
D. Levy

6 Numerical Integration

6.1 Basic Concepts

In this chapter we are going to explore various ways for approximating the integral of a
function over a given domain. There are various reasons as of why such approximations
can be useful. First, not every function can be analytically integrated. Second, even if a
closed integration formula exists, it might still not be the most efficient way of calculating
the integral. In addition, it can happen that we need to integrate an unknown function,
in which only some samples of the function are known.

In order to gain some insight on numerical integration, it is natural to review Rie-
mann integration, a framework that can be viewed as an approach for approximat-
ing integrals. We assume that f(x) is a bounded function defined on [a, b] and that
{x0, . . . , xn} is a partition (P ) of [a, b]. For each i we let

Mi(f) = sup
x∈[xi−1,xi]

f(x),

and

mi(f) = inf
x∈[xi−1,xi]

f(x),

Letting ∆xi = xi − xi−1, the upper (Darboux) sum of f(x) with respect to the
partition P is defined as

U(f, P ) =
n∑

i=1

Mi∆xi, (6.1)

while the lower (Darboux) sum of f(x) with respect to the partition P is defined as

L(f, P ) =
n∑

i=1

mi∆xi. (6.2)

The upper integral of f(x) on [a, b] is defined as

U(f) = inf(U(f, P )),

and the lower integral of f(x) is defined as

L(f) = sup(L(f, P )),

where both the infimum and the supremum are taken over all possible partitions, P , of
the interval [a, b]. If the upper and lower integral of f(x) are equal to each other, their

common value is denoted by
∫ b

a
f(x)dx and is referred to as the Riemann integral of

f(x).
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For the purpose of the present discussion we can think of the upper and lower Dar-
boux sums (6.1), (6.2), as two approximations of the integral (assuming that the function
is indeed integrable). Of course, these sums are not defined in the most convenient way
for an approximation algorithm. This is because we need to find the extrema of the func-
tion in every subinterval. Finding the extrema of the function, may be a complicated
task on its own, which we would like to avoid.

A simpler approach for approximating the value of
∫ b

a
f(x)dx would be to compute

the product of the value of the function at one of the end-points of the interval by the
length of the interval. In case we choose the end-point where the function is evaluated
to be x = a, we obtain∫ b

a

f(x)dx ≈ f(a)(b− a). (6.3)

This approximation (6.3) is called the rectangular method (see Figure 6.1). Numeri-
cal integration formulas are also referred to as integration rules or quadratures, and
hence we can refer to (6.3) as the rectangular rule or the rectangular quadrature. The
points x0, . . . xn that are used in the quadrature formula are called quadrature points.

a b

f(a)

f(b)

x

f(x
)

Figure 6.1: A rectangular quadrature

A variation on the rectangular rule is the midpoint rule. Similarly to the rectan-
gular rule, we approximate the value of the integral

∫ b

a
f(x)dx by multiplying the length

of the interval by the value of the function at one point. Only this time, we replace the
value of the function at an endpoint, by the value of the function at the center point
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1
2
(a + b), i.e.,∫ b

a

f(x)dx ≈ (b− a)f

(
a + b

2

)
. (6.4)

(see also Fig 6.2). As we shall see below, the midpoint quadrature (6.4) is a more
accurate quadrature than the rectangular rule (6.3).

a (a+b)/2 b

f(a)

f((a+b)/2)

f(b)

x

f(x
)

Figure 6.2: A midpoint quadrature

In order to compute the quadrature error for the midpoint rule (6.4), we consider
the primitive function F (x),

F (x) =

∫ x

a

f(s)ds,

and expand∫ a+h

a

f(s)ds = F (a + h) = F (a) + hF ′(a) +
h2

2
F ′′(a) +

h3

6
F ′′′(a) + O(h4) (6.5)

= hf(a) +
h2

2
f ′(a) +

h3

6
f ′′(a) + O(h4)

If we let b = a + h, we have (expanding f(a + h/2)) for the quadrature error, E,

E =

∫ a+h

a

f(s)ds− hf

(
a +

h

2

)
= hf(a) +

h2

2
f ′(a) +

h3

6
f ′′(a) + O(h4)

−h

[
f(a) +

h

2
f ′(a) +

h2

8
f ′′(a) + O(h3)

