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5 Numerical Differentiation

5.1 Basic Concepts

This chapter deals with numerical approximations of derivatives. The first questions
that comes up to mind is: why do we need to approximate derivatives at all? After
all, we do know how to analytically differentiate every function. Nevertheless, there are
several reasons as of why we still need to approximate derivatives:

• Even if there exists an underlying function that we need to differentiate, we might
know its values only at a sampled data set without knowing the function itself.

• There are some cases where it may not be obvious that an underlying function
exists and all that we have is a discrete data set. We may still be interested in
studying changes in the data, which are related, of course, to derivatives.

• There are times in which exact formulas are available but they are very complicated
to the point that an exact computation of the derivative requires a lot of function
evaluations. It might be significantly simpler to approximate the derivative instead
of computing its exact value.

• When approximating solutions to ordinary (or partial) differential equations, we
typically represent the solution as a discrete approximation that is defined on a
grid. Since we then have to evaluate derivatives at the grid points, we need to be
able to come up with methods for approximating the derivatives at these points,
and again, this will typically be done using only values that are defined on a lattice.
The underlying function itself (which in this cased is the solution of the equation)
is unknown.

A simple approximation of the first derivative is

f ′(x) ≈ f(x + h)− f(x)

h
, (5.1)

where we assume that h > 0. What do we mean when we say that the expression on
the right-hand-side of (5.1) is an approximation of the derivative? For linear functions
(5.1) is actually an exact expression for the derivative. For almost all other functions,
(5.1) is not the exact derivative.

Let’s compute the approximation error. We write a Taylor expansion of f(x + h)
about x, i.e.,

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ), ξ ∈ (x, x + h). (5.2)

For such an expansion to be valid, we assume that f(x) has two continuous derivatives.
The Taylor expansion (5.2) means that we can now replace the approximation (5.1) with
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an exact formula of the form

f ′(x) =
f(x + h)− f(x)

h
− h

2
f ′′(ξ), ξ ∈ (x, x + h). (5.3)

Since this approximation of the derivative at x is based on the values of the function at
x and x + h, the approximation (5.1) is called a forward differencing or one-sided
differencing. The approximation of the derivative at x that is based on the values of
the function at x− h and x, i.e.,

f ′(x) ≈ f(x)− f(x− h)

h
,

is called a backward differencing (which is obviously also a one-sided differencing
formula).

The second term on the right-hand-side of (5.3) is the error term. Since the ap-
proximation (5.1) can be thought of as being obtained by truncating this term from the
exact formula (5.3), this error is called the truncation error. The small parameter h
denotes the distance between the two points x and x+h. As this distance tends to zero,
i.e., h → 0, the two points approach each other and we expect the approximation (5.1)
to improve. This is indeed the case if the truncation error goes to zero, which in turn is
the case if f ′′(ξ) is well defined in the interval (x, x+h). The “speed” in which the error
goes to zero as h → 0 is called the rate of convergence. When the truncation error is
of the order of O(h), we say that the method is a first order method. We refer to a
methods as a pth-order method if the truncation error is of the order of O(hp).

It is possible to write more accurate formulas than (5.3) for the first derivative. For
example, a more accurate approximation for the first derivative that is based on the
values of the function at the points f(x−h) and f(x+h) is the centered differencing
formula

f ′(x) ≈ f(x + h)− f(x− h)

2h
. (5.4)

Let’s verify that this is indeed a more accurate formula than (5.1). Taylor expansions
of the terms on the right-hand-side of (5.4) are

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1),

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ2).

Here ξ1 ∈ (x, x + h) and ξ2 ∈ (x− h, x). Hence

f ′(x) =
f(x + h)− f(x− h)

2h
− h2

12
[f ′′′(ξ1) + f ′′′(ξ2)],
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which means that the truncation error in the approximation (5.4) is

−h2

12
[f ′′′(ξ1) + f ′′′(ξ2)].

If the third-order derivative f ′′′(x) is a continuous function in the interval [x−h, x+h],
then the intermediate value theorem implies that there exists a point ξ ∈ (x− h, x + h)
such that

f ′′′(ξ) =
1

2
[f ′′′(ξ1) + f ′′′(ξ2)].

Hence

f ′(x) =
f(x + h)− f(x− h)

2h
− h2

6
f ′′′(ξ), (5.5)

which means that the expression (5.4) is a second-order approximation of the first deriva-
tive.

