hence

l00(x) =
1

x0 � x1
, l01(x) =

1

x1 � x0
.

We thus have

Q0
1(x0) =

f(x0)

x0 � x1
+

f(x1)

x1 � x0
+
1

2
f 00(⇠)(x0�x1) =

f(x1) � f(x0)

x1 � x0
�1

2
f 00(⇠)(x1�x0). (5.11)

Here, we simplify the notation and assume that ⇠ 2 (x0, x1). This result is not surprising.
After all, we ended up with an approximation of the derivative that is nothing but the
slope of the line that connects (x0, f(x0)) and (x1, f(x1)). If we now let x1 = x0 + h,
then

f 0(x0) =
f(x0 + h) � f(x0)

h
� h

2
f 00(⇠), ⇠ 2 (x0, x0 + h).

which is the (first-order) forward di↵erencing approximation of f 0(x0), (5.3).
Note that nowhere in the derivation we assumed that x0 < x1. For example, if we

set x1 = x0 � h in (5.11), we get the first-order backward di↵erencing approximation:

f 0(x0) =
f(x0 � h) � f(x0)

h
+

1

2
f 00(⇠)(�h) =

f(x0) � f(x0 � h)

h
+

h

2
f 00(⇠),

with ⇠ 2 (x0 � h, x0).
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Example 5.2
We repeat Example 5.1 with n = 2 and k = 0. This time we have a quadratic interpolant
which we write in the Lagrange form:

Q2(x) = f(x0)l0(x) + f(x1)l1(x) + f(x2)l2(x),

with

l0(x) =
(x � x1)(x � x2)

(x0 � x1)(x0 � x2)
, l1(x) =

(x � x0)(x � x2)

(x1 � x0)(x1 � x2)
, l2(x) =

(x � x0)(x � x1)

(x2 � x0)(x2 � x1)
.

Hence

l00(x) =
2x � x1 � x2

(x0 � x1)(x0 � x2)
, l01(x) =

2x � x0 � x2

(x1 � x0)(x1 � x2)
, l02(x) =

2x � x0 � x1

(x2 � x0)(x2 � x1)
.

Evaluating l0j(x) for j = 1, 2, 3 at x0 we have

l00(x0) =
2x0 � x1 � x2

(x0 � x1)(x0 � x2)
, l01(x0) =

x0 � x2

(x1 � x0)(x1 � x2)
, l02(x0) =

x0 � x1

(x2 � x0)(x2 � x1)

Hence

Q0
2(x0) = f(x0)

2x0 � x1 � x2

(x0 � x1)(x0 � x2)
+ f(x1)

x0 � x2

(x1 � x0)(x1 � x2)
(5.12)

+f(x2)
x0 � x1

(x2 � x0)(x2 � x1)
+

1

6
f (3)(⇠)(x0 � x1)(x0 � x2).

Here, we assume ⇠ 2 (x0, x2). For x0 = x, x1 = x+ h, and x2 = x+ 2h, equation (5.12)
becomes

f 0(x) ⇡ Q0
2(x) = �f(x)

3

2h
+ f(x+ h)

2

h
+ f(x+ 2h)

✓
� 1

2h

◆
+

f 000(⇠)

3
h2

=
�3f(x) + 4f(x+ h) � f(x+ 2h)

2h
+

f 000(⇠)

3
h2,

which is a one-sided, second-order approximation of the first derivative.

Example 5.3
If we repeat Example 5.2 with n = 2 while approximating the derivative at x1, we get:

Q0
2(x1) = f(x0)

2x1 � x1 � x2

(x0 � x1)(x0 � x2)
+ f(x1)

2x1 � x0 � x2

(x1 � x0)(x1 � x2)
(5.13)

+f(x2)
2x1 � x0 � x1

(x2 � x0)(x2 � x1)
+

1

6
f (3)(⇠)(x1 � x0)(x1 � x2),
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with ⇠ 2 (x0, x2). We then set x0 = x�h, x1 = x, and x2 = x+h in (5.13), which leads
to

f 0(x) ⇡ Q0
2(x) = f(x � h)

�h

�h(�2h)
+ f(x) · 0 + f(x+ h)

h

2h · h +
1

6
f 000(⇠)h(�h) =

=
f(x+ h) � f(x � h)

2h
� 1

6
f 000(⇠)h2,

which is precisely the second-ordered centered approximation of the first-derivative (5.5).
In fact, instead of repeating the previous example and approximating the derivative

at x1, the same result can be obtained by noticing that equation (5.12) assume no
particular order on the interpolation points. Hence, we can substitute x0 = x, x1 = x�h,
x = x+ h directly in equation (5.12) and directly obtain the centered approximation:

f 0(x) ⇡ Q0
2(x) =

f(x+ h) � f(x � h)

2h
� 1

6
f 000(⇠)h2.

5.3 The Method of Undetermined Coe�cients

In this section we present the method of undetermined coe�cients, which is a very
practical way for generating approximations of derivatives (as well as other quantities
as we shall see, e.g., when we discuss integration).

Assume, for example, that we are interested in finding an approximation of the
second derivative f 00(x) that is based on the values of the function at three equally
spaced points, f(x � h), f(x), f(x+ h), i.e.,

f 00(x) ⇡ Af(x+ h) + B(x) + Cf(x � h). (5.14)

The coe�cients A, B, and C are to be determined in such a way that this linear
combination is indeed an approximation of the second derivative. The Taylor expansions
of the terms f(x ± h) are

f(x ± h) = f(x) ± hf 0(x) +
h2

2
f 00(x) ± h3

6
f 000(x) +

h4

24
f (4)(⇠±), (5.15)

where (assuming that h > 0)

x � h 6 ⇠� 6 x 6 ⇠+ 6 x+ h.

Using the expansions in (5.15) we can rewrite (5.14) as

f 00(x) ⇡ Af(x+ h) + Bf(x) + Cf(x � h) (5.16)

= (A+B + C)f(x) + h(A � C)f 0(x) +
h2

2
(A+ C)f 00(x)

+
h3

6
(A � C)f (3)(x) +

h4

24
[Af (4)(⇠+) + Cf (4)(⇠�)].
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Equating the coe�cients of f(x), f 0(x), and f 00(x) on both sides of (5.16) we obtain the
linear system

8
><

>:

A+B + C = 0,
A � C = 0,

A+ C =
2

h2
.