]
,
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which means that the error term is of order O(h3). Having an error of order h3 does
not mean that this is a third-order method. In our case, the parameter h equals to
b− a. It is not a parameter that should be vied as a small value that goes to zero. It is
fixed. The error of the midpoint method is of the order of O((b − a)3). Unfortunately,
these calculations cannot directly provide us with an accurate estimate of the error.
This is the case since when truncating two Taylor approximations, we are left with an
error terms that are evaluated at two (generally different) intermediate points. Hence
we cannot directly combine the error term 1

6
h3f ′′(ξ1) with −1

8
h3f ′′(ξ2). This can still be

done, but we have to use a better approach.
The main difficulty in evaluating the difference between the exact value,

∫ b

a
f(x)dx,

and its midpoint rule approximation, (b− a)f
(

a+b
2

)
, is due to having an integral in one

term and no integral in the second term. The approach will be to replace the midpoint
approximation with an integral expression. Indeed, if we denote the midpoint by c, i.e.,

c =
a + b

2
,

then the tangent line to f(x) at x = c is given by

P1(x) = f(c) + f ′(c)(x− c).

Clearly,∫ b

a

P1(x)dx = (b− a)f(c),

and hence∫ b

a

f(x)dx− (b− a)f

(
a + b

2

)
=

∫ b

a

(f(x)− P1(x))dx.

To estimate the difference between f(x) and P1(x) we can expand f(x) around x = c.
Assuming that x ∈ [a, b], we have

f(x) = f(c + (x− c)) = f(c) + f ′(c)(x− c) +
1

2
f ′′(ξ)(x− c)2, ξ ∈ (a, b).

Hence∫ b

a

(f(x)− P1(x))dx =

∫ b

a

1

2
f ′′(ξx)(x− c)2dx.

In view of the midvalue theorem for integrals, the last integral can be replaces by

1

2
f ′′(ξ)

∫ b

a

(x− c)2dx =
1

24
(b− a)3f ′′(ξ), a < ξ < b. (6.6)

Remark. Throughout this section we assumed that all functions we are interested in
integrating are actually integrable in the domain of interest. We also assumed that they
are bounded and that they are defined at every point, so that whenever we need to
evaluate a function at a point, we can do it. We will go on and use these assumptions
throughout the chapter.
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6.2 Integration via Interpolation

One direct way of obtaining quadratures from given samples of a function is by integrat-
ing an interpolant. As always, our goal is to evaluate I =

∫ b

a
f(x)dx. We assume that

the values of the function f(x) are given at n + 1 points: x0, . . . , xn ∈ [a, b]. Note that
we do not require the first point x0 to be equal to a, and the same holds for the right
side of the interval. Given the values f(x0), . . . f(xn), we can write the interpolating
polynomial of degree 6 n, which in the Largenge form is

Pn(x) =
n∑

i=0

f(xi)li(x),

with

li(x) =
n∏

j=0
j 6=i

x− xj

xi − xj

, 0 6 i 6 n.

The integral of f(x) can then be approximated by the integral of Pn(x), i.e.,∫ b

a

f(x)dx ≈
∫ b

a

Pn(x)dx =
n∑

i=0

f(xi)

∫ b

a

li(x)dx =
n∑

i=0

Aif(xi). (6.7)

The quadrature coefficients Ai in (6.7) are given by

Ai =

∫ b

a

li(x)dx. (6.8)

Note that if we want to integrate several different functions, and use their values at
the same points (x0, . . . , xn), the quadrature coefficients (6.8) should be computed only
once, since they do not depend on the function that is being integrated. If we change the
interpolation/integration points, then we must recompute the quadrature coefficients.

For equally spaced points, x0, . . . , xn, a numerical integration formula of the form∫ b

a

f(x)dx ≈
n∑

i=0

Aif(xi), (6.9)

is called a Newton-Cotes formula.

Example 6.1
We let n = 1 and consider two interpolation points which we set as

x0 = a, x1 = b.

In this case

l0(x) =
b− x

b− a
, l1(x) =

x− a

b− a
.
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Hence

A0 =

∫ b

a

l0(x) =

∫ b

a

b− x

b− a
dx =

b− a

2
.

Similarly,

A1 =

∫ b

a

l1(x) =

∫ b

a

x− a

b− a
dx =

b− a

2
= A0.

The resulting quadrature is the so-called trapezoidal rule,∫ b

a

dx ≈ b− a

2
[f(a) + f(b)], (6.10)

(see Figure 6.3).

a b

f(a)

f(b)

x

f(x
)

Figure 6.3: A trapezoidal quadrature

We can now use the interpolation error to compute the error in the quadrature (6.10).
The interpolation error is

f(x)− P1(x) =
1

2
f ′′(ξx)(x− a)(x− b), ξx ∈ (a, b).