In a similar way we can approximate the values of higher-order derivatives. For
example, it is easy to verify that the following is a second-order approximation of the
second derivative

f ′′(x) ≈ f(x + h)− 2f(x) + f(x− h)

h2
. (5.6)

To verify the consistency and the order of approximation of (5.6) we expand

f(x± h) = f(x)± hf ′(x) +
h2

2
f ′′(x)± h3

6
f ′′′(x) +

h4

24
f (4)(ξ±).

Here, ξ− ∈ (x− h, x) and ξ+ ∈ (x, x + h). Hence

f(x + h)− 2f(x) + f(x− h)

h2
= f ′′(x)+

h2

24

(
f (4)(ξ−) + f (4)(ξ+)

)
= f ′′(x)+

h2

12
f (4)(ξ),

where we assume that ξ ∈ (x− h, x + h) and that f(x) has four continuous derivatives
in the interval. Hence, the approximation (5.6) is indeed a second-order approximation
of the derivative, with a truncation error that is given by

−h2

12
f (4)(ξ), ξ ∈ (x− h, x + h).

5.2 Differentiation Via Interpolation

In this section we demonstrate how to generate differentiation formulas by differentiating
an interpolant. The idea is straightforward: the first stage is to construct an interpo-
lating polynomial from the data. An approximation of the derivative at any point can
be then obtained by a direct differentiation of the interpolant.
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We follow this procedure and assume that f(x0), . . . , f(xn) are given. The Lagrange
form of the interpolation polynomial through these points is

Qn(x) =
n∑

j=0

f(xj)lj(x).

Here we simplify the notation and replace lni (x) which is the notation we used in Sec-
tion ?? by li(x). According to the error analysis of Section ?? we know that the inter-
polation error is

f(x)−Qn(x) =
1

(n + 1)!
f (n+1)(ξn)

n∏
j=0

(x− xj),

where ξn ∈ (min(x, x0, . . . , xn), max(x, x0, . . . , xn)). Since here we are assuming that the
points x0, . . . , xn are fixed, we would like to emphasize the dependence of ξn on x and
hence replace the ξn notation by ξx. We that have:

f(x) =
n∑

j=0

f(xj)lj(x) +
1

(n + 1)!
f (n+1)(ξx)w(x), (5.7)

where

w(x) =
n∏

i=0

(x− xi).

Differentiating the interpolant (5.7):

f ′(x) =
n∑

j=0

f(xj)l
′
j(x) +

1

(n + 1)!
f (n+1)(ξx)w

′(x) +
1

(n + 1)!
w(x)

d

dx
f (n+1)(ξx). (5.8)

We now assume that x is one of the interpolation points, i.e., x ∈ {x0, . . . , xn}, say xk,
so that

f ′(xk) =
n∑

j=0

f(xj)l
′
j(xk) +

1

(n + 1)!
f (n+1)(ξxk

)w′(xk). (5.9)

Now,

w′(x) =
n∑

i=0

n∏
j=0
j 6=i

(x− xj) =
n∑

i=0

[(x− x0) · . . . · (x− xi−1)(x− xi+1) · . . . · · · (x− xn)].

Hence, when w′(x) is evaluated at an interpolation point xk, there is only one term in
w′(x) that does not vanish, i.e.,

w′(xk) =
n∏

j=0
j 6=k

(xk − xj).
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The numerical differentiation formula, (5.9), then becomes

f ′(xk) =
n∑

j=0

f(xj)l
′
j(xk) +

1

(n + 1)!
f (n+1)(ξxk

)
∏
j=0
j 6=k

(xk − xj). (5.10)

We refer to the formula (5.10) as a differentiation by interpolation algorithm.

Example 5.1
We demonstrate how to use the differentiation by integration formula (5.10) in the case
where n = 1 and k = 0. This means that we use two interpolation points (x0, f(x0)) and
(x1, f(x1)), and want to approximate f ′(x0). The Lagrange interpolation polynomial in
this case is

Q1(x) = f(x0)l0(x) + f(x1)l1(x),

where

l0(x) =
x− x1

x0 − x1

, l1(x) =
x− x0

x1 − x0

.

Hence

l′0(x) =
1

x0 − x1

, l′1(x) =
1

x1 − x0

.

We thus have

Q′
1(x0) =

f(x0)

x0 − x1

+
f(x1)

x1 − x0

+
1

2
f ′′(ξ)(x0− x1) =

f(x1)− f(x0)

x1 − x0

− 1

2
f ′′(ξ)(x1− x0).