(5.17)

The system (5.17) has the unique solution:

A = C =
1

h2
, B = � 2

h2
.

In this particular case, since A and C are equal to each other, the coe�cient of f (3)(x)
on the right-hand-side of (5.16) also vanishes and we end up with

f 00(x) =
f(x+ h) � 2f(x) + f(x � h)

h2
� h2

24
[f (4)(⇠+) + f (4)(⇠�)].

We note that the last two terms can be combined into one using an intermediate values
theorem (assuming that f(x) has four continuous derivatives), i.e.,

h2

24
[f (4)(⇠+) + f (4)(⇠�)] =

h2

12
f (4)(⇠), ⇠ 2 (x � h, x+ h).

Hence we obtain the familiar second-order approximation of the second derivative:

f 00(x) =
f(x+ h) � 2f(x) + f(x � h)

h2
� h2

12
f (4)(⇠).

In terms of an algorithm, the method of undetermined coe�cients follows what was
just demonstrated in the example:

1. Assume that the derivative can be written as a linear combination of the values
of the function at certain points.

2. Write the Taylor expansions of the function at the approximation points.

3. Equate the coe�cients of the function and its derivatives on both sides.

The only question that remains open is how many terms should we use in the Taylor
expansion. This question has, unfortunately, no simple answer. In the example, we have
already seen that even though we used data that is taken from three points, we could
satisfy four equations. In other words, the coe�cient of the third-derivative vanished as
well. If we were to stop the Taylor expansions at the third derivative instead of at the
fourth derivative, we would have missed on this cancellation, and would have mistakenly
concluded that the approximation method is only first-order accurate. The number of
terms in the Taylor expansion should be su�cient to rule out additional cancellations.
In other words, one should truncate the Taylor series after the leading term in the error
has been identified.
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5.4 Richardson’s Extrapolation

Richardson’s extrapolation can be viewed as a general procedure for improving the
accuracy of approximations when the structure of the error is known. While we study
it here in the context of numerical di↵erentiation, it is by no means limited only to
di↵erentiation and we will get back to it later on when we study methods for numerical
integration.

We start with an example in which we show how to turn a second-order approxima-
tion of the first derivative into a fourth order approximation of the same quantity. We
already know that we can write a second-order approximation of f 0(x) given its values
in f(x ± h). In order to improve this approximation we will need some more insight
on the internal structure of the error. We therefore start with the Taylor expansions of
f(x ± h) about the point x, i.e.,

f(x+ h) =
1X

k=0

f (k)(x)

k!
hk,

f(x � h) =
1X

k=0

(�1)kf (k)(x)

k!
hk.

Hence

f 0(x) =
f(x+ h) � f(x � h)

2h
�

h2

3!
f (3)(x) +

h4

5!
f (5)(x) + . . .

�
. (5.18)

We rewrite (5.18) as

L = D(h) + e2h
2 + e4h

4 + . . . , (5.19)

where L denotes the quantity that we are interested in approximating, i.e.,

L = f 0(x),

and D(h) is the approximation, which in this case is

D(h) =
f(x+ h) � f(x � h)

2h
.

The error is

E = e2h
2 + e4h

4 + . . .

where ei denotes the coe�cient of hi in (5.18). The important property of the coe�cients
ei’s is that they do not depend on h. We note that the formula

L ⇡ D(h),
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is a second-order approximation of the first-derivative which is based on the values
of f(x) at x ± h. We assume here that in general ei 6= 0. In order to improve the
approximation of L our strategy will be to eliminate the term e2h2 from the error. How
can this be done? one possibility is to write another approximation that is based on the
values of the function at di↵erent points. For example, we can write

L = D(2h) + e2(2h)
2 + e4(2h)

4 + . . . . (5.20)

This, of course, is still a second-order approximation of the derivative. However, the
idea is to combine (5.19) with (5.20) such that the h2 term in the error vanishes. Indeed,
subtracting the following equations from each other

4L = 4D(h) + 4e2h
2 + 4e4h

4 + . . . ,

L = D(2h) + 4e2h
2 + 16e4h

4 + . . . ,

we have

L =
4D(h) � D(2h)

3
� 4e4h

4 + . . .

In other words, a fourth-order approximation of the derivative is

f 0(x) =
�f(x+ 2h) + 8f(x+ h) � 8f(x � h) + f(x � 2h)

12h
+O(h4). (5.21)

Note that (5.21) improves the accuracy of the approximation (5.18) by using more
points.

This process can be repeated over and over as long as the structure of the error is
known. For example, we can write (5.21) as

L = S(h) + a4h
4 + a6h

6 + . . . (5.22)

where

S(h) =
�f(x+ 2h) + 8f(x+ h) � 8f(x � h) + f(x � 2h)

12h
.

Equation (5.22) can be turned into a sixth-order approximation of the derivative by
eliminating the term a4h4. We carry out such a procedure by writing

L = S(2h) + a4(2h)
4 + a6(2h)

6 + . . . (5.23)

Combining (5.23) with (5.22) we end up with a sixth-order approximation of the deriva-
tive:

L =
16S(h) � S(2h)

15
+O(h6).
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Remarks.

1. In (5.20), instead of using D(2h), it is possible to use other approximations, e.g.,
D(h/2). If this is what is done, instead of (5.21) we would get a fourth-order
approximation of the derivative that is based on the values of f at
x � h, x � h/2, x+ h/2, x+ h.

2. Once again we would like to emphasize that Richardson’s extrapolation is a
general procedure for improving the accuracy of numerical approximations that
can be used when the structure of the error is known. It is not specific for
numerical di↵erentiation.
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6 Numerical Integration

6.1 Basic Concepts

In this chapter we are going to explore various ways for approximating the integral of a
function over a given domain. There are various reasons as of why such approximations
can be useful. First, not every function can be analytically integrated. Second, even if a
closed integration formula exists, it might still not be the most e�cient way of calculating
the integral. In addition, it can happen that we need to integrate an unknown function,
in which only some samples of the function are known.