We recall that according to the midvalue theorem for integrals, if u(x) and v(x) are
continuous on [a, b] and if v > 0, then there exists ξ ∈ (a, b) such that∫ b

a

u(x)v(x)dx = u(ξ)

∫ b

a

v(x)dx.
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Hence, the interpolation error is given by

E =

∫ b

a

1

2
f ′′(ξx)(x−a)(x− b) =

f ′′(ξ)

2

∫ b

a

(x−a)(x− b)dx = −f ′′(ξ)

12
(b−a)3, (6.11)

with ξ ∈ (a, b).

Remarks.

1. We note that the quadratures (6.7),(6.8), are exact for polynomials of degree
6 n. For if p(x) is a polynomial of degree 6 n, it can be written as

p(x) =
n∑

i=0

p(xi)li(x).

(Two polynomials of degree 6 n that agree with each other at n + 1 points must
be identical). Hence

∫ b

a

p(x)dx =
n∑

i=0

p(xi)

∫ b

a

li(x)dx =
n∑

i=0

Aip(xi).

2. As of the opposite direction. Assume that the quadrature∫ b

a

f(x)dx ≈
n∑

i=0

Aif(xi),

is exact for all polynomials of degree 6 n. We know that

deg(lj(x)) = n,

and hence∫ b

a

lj(x)dx =
n∑

i=0

Ailj(xi) =
n∑

i=0

Aiδij = Aj.

This menas that the quadrature coefficients must be given by

Aj =

∫ b

a

lj(x)dx.
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6.3 Composite Integration Rules

In a composite quadrature, we divide the interval into subintervals and apply an inte-
gration rule to each subinterval. We demonstrate this idea with a couple of examples.

Example 6.2
Consider the points

a = x0 < x1 < · · · < xn = b.

The composite trapezoidal rule is obtained by applying the trapezoidal rule in each
subinterval [xi−1, xi], i = 1, . . . , n, i.e.,∫ b

a

f(x)dx =
n∑

i=1

∫ xi

xi−1

f(x)dx ≈ 1

2

n∑
i=1

(xi − xi−1)[f(xi−1) + f(xi)], (6.12)

(see Figure 6.4).

x0 x1 x2 xn 1 xn
x

f(x
)

Figure 6.4: A composite trapezoidal rule

A particular case is when these points are uniformly spaced, i.e., when all intervals
have an equal length. For example, if

xi = a + ih,

where

h =
b− a

n
,
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then ∫ b

a

f(x)dx ≈ h

2

[
f(a) + 2

n−1∑
i=1

f(a + ih) + f(b)

]
= h

n∑
i=0

′′f(a + ih). (6.13)

The notation of a sum with two primes,
∑′′, means that we sum over all the terms with

the exception of the first and last terms that are being divided by 2.
We can also compute the error term as a function of the distance between neighboring

points, h. We know from (6.11) that in every subinterval the quadrature error is

−h3

12
f ′′(ξx).

Hence, the overall error is obtained by summing over n such terms:

n∑
i=1

−h3

12
f ′′(ξi) = −h3n

12

[
1

n

n∑
i=1

f ′′(ξi)

]
.

Here, we use the notation ξi to denote an intermediate point that belongs to the ith

interval. Let

M =
1

n

n∑
i=1

f ′′(ξi).

Clearly

min
x∈[a,b]

f ′′(x) 6 M 6 max
x∈[a,b]

f ′′(x)

If we assume that f ′′(x) is continuous in [a, b] (which we anyhow do in order for the
interpolation error formula to be valid) then there exists a point ξ ∈ [a, b] such that

f ′′(ξ) = M.

Hence (recalling that (b− a)/n = h, we have

E = −(b− a)h2

12
f ′′(ξ), ξ ∈ [a, b]. (6.14)

This means that the composite trapezoidal rule is second-order accurate.

Example 6.3
In the interval [a, b] we assume n subintervals and let

h =
b− a

n
.
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The quadrature points are

xj = a +

(
j − 1

2

)
h, j = 1, 2, . . . , n.

The composite midpoint rule is given by applying the midpoint rule (6.4) in every
subinterval, i.e.,∫ b

a

f(x)dx ≈ h

n∑
j=1

f(xj). (6.15)

Equation (6.15) is known as the composite midpoint rule.
In order to obtain the quadrature error in the approximation (6.15) we recall that

in each subinterval the error is given according to (6.6), i.e.,

Ej =
h3

24
f ′′(ξj), ξj ∈

(
xj −

h

2
, xj +

h

2

)
.