Here, we simplify the notation and assume that ξ ∈ (x0, x1). If we now let x1 = x0 + h,
then

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ),

which is the (first-order) forward differencing approximation of f ′(x0), (5.3).

Example 5.2
We repeat the previous example in the case n = 2 and k = 0. This time

Q2(x) = f(x0)l0(x) + f(x1)l1(x) + f(x2)l2(x),

with

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, l1(x) =

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
, l2(x) =

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.
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Hence

l′0(x) =
2x− x1 − x2

(x0 − x1)(x0 − x2)
, l′1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)
, l′2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)
.

Evaluating l′j(x) for j = 1, 2, 3 at x0 we have

l′0(x0) =
2x0 − x1 − x2

(x0 − x1)(x0 − x2)
, l′1(x0) =

x0 − x2

(x1 − x0)(x1 − x2)
, l′2(x0) =

x0 − x1

(x2 − x0)(x2 − x1)

Hence

Q′
2(x0) = f(x0)

2x0 − x1 − x2

(x0 − x1)(x0 − x2)
+ f(x1)

x0 − x2

(x1 − x0)(x1 − x2)
(5.11)

+f(x2)
x0 − x1

(x2 − x0)(x2 − x1)
+

1

6
f (3)(ξ)(x0 − x1)(x0 − x2).

Here, we assume ξ ∈ (x0, x2). For xi = x + ih, i = 0, 1, 2, equation (5.11) becomes

Q′
2(x) = −f(x)

3

2h
+ f(x + h)

2

h
+ f(x + 2h)

(
− 1

2h

)
+

f ′′′(ξ)

3
h2

=
−3f(x) + 4f(x + h)− f(x + 2h)

2h
+

f ′′′(ξ)

3
h2,

which is a one-sided, second-order approximation of the first derivative.

Remark. In a similar way, if we were to repeat the last example with n = 2 while
approximating the derivative at x1, the resulting formula would be the second-order
centered approximation of the first-derivative (5.5)

f ′(x) =
f(x + h)− f(x− h)

2h
− 1

6
f ′′′(ξ)h2.

5.3 The Method of Undetermined Coefficients

In this section we present the method of undetermined coefficients, which is a very
practical way for generating approximations of derivatives (as well as other quantities
as we shall see, e.g., when we discuss integration).

Assume, for example, that we are interested in finding an approximation of the
second derivative f ′′(x) that is based on the values of the function at three equally
spaced points, f(x− h), f(x), f(x + h), i.e.,

f ′′(x) ≈ Af(x + h) + B(x) + Cf(x− h). (5.12)
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The coefficients A, B, and C are to be determined in such a way that this linear
combination is indeed an approximation of the second derivative. The Taylor expansions
of the terms f(x± h) are

f(x± h) = f(x)± hf ′(x) +
h2

2
f ′′(x)± h3

6
f ′′′(x) +

h4

24
f (4)(ξ±), (5.13)

where (assuming that h > 0)

x− h 6 ξ− 6 x 6 ξ+ 6 x + h.

Using the expansions in (5.13) we can rewrite (5.12) as

f ′′(x) ≈ Af(x + h) + Bf(x) + Cf(x− h) (5.14)

= (A + B + C)f(x) + h(A− C)f ′(x) +
h2

2
(A + C)f ′′(x)

+
h3

6
(A− C)f (3)(x) +

h4

24
[Af (4)(ξ+) + Cf (4)(ξ−)].

Equating the coefficients of f(x), f ′(x), and f ′′(x) on both sides of (5.14) we obtain the
linear system

A + B + C = 0,
A− C = 0,

A + C =
2

h2
.

(5.15)

The system (5.15) has the unique solution:

A = C =
1

h2
, B = − 2

h2
.

In this particular case, since A and C are equal to each other, the coefficient of f (3)(x)
on the right-hand-side of (5.14) also vanishes and we end up with

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
− h2

24
[f (4)(ξ+) + f (4)(ξ−)].

We note that the last two terms can be combined into one using an intermediate values
theorem (assuming that f(x) has four continuous derivatives), i.e.,

h2

24
[f (4)(ξ+) + f (4)(ξ−)] =

h2

12
f (4)(ξ), ξ ∈ (x− h, x + h).

Hence we obtain the familiar second-order approximation of the second derivative:

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(ξ).

In terms of an algorithm, the method of undetermined coefficients follows what was
just demonstrated in the example:
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1. Assume that the derivative can be written as a linear combination of the values
of the function at certain points.