In order to gain some insight on numerical integration, it is natural to review Rie-
mann integration, a framework that can be viewed as an approach for approximating
integrals. We assume that f(x) is a bounded function defined on [a, b] and that
{x0, . . . , xn} is a partition (P ) of [a, b]. For each i we let

Mi(f) = sup
x2[xi�1,xi]

f(x),

and

mi(f) = inf
x2[xi�1,xi]

f(x),

Letting �xi = xi � xi�1, the upper (Darboux) sum of f(x) with respect to the
partition P is defined as

U(f, P ) =
nX

i=1

Mi�xi, (6.1)

while the lower (Darboux) sum of f(x) with respect to the partition P is defined as

L(f, P ) =
nX

i=1

mi�xi. (6.2)

The upper integral of f(x) on [a, b] is defined as

U(f) = inf(U(f, P )),

and the lower integral of f(x) is defined as

L(f) = sup(L(f, P )),

where both the infimum and the supremum are taken over all possible partitions, P , of
the interval [a, b]. If the upper and lower integral of f(x) are equal to each other, their
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common value is denoted by
R b

a f(x)dx and is referred to as the Riemann integral of
f(x).

For the purpose of the present discussion we can think of the upper and lower Dar-
boux sums (6.1), (6.2), as two approximations of the integral (assuming that the function
is indeed integrable). Of course, these sums are not defined in the most convenient way
for an approximation algorithm. This is because we need to find the extrema of the func-
tion in every subinterval. Finding the extrema of the function, may be a complicated
task on its own, which we would like to avoid.

A simpler approach for approximating the value of
R b

a f(x)dx would be to compute
the product of the value of the function at one of the end-points of the interval by the
length of the interval. In case we choose the end-point where the function is evaluated
to be x = a, we obtain

Z b

a

f(x)dx ⇡ f(a)(b � a). (6.3)

This approximation (6.3) is called the rectangular method (see Figure 6.1). Numer-
ical integration formulas are also referred to as integration rules or quadratures,
and hence we can refer to (6.3) as the rectangular rule or the rectangular quadrature.
The points x0, . . . xn that are used in the quadrature formula are called quadrature
points.

a b

f(a)

f(b)

x

f(x
)

Figure 6.1: A rectangular quadrature

A variation on the rectangular rule is the midpoint rule. Similarly to the rectan-
gular rule, we approximate the value of the integral

R b

a f(x)dx by multiplying the length
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of the interval by the value of the function at one point. Only this time, we replace the
value of the function at an endpoint, by the value of the function at the center point
1
2(a+ b), i.e.,

Z b

a

f(x)dx ⇡ (b � a)f

✓
a+ b

2

◆
. (6.4)

(see also Fig 6.2). As we shall see below, the midpoint quadrature (6.4) is a more
accurate quadrature than the rectangular rule (6.3).

a (a+b)/2 b

f(a)

f((a+b)/2)

f(b)

x

f(x
)

Figure 6.2: A midpoint quadrature

In order to compute the quadrature error for the midpoint rule (6.4), we consider
the primitive function F (x),

F (x) =

Z x

a

f(s)ds,

and expand

Z a+h

a

f(s)ds = F (a+ h) = F (a) + hF 0(a) +
h2

2
F 00(a) +

h3

6
F 000(a) +O(h4) (6.5)

= hf(a) +
h2

2
f 0(a) +

h3

6
f 00(a) +O(h4)

102
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If we let b = a+ h, we have (expanding f(a+ h/2)) for the quadrature error, E,

E =

Z a+h

a

f(s)ds � hf

✓
a+

h

2

◆
= hf(a) +

h2

2
f 0(a) +

h3

6
f 00(a) +O(h4)

�h


f(a) +

h

2
f 0(a) +

h2

8
f 00(a) +O(h3)

�
,

which means that the error term is of order O(h3). Having an error of order h3 does
not mean that this is a third-order method. In our case, the parameter h equals to
b� a. It is not a parameter that should be vied as a small value that goes to zero. It is
fixed. The error of the midpoint method is of the order of O((b � a)3). Unfortunately,
these calculations cannot directly provide us with an accurate estimate of the error.
This is the case since when truncating two Taylor approximations, we are left with an
error terms that are evaluated at two (generally di↵erent) intermediate points. Hence
we cannot directly combine the error term 1

6h
3f 00(⇠1) with �1

8h
3f 00(⇠2). This can still be

done, but we have to use a better approach.
The main di�culty in evaluating the di↵erence between the exact value,

R b

a f(x)dx,
and its midpoint rule approximation, (b� a)f

�
a+b
2

�
, is due to having an integral in one

term and no integral in the second term. The approach will be to replace the midpoint
approximation with an integral expression. Indeed, if we denote the midpoint by c, i.e.,

c =
a+ b

2
,

then the tangent line to f(x) at x = c is given by

P1(x) = f(c) + f 0(c)(x � c).

Clearly,
Z b

a

P1(x)dx = (b � a)f(c),

and hence
Z b

a

f(x)dx � (b � a)f

✓
a+ b

2

◆
=

Z b

a

(f(x) � P1(x))dx.

To estimate the di↵erence between f(x) and P1(x) we can expand f(x) around x = c.
Assuming that x 2 [a, b], we have

f(x) = f(c+ (x � c)) = f(c) + f 0(c)(x � c) +
1

2
f 00(⇠)(x � c)2, ⇠ 2 (a, b).

Hence
Z b

a

(f(x) � P1(x))dx =

Z b

a

1

2
f 00(⇠x)(x � c)2dx.
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In view of the midvalue theorem for integrals, the last integral can be replaces by

1

2
f 00(⇠)

Z b

a

(x � c)2dx =
1

24
(b � a)3f 00(⇠), a < ⇠ < b. (6.6)

Remark. Throughout this section we assumed that all functions we are interested in
integrating are actually integrable in the domain of interest. We also assumed that they
are bounded and that they are defined at every point, so that whenever we need to
evaluate a function at a point, we can do it. We will go on and use these assumptions
throughout the chapter.

6.2 Integration via Interpolation

One direct way of obtaining quadratures from given samples of a function is by integrat-
ing an interpolant. As always, our goal is to evaluate I =

R b

a f(x)dx. We assume that
the values of the function f(x) are given at n + 1 points: x0, . . . , xn 2 [a, b]. Note that
we do not require the first point x0 to be equal to a, and the same holds for the right
side of the interval. Given the values f(x0), . . . f(xn), we can write the interpolating
polynomial of degree 6 n, which in the Largenge form is

Pn(x) =
nX

i=0

f(xi)li(x),

with

li(x) =
nY

j=0
j 6=i

x � xj

xi � xj
, 0 6 i 6 n.