Hence

E =
n∑

j=1

Ej =
h3

24

n∑
j=1

f ′′(ξj) =
h3

24
n

[
1

n

n∑
j=1

f ′′(ξj)

]
=

h2(b− a)

24
f ′′(ξ), (6.16)

where ξ ∈ (a, b). This means that the composite midpoint rule is also second-order
accurate (just like the composite trapezoidal rule).

6.4 Additional Integration Techniques

6.4.1 The method of undetermined coefficients

The methods of undetermined coefficients for deriving quadratures is the following:

1. Select the quadrature points.

2. Write a quadrature as a linear combination of the values of the function at the
chosen quadrature points.

3. Determine the coefficients of the linear combination by requiring that the quadra-
ture is exact for as many polynomials as possible from the the ordered set {1, x, x2, . . .}.

We demonstrate this technique with the following example.

Example 6.4
Problem: Find a quadrature of the form∫ 1

0

f(x)dx ≈ A0f(0) + A1f

(
1

2

)
+ A2f(1),

that is exact for all polynomials of degree 6 2.
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Solution: Since the quadrature has to be exact for all polynomials of degree 6 2, it has
to be exact for the polynomials 1, x, and x2. Hence we obtain the system of linear
equations

1 =

∫ 1

0

1dx = A0 + A1 + A2,

1

2
=

∫ 1

0

xdx =
1

2
A1 + A2,

1

3
=

∫ 1

0

x2dx =
1

4
A1 + A2.

Therefore, A0 = A2 = 1
6

and A1 = 2
3
, and the desired quadrature is∫ 1

0

f(x)dx ≈
f(0) + 4f

(
1
2

)
+ f(1)

6
. (6.17)

Since the resulting formula (6.17) is linear, its being exact for 1, x, and x2, implies that
it is exact for any polynomial of degree 6 2. In fact, we will show in Section 6.5.1 that
this approximation is actually exact for polynomials of degree 6 3.

6.4.2 Change of an interval

Suppose that we have a quadrature formula on the interval [c, d] of the form∫ d

c

f(t)dt ≈
n∑

i=0

Aif(ti). (6.18)

We would like to to use (6.18) to find a quadrature on the interval [a, b], that approxi-
mates for∫ b

a

f(x)dx.

The mapping between the intervals [c, d] → [a, b] can be written as a linear transforma-
tion of the form

λ(t) =
b− a

d− c
t +

ad− bc

d− c
.

Hence∫ b

a

f(x)dx =
b− a

d− c

∫ d

c

f(λ(t))dt ≈ b− a

d− c

n∑
i=0

Aif(λ(ti)).

This means that∫ b

a

f(x)dx ≈ b− a

d− c

n∑
i=0

Aif

(
b− a

d− c
ti +

ad− bc

d− c

)
. (6.19)

We note that if the quadrature (6.18) was exact for polynomials of degree m, so is (6.19).
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6.5 Simpson’s Integration D. Levy

Example 6.5
We want to write the result of the previous example∫ 1

0

f(x)dx ≈
f(0) + 4f

(
1
2

)
+ f(1)

6
,

as a quadrature on the interval [a, b]. According to (6.19)∫ b

a

f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
. (6.20)

The approximation (6.20) is known as the Simpson quadrature.

6.5 Simpson’s Integration

In the last example we obtained Simpson’s quadrature (6.20). An alternative derivation
is the following: start with a polynomial Q2(x) that interpolates f(x) at the points a,
(a + b)/2, and b. Then approximate∫ b

a

f(x)dx ≈
∫ b

a

[
(x− c)(x− b)

(a− c)(a− b)
f(a) +

(x− a)(x− b)

(c− a)(c− b)
f(c) +

(x− a)(x− c)

(b− a)(b− c)
f(b)

]
dx

= . . . =
b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
,

which is Simpson’s rule (6.20). Figure 6.5 demonstrates this process of deriving Simp-

son’s quadrature for the specific choice of approximating
∫ 3

1
sin xdx.

6.5.1 The quadrature error

It turns out that Simpson’s quadrature is exact for polynomials of degree 6 3 and not
only for polynomials of degree 6 2, as expected by the way it was constructed. We will
obtain this result by studying the error term.