2. Write the Taylor expansions of the function at the approximation points.

3. Equate the coefficients of the function and its derivatives on both sides.

The only question that remains open is how many terms should we use in the Taylor
expansion. This question has, unfortunately, no simple answer. In the example, we have
already seen that even though we used data that is taken from three points, we could
satisfy four equations. In other words, the coefficient of the third-derivative vanished as
well. If we were to stop the Taylor expansions at the third derivative instead of at the
fourth derivative, we would have missed on this cancellation, and would have mistakenly
concluded that the approximation method is only first-order accurate. The number of
terms in the Taylor expansion should be sufficient to rule out additional cancellations.
In other words, one should truncate the Taylor series after the leading term in the error
has been identified.

5.4 Richardson’s Extrapolation

Richardson’s extrapolation can be viewed as a general procedure for improving the
accuracy of approximations when the structure of the error is known. While we study
it here in the context of numerical differentiation, it is by no means limited only to
differentiation and we will get back to it later on when we study methods for numerical
integration.

We start with an example in which we show how to turn a second-order approxima-
tion of the first derivative into a fourth order approximation of the same quantity. We
already know that we can write a second-order approximation of f ′(x) given its values
in f(x ± h). In order to improve this approximation we will need some more insight
on the internal structure of the error. We therefore start with the Taylor expansions of
f(x± h) about the point x, i.e.,

f(x + h) =
∞∑

k=0

f (k)(x)

k!
hk,

f(x− h) =
∞∑

k=0

(−1)kf (k)(x)

k!
hk.

Hence

f ′(x) =
f(x + h)− f(x− h)

2h
−

[
h2

3!
f (3)(x) +

h4

5!
f (5)(x) + . . .

]
. (5.16)

We rewrite (5.16) as

L = D(h) + e2h
2 + e4h

4 + . . . , (5.17)
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where L denotes the quantity that we are interested in approximating, i.e.,

L = f ′(x),

and D(h) is the approximation, which in this case is

D(h) =
f(x + h)− f(x− h)

2h
.

The error is

E = e2h
2 + e4h

4 + . . .

where ei denotes the coefficient of hi in (5.16). The important property of the coefficients
ei’s is that they do not depend on h. We note that the formula

L ≈ D(h),

is a second-order approximation of the first-derivative which is based on the values
of f(x) at x ± h. We assume here that in general ei 6= 0. In order to improve the
approximation of L our strategy will be to eliminate the term e2h

2 from the error. How
can this be done? one possibility is to write another approximation that is based on the
values of the function at different points. For example, we can write

L = D(2h) + e2(2h)2 + e4(2h)4 + . . . . (5.18)

This, of course, is still a second-order approximation of the derivative. However, the
idea is to combine (5.17) with (5.18) such that the h2 term in the error vanishes. Indeed,
subtracting the following equations from each other

4L = 4D(h) + 4e2h
2 + 4e4h

4 + . . . ,

L = D(2h) + 4e2h
2 + 16e4h

4 + . . . ,

we have

L =
4D(h)−D(2h)

3
− 4e4h

4 + . . .

In other words, a fourth-order approximation of the derivative is

f ′(x) =
−f(x + 2h) + 8f(x + h)− 8f(x− h) + f(x− 2h)

12h
+ O(h4). (5.19)

Note that (5.19) improves the accuracy of the approximation (5.16) by using more
points.
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This process can be repeated over and over as long as the structure of the error is
known. For example, we can write (5.19) as

L = S(h) + a4h
4 + a6h

6 + . . . (5.20)

where

S(h) =
−f(x + 2h) + 8f(x + h)− 8f(x− h) + f(x− 2h)

12h
.

Equation (5.20) can be turned into a sixth-order approximation of the derivative by
eliminating the term a4h

4. We carry out such a procedure by writing

L = S(2h) + a4(2h)4 + a6(2h)6 + . . . (5.21)

Combining (5.21) with (5.20) we end up with a sixth-order approximation of the deriva-
tive:

L =
16S(h)− S(2h)

15
+ O(h6).

Remarks.

1. In (5.18), instead of using D(2h), it is possible to use other approximations, e.g.,
D(h/2). If this is what is done, instead of (5.19) we would get a fourth-order
approximation of the derivative that is based on the values of f at
x− h, x− h/2, x + h/2, x + h.

2. Once again we would like to emphasize that Richardson’s extrapolation is a
general procedure for improving the accuracy of numerical approximations that
can be used when the structure of the error is known. It is not specific for
numerical differentiation.
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