The integral of f(x) can then be approximated by the integral of Pn(x), i.e.,
Z b

a

f(x)dx ⇡
Z b

a

Pn(x)dx =
nX

i=0

f(xi)

Z b

a

li(x)dx =
nX

i=0

Aif(xi). (6.7)

The quadrature coe�cients Ai in (6.7) are given by

Ai =

Z b

a

li(x)dx. (6.8)

Note that if we want to integrate several di↵erent functions, and use their values at
the same points (x0, . . . , xn), the quadrature coe�cients (6.8) should be computed only
once, since they do not depend on the function that is being integrated. If we change the
interpolation/integration points, then we must recompute the quadrature coe�cients.

For equally spaced points, x0, . . . , xn, a numerical integration formula of the form
Z b

a

f(x)dx ⇡
nX

i=0

Aif(xi), (6.9)

is called a Newton-Cotes formula.
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Example 6.1
We let n = 1 and consider two interpolation points which we set as

x0 = a, x1 = b.

In this case

l0(x) =
b � x

b � a
, l1(x) =

x � a

b � a
.

Hence

A0 =

Z b

a

l0(x) =

Z b

a

b � x

b � a
dx =

b � a

2
.

Similarly,

A1 =

Z b

a

l1(x) =

Z b

a

x � a

b � a
dx =

b � a

2
= A0.

The resulting quadrature is the so-called trapezoidal rule,

Z b

a

dx ⇡ b � a

2
[f(a) + f(b)], (6.10)

(see Figure 6.3).
We can now use the interpolation error to compute the error in the quadrature (6.10).

The interpolation error is

f(x) � P1(x) =
1

2
f 00(⇠x)(x � a)(x � b), ⇠x 2 (a, b).

We recall that according to the midvalue theorem for integrals, if u(x) and v(x) are
continuous on [a, b] and if v > 0, then there exists ⇠ 2 (a, b) such that

Z b

a

u(x)v(x)dx = u(⇠)

Z b

a

v(x)dx.

Hence, the interpolation error is given by

E =

Z b

a

1

2
f 00(⇠x)(x�a)(x� b) =

f 00(⇠)

2

Z b

a

(x�a)(x� b)dx = �f 00(⇠)

12
(b�a)3, (6.11)

with ⇠ 2 (a, b).

Remarks.
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a b

f(a)

f(b)

x

f(x
)

Figure 6.3: A trapezoidal quadrature

1. We note that the quadratures (6.7),(6.8), are exact for polynomials of degree
6 n. For if p(x) is a polynomial of degree 6 n, it can be written as

p(x) =
nX

i=0

p(xi)li(x).

(Two polynomials of degree 6 n that agree with each other at n+ 1 points must
be identical). Hence

Z b

a

p(x)dx =
nX

i=0

p(xi)

Z b

a

li(x)dx =
nX

i=0

Aip(xi).

2. As of the opposite direction. Assume that the quadrature
Z b

a

f(x)dx ⇡
nX

i=0

Aif(xi),

is exact for all polynomials of degree 6 n. We know that

deg(lj(x)) = n,

and hence
Z b

a

lj(x)dx =
nX

i=0

Ailj(xi) =
nX

i=0

Ai�ij = Aj.
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This menas that the quadrature coe�cients must be given by

Aj =

Z b

a

lj(x)dx.

6.3 Composite Integration Rules

In a composite quadrature, we divide the interval into subintervals and apply an inte-
gration rule to each subinterval. We demonstrate this idea with a couple of examples.

Example 6.2
Consider the points

a = x0 < x1 < · · · < xn = b.

The composite trapezoidal rule is obtained by applying the trapezoidal rule in each
subinterval [xi�1, xi], i = 1, . . . , n, i.e.,

Z b

a

f(x)dx =
nX

i=1

Z xi

xi�1

f(x)dx ⇡ 1

2

nX

i=1

(xi � xi�1)[f(xi�1) + f(xi)], (6.12)

(see Figure 6.4).

x0 x1 x2 xn�1 xn
x

f(x
)

Figure 6.4: A composite trapezoidal rule

A particular case is when these points are uniformly spaced, i.e., when all intervals
have an equal length. For example, if

xi = a+ ih,
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6.3 Composite Integration Rules D. Levy

where

h =
b � a

n
,

then

Z b

a

f(x)dx ⇡ h

2

"
f(a) + 2

n�1X

i=1

f(a+ ih) + f(b)

#
= h

nX

i=0

00f(a+ ih). (6.13)

The notation of a sum with two primes,
P00, means that we sum over all the terms with

the exception of the first and last terms that are being divided by 2.
We can also compute the error term as a function of the distance between neighboring

points, h. We know from (6.11) that in every subinterval the quadrature error is

�h3

12
f 00(⇠x).

Hence, the overall error is obtained by summing over n such terms:

nX

i=1

�h3

12
f 00(⇠i) = �h3n

12

"
1

n

nX

i=1

f 00(⇠i)

#
.

Here, we use the notation ⇠i to denote an intermediate point that belongs to the ith

interval. Let

M =
1

n

nX

i=1

f 00(⇠i).

Clearly

min
x2[a,b]

f 00(x) 6 M 6 max
x2[a,b]

f 00(x)

If we assume that f 00(x) is continuous in [a, b] (which we anyhow do in order for the
interpolation error formula to be valid) then there exists a point ⇠ 2 [a, b] such that

f 00(⇠) = M.

Hence (recalling that (b � a)/n = h, we have

E = �(b � a)h2

12
f 00(⇠), ⇠ 2 [a, b]. (6.14)

This means that the composite trapezoidal rule is second-order accurate.
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Example 6.3
In the interval [a, b] we assume n subintervals and let

h =
b � a

n
.

The quadrature points are

xj = a+

✓
j � 1

2

◆
h, j = 1, 2, . . . , n.