In order to derive the error term for Simpson’s method, we discuss an error analysis
technique that is valid for quadratures that are obtained through integration. In all
such cases, the quadrature error is the difference between the integral of the function
and the integral of its interpolant, i.e.,

E =

∫ b

a

(f(t)− pn(t))dt =

∫ b

a

f (n+1)(ξx)

(n + 1)!
ω(t)dt, (6.21)

where

ω(t) =
n∏

i=0

(t− ti)dt.
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

←− P2(x)

sinx −→

x

Figure 6.5: An example of Simpson’s quadrature. The approximation of
∫ 3

1
sin xdx is

obtained by integrating the quadratic interpolant Q2(x) over [1, 3]

It ω(t) is always non-negative or non-positive between a and b, then according to the
midvalue theorem for integrals, the error in (6.21) becomes

E =
f (n+1)(ξ)

(n + 1)!

∫ b

a

ω(t)dt, ξ ∈ (a, b).

Examples for such cases are the trapezoidal rule for which

E =
f ′′(ξ)

12
(b− a)3,

and the rectangle rule for which

E =
f ′(ξ)

1

∫ b

a

(t− a)dt =
f ′(ξ)

2
(b− a)2.

Another case which is rather easy to analyze is the case in which∫ b

a

ω(t)dt = 0. (6.22)

Examples for the case in (6.22) include the midpoint rule for which∫ b

a

ω(t)dt =

∫ b

a

(
t− a + b

2

)
dt = 0,

13
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and Simpson’s rule for which∫ b

a

ω(t)dt =

∫ b

a

(t− a)

(
t− a + b

2

)
(t− b)dt = 0.

In this case, we can add another interpolation point without changing the integral of
the interpolant. This is the case since we replace f(x) by pn(x) and integrate∫ b

a

f(t)dt ≈
∫ b

a

pn(x)dx.

Adding an arbitrary interpolation point, xn+1, to pn(x) turns it into an interpolating
polynomial of a higher order, pn+1(x), that is given by

pn+1(x) = pn(x) + f [x0, . . . , xn+1]ω(x). (6.23)

Since
∫ b

a
ω(x)dx = 0, when integrating (6.23) in order to obtain a quadrature, we

observe that∫ b

a

f(t)dt ≈
∫ b

a

pn+1(x)dx =

∫ b

a

pn(x)dx,

so the original quadrature does not change by adding an arbitrary interpolation point.
We now have all the required tools in order to derive a quadrature for Simpson’s

method. Since in this case
∫ b

a
ω(t)dt = 0, we add to a, a+b

2
, b an arbitrary interpolation

point which we choose as a+b
2

again. The function ω(t) becomes

ω(t) = (t− a)

(
t− a + b

2

)2

(t− b).

Hence, for t ∈ [a, b], our new ω(t) satisfies ω(t) 6 0. By the midvalue theorem for
integrals the error in Simpson’s method can be written as

E =
f (4)(ξ)

24

∫ b

a

(t− a)

(
t− a + b

2

)2

(t− b)dt = − 1

90

(
b− a

2

)5

f (4)(ξ), (6.24)

for ξ ∈ (a, b). Since the fourth derivative of any polynomial of degree 6 3 is identically
zero, the quadrature error formula (6.24) implies that Simpson’s quadrature is exact for
polynomials of degree 6 3.

6.5.2 Composite Simpson rule

To derive a composite version of Simpson’s quadrature, we divide the interval [a, b] into
an even number of subintervals, n, and let

xi = a + ih, 0 6 i 6 n,
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D. Levy 6.6 Weighted Quadratures

where

h =
b− a

n
.

Hence, if we replace the integral in every subintervals by Simpson’s rule (6.20), we obtain∫ b

a

f(x)dx =

∫ x2

x0

f(x)dx + . . . +

∫ xn

xn−2

f(x)dx =

n/2∑
i=1

∫ x2i

x2i−2

f(x)dx

≈ h

3

n/2∑
i=1

[f(x2i−2) + 4f(x2i−1) + f(x2i)] .

The composite Simpson quadrature is thus given by

∫ b

a

f(x)dx ≈ h

3

f(x0) + 2

n/2∑
i=0

f(x2i−2) + 4

n/2∑
i=1

f(x2i−1) + f(xn)

 . (6.25)

Summing the error terms (that are given by (6.24)) over all sub-intervals, the quadrature
error takes the form

E = −h5

90

n/2∑
i=1

f (4)(ξi) = −h5

90
· n

2
· 2

n

n/2∑
i=1

f (4)(ξi).