The composite midpoint rule is given by applying the midpoint rule (6.4) in every
subinterval, i.e.,

Z b

a

f(x)dx ⇡ h
nX

j=1

f(xj). (6.15)

Equation (6.15) is known as the composite midpoint rule.
In order to obtain the quadrature error in the approximation (6.15) we recall that

in each subinterval the error is given according to (6.6), i.e.,

Ej =
h3

24
f 00(⇠j), ⇠j 2

✓
xj � h

2
, xj +

h

2

◆
.

Hence

E =
nX

j=1

Ej =
h3

24

nX

j=1

f 00(⇠j) =
h3

24
n

"
1

n

nX

j=1

f 00(⇠j)

#
=

h2(b � a)

24
f 00(⇠), (6.16)

where ⇠ 2 (a, b). This means that the composite midpoint rule is also second-order
accurate (just like the composite trapezoidal rule).

6.4 Additional Integration Techniques

6.4.1 The method of undetermined coe�cients

The methods of undetermined coe�cients for deriving quadratures is the following:

1. Select the quadrature points.

2. Write a quadrature as a linear combination of the values of the function at the
chosen quadrature points.

3. Determine the coe�cients of the linear combination by requiring that the quadra-
ture is exact for as many polynomials as possible from the the ordered set {1, x, x2, . . .}.

We demonstrate this technique with the following example.
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Example 6.4
Problem: Find a quadrature of the form

Z 1

0

f(x)dx ⇡ A0f(0) + A1f

✓
1

2

◆
+ A2f(1),

that is exact for all polynomials of degree 6 2.

Solution: Since the quadrature has to be exact for all polynomials of degree 6 2, it has
to be exact for the polynomials 1, x, and x2. Hence we obtain the system of linear
equations

1 =

Z 1

0

1dx = A0 + A1 + A2,

1

2
=

Z 1

0

xdx =
1

2
A1 + A2,

1

3
=

Z 1

0

x2dx =
1

4
A1 + A2.

Therefore, A0 = A2 =
1
6 and A1 =

2
3 , and the desired quadrature is

Z 1

0

f(x)dx ⇡
f(0) + 4f

�
1
2

�
+ f(1)

6
. (6.17)

Since the resulting formula (6.17) is linear, its being exact for 1, x, and x2, implies that
it is exact for any polynomial of degree 6 2. In fact, we will show in Section 6.5.1 that
this approximation is actually exact for polynomials of degree 6 3.

6.4.2 Change of an interval

Suppose that we have a quadrature formula on the interval [c, d] of the form

Z d

c

f(t)dt ⇡
nX

i=0

Aif(ti). (6.18)

We would like to to use (6.18) to find a quadrature on the interval [a, b], that approxi-
mates for

Z b

a

f(x)dx.

The mapping between the intervals [c, d] ! [a, b] can be written as a linear transforma-
tion of the form

�(t) =
b � a

d � c
t+

ad � bc

d � c
.

110



D. Levy 6.5 Simpson’s Integration

Hence

Z b

a

f(x)dx =
b � a

d � c

Z d

c

f(�(t))dt ⇡ b � a

d � c

nX

i=0

Aif(�(ti)).

This means that

Z b

a

f(x)dx ⇡ b � a

d � c

nX

i=0

Aif

✓
b � a

d � c
ti +

ad � bc

d � c

◆
. (6.19)

We note that if the quadrature (6.18) was exact for polynomials of degree m, so is (6.19).

Example 6.5
We want to write the result of the previous example

Z 1

0

f(x)dx ⇡
f(0) + 4f

�
1
2

�
+ f(1)

6
,

as a quadrature on the interval [a, b]. According to (6.19)

Z b

a

f(x)dx ⇡ b � a

6


f(a) + 4f

✓
a+ b

2

◆
+ f(b)

�
. (6.20)

The approximation (6.20) is known as the Simpson quadrature.

6.5 Simpson’s Integration

In the last example we obtained Simpson’s quadrature (6.20). An alternative derivation
is the following: start with a polynomial Q2(x) that interpolates f(x) at the points a,
(a+ b)/2, and b. Then approximate

Z b

a

f(x)dx ⇡
Z b

a


(x � c)(x � b)

(a � c)(a � b)
f(a) +

(x � a)(x � b)

(c � a)(c � b)
f(c) +

(x � a)(x � c)

(b � a)(b � c)
f(b)

�
dx

= . . . =
b � a

6


f(a) + 4f

✓
a+ b

2

◆
+ f(b)

�
,

which is Simpson’s rule (6.20). Figure 6.5 demonstrates this process of deriving Simp-
son’s quadrature for the specific choice of approximating

R 3

1 sin xdx.

6.5.1 The quadrature error

It turns out that Simpson’s quadrature is exact for polynomials of degree 6 3 and not
only for polynomials of degree 6 2, as expected by the way it was constructed. We will
obtain this result by studying the error term.
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

�� P2(x)

sinx �!

x

Figure 6.5: An example of Simpson’s quadrature. The approximation of
R 3

1 sin xdx is
obtained by integrating the quadratic interpolant Q2(x) over [1, 3]

In order to derive the error term for Simpson’s method, we discuss an error analysis
technique that is valid for quadratures that are obtained through integration. In all
such cases, the quadrature error is the di↵erence between the integral of the function
and the integral of its interpolant, i.e.,

E =

Z b

a

(f(t) � pn(t))dt =

Z b

a

f (n+1)(⇠x)

(n+ 1)!
!(t)dt, (6.21)

where

!(t) =
nY

i=0

(t � ti)dt.

It !(t) is always non-negative or non-positive between a and b, then according to the
midvalue theorem for integrals, the error in (6.21) becomes

E =
f (n+1)(⇠)

(n+ 1)!

Z b

a

!(t)dt, ⇠ 2 (a, b).

Examples for such cases are the trapezoidal rule for which

E =
f 00(⇠)

12
(b � a)3,
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and the rectangle rule for which

E =
f 0(⇠)

1

Z b

a

(t � a)dt =
f 0(⇠)

2
(b � a)2.

Another case which is rather easy to analyze is the case in which
Z b

a

!(t)dt = 0. (6.22)

Examples for the case in (6.22) include the midpoint rule for which
Z b

a

!(t)dt =

Z b

a

✓
t � a+ b

2

◆
dt = 0,

and Simpson’s rule for which
Z b

a

!(t)dt =

Z b

a

(t � a)

✓
t � a+ b

2

◆
(t � b)dt = 0.

In this case, we can add another interpolation point without changing the integral of
the interpolant. This is the case since we replace f(x) by pn(x) and integrate

Z b

a

f(t)dt ⇡
Z b

a

pn(x)dx.

Adding an arbitrary interpolation point, xn+1, to pn(x) turns it into an interpolating
polynomial of a higher order, pn+1(x), that is given by

pn+1(x) = pn(x) + f [x0, . . . , xn+1]!(x). (6.23)

Since
R b

a !(x)dx = 0, when integrating (6.23) in order to obtain a quadrature, we
observe that

Z b

a

f(t)dt ⇡
Z b

a

pn+1(x)dx =

Z b

a

pn(x)dx,

so the original quadrature does not change by adding an arbitrary interpolation point.
We now have all the required tools in order to derive a quadrature for Simpson’s

method. Since in this case
R b

a !(t)dt = 0, we add to a, a+b
2 , b an arbitrary interpolation

point which we choose as a+b
2 again. The function !(t) becomes

!(t) = (t � a)

✓
t � a+ b

2

◆2

(t � b).

Hence, for t 2 [a, b], our new !(t) satisfies !(t) 6 0. By the midvalue theorem for
integrals the error in Simpson’s method can be written as

E =
f (4)(⇠)

24

Z b

a

(t � a)

✓
t � a+ b

2

◆2

(t � b)dt = � 1

90

✓
b � a

2

◆5

f (4)(⇠), (6.24)

for ⇠ 2 (a, b). Since the fourth derivative of any polynomial of degree 6 3 is identically
zero, the quadrature error formula (6.24) implies that Simpson’s quadrature is exact for
polynomials of degree 6 3.
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6.5.2 Composite Simpson rule

To derive a composite version of Simpson’s quadrature, we divide the interval [a, b] into
an even number of subintervals, n, and let

xi = a+ ih, 0 6 i 6 n,

where

h =
b � a

n
.

Hence, if we replace the integral in every subintervals by Simpson’s rule (6.20), we obtain

Z b

a

f(x)dx =

Z x2

x0

f(x)dx+ . . .+

Z xn

xn�2

f(x)dx =
n/2X

i=1

Z x2i

x2i�2

f(x)dx

⇡ h

3

n/2X

i=1

[f(x2i�2) + 4f(x2i�1) + f(x2i)] .

The composite Simpson quadrature is thus given by

Z b

a

f(x)dx ⇡ h

3

2

4f(x0) + 2
n/2X

i=0

f(x2i�2) + 4
n/2X

i=1

f(x2i�1) + f(xn)

3

5 . (6.25)

Summing the error terms (that are given by (6.24)) over all sub-intervals, the quadrature
error takes the form

E = �h5

90

n/2X

i=1

f (4)(⇠i) = �h5

90
· n
2

· 2
n

n/2X

i=1

f (4)(⇠i).

Since

min
x2[a,b]

f (4)(x) 6 2

n

n/2X

i=1

f (4)(⇠i) 6 max
x2[a,b]

f (4)(x),

we can conclude that

E = �h5

90

n

2
f (4)(⇠) = � h4

180
f (4)(⇠), ⇠ 2 [a, b], (6.26)

i.e., the composite Simpson quadrature is fourth-order accurate.
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6.6 Weighted Quadratures

We recall that a weight function is a continuous, non-negative function with a positive
mass. We assume that such a weight function w(x) is given and would like to write a
quadrature of the form

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Aif(xi). (6.27)

Such quadratures are called general (weighted) quadratures.
Previously, for the case w(x) ⌘ 1, we wrote a quadrature of the form

Z b

a

f(x)dx ⇡
nX

i=0

Aif(xi),

where

Ai =

Z b

a

li(x)dx.

Repeating the derivation we carried out in Section 6.2, we construct an interpolant
Qn(x) of degree 6 n that passes through the points x0, . . . , xn. Its Lagrange form is

Qn(x) =
nX

i=0

f(xi)li(x),

with the usual

li(x) =
nY

j=0
j 6=i

x � xj

xi � xj
, 0 6 i 6 n.

Hence
Z b

a

f(x)w(x)dx ⇡
Z b

a

Qn(x)w(x)dx =
nX

i=0

f(xi)

Z b

a

li(x)w(x)dx =
nX

i=0

Aif(xi),

where the coe�cients Ai are given by

Ai =

Z b

a

li(x)w(x)dx. (6.28)

To summarize, the general quadrature is

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Aif(xi), (6.29)

with quadrature coe�cients, Ai, that are given by (6.28).
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6.7 Gaussian Quadrature

6.7.1 Maximizing the quadrature’s accuracy

So far, all the quadratures we encountered were of the form

Z b

a

f(x)dx ⇡
nX

i=0

Aif(xi). (6.30)

An approximation of the form (6.30) was shown to be exact for polynomials of degree6 n
for an appropriate choice of the quadrature coe�cients Ai. In all cases, the quadrature
points x0, . . . , xn were given up front. In other words, given a set of nodes x0, . . . , xn,
the coe�cients {Ai}n

i=0 were determined such that the approximation was exact in ⇧n.
We are now interested in investigating the possibility of writing more accurate

quadratures without increasing the total number of quadrature points. This will be
possible if we allow for the freedom of choosing the quadrature points. The quadra-
ture problem becomes now a problem of choosing the quadrature points in addition to
determining the corresponding coe�cients in a way that the quadrature is exact for
polynomials of a maximal degree. Quadratures that are obtained that way are called
Gaussian quadratures.

Example 6.6
The quadrature formula

Z 1

�1

f(x)dx ⇡ f

✓
� 1p

3

◆
+ f

✓
1p
3

◆
,

is exact for polynomials of degree 6 3(!) We will revisit this problem and prove this
result in Example 6.9 below.

An equivalent problem can be stated for the more general weighted quadrature case.
Here,

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Aif(xi), (6.31)

where w(x) > 0 is a weight function. Equation (6.31) is exact for f 2 ⇧n if and only if

Ai =

Z b

a

w(x)
Y

j=0
j 6=i

x � xj

xi � xj
dx. (6.32)

In both cases (6.30) and (6.31), the number of quadrature nodes, x0, . . . , xn, is n+1,
and so is the number of quadrature coe�cients, Ai. Hence, if we have the flexibility
of determining the location of the points in addition to determining the coe�cients,
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we have altogether 2n + 2 degrees of freedom, and hence we can expect to be able to
derive quadratures that are exact for polynomials in ⇧2n+1. This is indeed the case as
we shall see below. We will show that the general solution of this integration problem
is connected with the roots of orthogonal polynomials. We start with the following
theorem.

Theorem 6.7 Let q(x) be a nonzero polynomial of degree n+1 that is w-orthogonal to
⇧n, i.e., 8p(x) 2 ⇧n,

Z b

a

p(x)q(x)w(x)dx = 0.

If x0, . . . , xn are the zeros of q(x) then (6.31), with Ai given by (6.32), is exact 8f 2
⇧2n+1.

Proof. For f(x) 2 ⇧2n+1, write f(x) = q(x)p(x) + r(x). We note that p(x), r(x) 2 ⇧n.
Since x0, . . . , xn are the zeros of q(x) then

f(xi) = r(xi).

Hence,

Z b

a

f(x)w(x)dx =

Z b

a

[q(x)p(x) + r(x)]w(x)dx =

Z b

a

r(x)w(x)dx (6.33)

=
nX

i=0

Air(xi) =
nX

i=0

Aif(xi).

The second equality in (6.33) holds since q(x) is w-orthogonal to ⇧n. The third equality
(6.33) holds since (6.31), with Ai given by (6.32), is exact for polynomials in ⇧n. ⌅

According to Theorem 6.7 we already know that the quadrature points that will
provide the most accurate quadrature rule are the n+1 roots of an orthogonal polynomial
of degree n + 1 (where the orthogonality is with respect to the weight function w(x)).
We recall that the roots of q(x) are real, simple and lie in (a, b), something we know
from our previous discussion on orthogonal polynomials (see Theorem 4.15). In other
words, we need n + 1 quadrature points in the interval, and an orthogonal polynomial
of degree n+1 does have n+1 distinct roots in the interval. We now restate the result
regarding the roots of orthogonal functions with an alternative proof.

Theorem 6.8 Let w(x) be a weight function. Assume that f(x) is continuous in [a, b]
that is not the zero function, and that f(x) is w-orthogonal to ⇧n. Then f(x) changes
sign at least n+ 1 times on (a, b).
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Proof. Since 1 2 ⇧n,
Z b

a

f(x)w(x)dx = 0.

Hence, f(x) changes sign at least once. Now suppose that f(x) changes size only r
times, where r 6 n. Choose {ti}i>0 such that

a = t0 < t1 < · · · < tr = b,

and f(x) is of one sign on (t0, t1), (t1, t2), . . . , (tr�1, tr). The polynomial

p(x) =
r�1Y

i=0

(x � ti),

has the same sign property. Hence
Z b

a

f(x)p(x)w(x)dx 6= 0,

which leads to a contradiction since p(x) 2 ⇧n. ⌅

Example 6.9
We are looking for a quadrature of the form

Z 1

�1

f(x)dx ⇡ A0f(x0) + A1f(x1).

A straightforward computation will amount to making this quadrature exact for the
polynomials of degree 6 3. The linearity of the quadrature means that it is su�cient to
make the quadrature exact for 1, x, x2, and x3. Hence we write the system of equations

Z 1

�1

f(x)dx =

Z 1

�1

xidx = A0x
i
0 + A1x

i
1, i = 0, 1, 2, 3.

From this we can write
8
>><

>>:

A0 + A1 = 2,
A0x0 + A1x1 = 0,
A0x2

0 + A1x2
1 =

2
3 ,

A0x3
0 + A1x3

1 = 0.

Solving for A1, A2, x0, and x1 we get

A1 = A2 = 1, x0 = �x1 =
1p
3
,

so that the desired quadrature is
Z 1

�1

f(x)dx ⇡ f

✓
� 1p

3

◆
+ f

✓
1p
3

◆
. (6.34)
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Example 6.10
We repeat the previous problem using orthogonal polynomials. Since n = 1, we expect
to find a quadrature that is exact for polynomials of degree 2n+1 = 3. The polynomial
of degree n+1 = 2 which is orthogonal to ⇧n = ⇧1 with weight w(x) ⌘ 1 is the Legendre
polynomial of degree 2, i.e.,

P2(x) =
1

2
(3x2 � 1).

The integration points will then be the zeros of P2(x), i.e.,

x0 = � 1p
3
, x1 =

1p
3
.

All that remains is to determine the coe�cients A1, A2. This is done in the usual way,
assuming that the quadrature

Z 1

�1

f(x)dx ⇡ A0f(x0) + A1f(x1),

is exact for polynomials of degree 6 1. The simplest will be to use 1 and x, i.e.,

2 =

Z 1

�1

1dx = A0 + A1,

and

0 =

Z 1

�1

xdx = �A0
1p
3
+ A1

1p
3
.

Hence A0 = A1 = 1, and the quadrature is the same as (6.34) (as should be).

6.7.2 Convergence and error analysis

Lemma 6.11 In a Gaussian quadrature formula, the coe�cients are positive and their
sum is

R b

a w(x)dx.

Proof. Fix n. Let q(x) 2 ⇧n+1 be w-orthogonal to ⇧n. Also assume that q(xi) = 0 for
i = 0, . . . , n, and take {xi}n

i=0 to be the quadrature points, i.e.,

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Aif(xi). (6.35)

Fix 0 6 j 6 n. Let p(x) 2 ⇧n be defined as

p(x) =
q(x)

x � xj
.
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Since xj is a root of q(x), p(x) is indeed a polynomial of degree 6 n. The degree of
p2(x) 6 2n which means that the Gaussian quadrature (6.35) is exact for it. Hence

0 <

Z b

a

p2(x)w(x)dx =
nX

i=0

Aip
2(xi) =

nX

i=0

Ai
q2(xi)

(xi � xj)2
= Ajp

2(xj),

which means that 8j, Aj > 0. In addition, since the Gaussian quadrature is exact for
f(x) ⌘ 1, we have

Z b

a

w(x)dx =
nX

i=0

Ai. ⌅

In order to estimate the error in the Gaussian quadrature we would first like to
present an alternative way of deriving the Gaussian quadrature. Our starting point
is the Lagrange form of the Hermite polynomial that interpolates f(x) and f 0(x) at
x0, . . . , xn. It is given by (3.44), i.e.,

p(x) =
nX

i=0

f(xi)ai(x) +
nX

i=0

f 0(xi)bi(x),

with

ai(x) = (li(x))
2[1 + 2l0i(xi)(xi � x)], bi(x) = (x � xi)l

2
i (x), 0  i  n,

and

li(x) =
nY

j=0
j 6=i

x � xj

xi � xj
.

We now assume that w(x) is a weight function in [a, b] and approximate

Z b

a

w(x)f(x)dx ⇡
Z b

a

w(x)p2n+1(x)dx =
nX

i=0

Aif(xi) +
nX

i=0

Bif
0(xi), (6.36)

where

Ai =

Z b

a

w(x)ai(x)dx, (6.37)

and

Bi =

Z b

a

w(x)bi(x)dx. (6.38)
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In some sense, it seems to be rather strange to deal with the Hermite interpolant when
we do not explicitly know the values of f 0(x) at the interpolation points. However, we
can eliminate the derivatives from the quadrature (6.36) by setting Bi = 0 in (6.38).
Indeed (assuming n 6= 0):

Bi =

Z b

a

w(x)(x � xi)l
2
i (x)dx =

nY

j=0
j 6=i

(xi � xj)

Z b

a

w(x)
nY

j=0

(x � xj)li(x)dx.

Hence, Bi = 0, if the product
Qn

j=0(x � xj) is orthogonal to li(x). Since li(x) is a
polynomial in ⇧n, all that we need is to set the points x0, . . . , xn as the roots of a
polynomial of degree n+1 that is w-orthogonal to ⇧n. This is precisely what we defined
as a Gaussian quadrature.

We are now ready to formally establish the fact that the Gaussian quadrature is
exact for polynomials of degree 6 2n+ 1.

Theorem 6.12 Let f 2 C2n+2[a, b] and let w(x) be a weight function. Consider the
Gaussian quadrature

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Aif(xi).

Then there exists ⇣ 2 (a, b) such that
Z b

a

f(x)w(x)dx �
nX

i=0

Aif(xi) =
f (2n+2)(⇣)

(2n+ 2)!

Z b

a

nY

j=0

(x � xj)
2w(x)dx.

Proof. We use the characterization of the Gaussian quadrature as the integral of a
Hermite interpolant. We recall that the error formula for the Hermite interpolation is
given by (3.51),

f(x) � p2n+1(x) =
f (2n+2)(⇠)

(2n+ 2)!

nY

j=0

(x � xj)
2, ⇠ 2 (a, b).

Hence according to (6.36) we have
Z b

a

f(x)w(x)dx �
nX

i=0

Aif(xi) =

Z b

a

f(x)w(x)dx �
Z b

a

p2n+1w(x)dx

=

Z b

a

w(x)
f (2n+2)(⇠)

(2n+ 2)!

nY

j=0

(x � xj)
2dx.

The integral mean value theorem then implies that there exists ⇣ 2 (a, b) such that
Z b

a

f(x)w(x)dx �
nX

i=0

Aif(xi) =
f (2n+2)(⇣)

(2n+ 2)!

Z b

a

nY

j=0

(x � xj)
2(x)w(x)dx. ⌅
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We conclude this section with a convergence theorem that states that for continuous
functions, the Gaussian quadrature converges to the exact value of the integral as the
number of quadrature points tends to infinity. This theorem is not of a great practical
value because it does not provide an estimate on the rate of convergence. A proof of
the theorem that is based on the Weierstrass approximation theorem can be found in,
e.g., in [7].

Theorem 6.13 We let w(x) be a weight function and assuming that f(x) is a con-
tinuous function on [a, b]. For each n 2 N we let {xni}n

i=0 be the n + 1 roots of the
polynomial of degree n + 1 that is w-orthogonal to ⇧n, and consider the corresponding
Gaussian quadrature:

Z b

a

f(x)w(x)dx ⇡
nX

i=0

Anif(xni). (6.39)

Then the right-hand-side of (6.39) converges to the left-hand-side as n ! 1.

6.8 Romberg Integration

We have introduced Richardson’s extrapolation in Section 5.4 in the context of numerical
di↵erentiation. We can use a similar principle with numerical integration.

We will demonstrate this principle with a particular example. Let I denote the exact
integral that we would like to approximate, i.e.,

I =

Z b

a

f(x)dx.

Let’s assume that this integral is approximated with a composite trapezoidal rule on a
uniform grid with mesh spacing h (6.13),

T (h) = h
nX

i=0

00f(a+ ih).

We know that the composite trapezoidal rule is second-order accurate (see (6.14)).
A more detailed study of the quadrature error reveals that the di↵erence between I and
T (h) can be written as

I = T (h) + c1h
2 + c2h

4 + . . .+ ckh
k +O(h2k+2).

The exact values of the coe�cients, ck, are of no interest to us as long as they do not
depend on h (which is indeed the case). We can now write a similar quadrature that is
based on half the number of points, i.e., T (2h). Hence

I = T (2h) + c1(2h)
2 + c2(2h)

4 + . . .
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This enables us to eliminate the h2 error term:

I =
4T (h) � T (2h)

3
+ ĉ2h

4 + . . .

Therefore

4T (h) � T (2h)

3
=

1

3


4h

✓
1

2
f0 + f1 + . . .+ fn�1 +

1

2
fn

◆

�2h

✓
1

2
f0 + f2 + . . .+ fn�2 +

1

2
fn

◆�

=
h

3
(f0 + 4f1 + 2f2 + . . .+ 2fn�2 + 4fn�1 + fn) = S(n).

Here, S(n) denotes the composite Simpson’s rule with n subintervals. The procedure
of increasing the accuracy of the quadrature by eliminating the leading error term is
known as Romberg integration. In some places, Romberg integration is used to
describe the specific case of turning the composite trapezoidal rule into Simpson’s rule
(and so on). The quadrature that is obtained from Simpson’s rule by eliminating the
leading error term is known as the super Simpson rule.
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