Since

min
x∈[a,b]

f (4)(x) 6
2

n

n/2∑
i=1

f (4)(ξi) 6 max
x∈[a,b]

f (4)(x),

we can conclude that

E = −h5

90

n

2
f (4)(ξ) = − h4

180
f (4)(ξ), ξ ∈ [a, b], (6.26)

i.e., the composite Simpson quadrature is fourth-order accurate.

6.6 Weighted Quadratures

We recall that a weight function is a continuous, non-negative function with a positive
mass. We assume that such a weight function w(x) is given and would like to write a
quadrature of the form∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Aif(xi). (6.27)

15



6.7 Gaussian Quadrature D. Levy

Such quadratures are called general (weighted) quadratures.
Previously, for the case w(x) ≡ 1, we wrote a quadrature of the form∫ b

a

f(x)dx ≈
n∑

i=0

Aif(xi),

where

Ai =

∫ b

a

li(x)dx.

Repeating the derivation we carried out in Section 6.2, we construct an interpolant
Qn(x) of degree 6 n that passes through the points x0, . . . , xn. Its Lagrange form is

Qn(x) =
n∑

i=0

f(xi)li(x),

with the usual

li(x) =
n∏

j=0
j 6=i

x− xj

xi − xj

, 0 6 i 6 n.

Hence∫ b

a

f(x)w(x)dx ≈
∫ b

a

Qn(x)w(x)dx =
n∑

i=0

f(xi)

∫ b

a

li(x)w(x)dx =
n∑

i=0

Aif(xi),

where the coefficients Ai are given by

Ai =

∫ b

a

li(x)w(x)dx. (6.28)

To summarize, the general quadrature is∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Aif(xi), (6.29)

with quadrature coefficients, Ai, that are given by (6.28).

6.7 Gaussian Quadrature

6.7.1 Maximizing the quadrature’s accuracy

So far, all the quadratures we encountered were of the form∫ b

a

f(x)dx ≈
n∑

i=0

Aif(xi). (6.30)

16



D. Levy 6.7 Gaussian Quadrature

An approximation of the form (6.30) was shown to be exact for polynomials of degree 6 n
for an appropriate choice of the quadrature coefficients Ai. In all cases, the quadrature
points x0, . . . , xn were given up front. In other words, given a set of nodes x0, . . . , xn,
the coefficients {Ai}n

i=0 were determined such that the approximation was exact in Πn.
We are now interested in investigating the possibility of writing more accurate

quadratures without increasing the total number of quadrature points. This will be
possible if we allow for the freedom of choosing the quadrature points. The quadra-
ture problem becomes now a problem of choosing the quadrature points in addition to
determining the corresponding coefficients in a way that the quadrature is exact for
polynomials of a maximal degree. Quadratures that are obtained that way are called
Gaussian quadratures.

Example 6.6
The quadrature formula∫ 1

−1

f(x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
,

is exact for polynomials of degree 6 3(!) We will revisit this problem and prove this
result in Example 6.9 below.

An equivalent problem can be stated for the more general weighted quadrature case.
Here, ∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Aif(xi), (6.31)

where w(x) > 0 is a weight function. Equation (6.31) is exact for f ∈ Πn if and only if

Ai =

∫ b

a

w(x)
∏
j=0
j 6=i

x− xj

xi − xj

dx. (6.32)

In both cases (6.30) and (6.31), the number of quadrature nodes, x0, . . . , xn, is n+1,
and so is the number of quadrature coefficients, Ai. Hence, if we have the flexibility
of determining the location of the points in addition to determining the coefficients,
we have altogether 2n + 2 degrees of freedom, and hence we can expect to be able to
derive quadratures that are exact for polynomials in Π2n+1. This is indeed the case as
we shall see below. We will show that the general solution of this integration problem
is connected with the roots of orthogonal polynomials. We start with the following
theorem.

Theorem 6.7 Let q(x) be a nonzero polynomial of degree n + 1 that is w-orthogonal to
Πn, i.e., ∀p(x) ∈ Πn,∫ b

a

p(x)q(x)w(x)dx = 0.

17



6.7 Gaussian Quadrature D. Levy

If x0, . . . , xn are the zeros of q(x) then (6.31), with Ai given by (6.32), is exact ∀f ∈
Π2n+1.

Proof. For f(x) ∈ Π2n+1, write f(x) = q(x)p(x) + r(x). We note that p(x), r(x) ∈ Πn.
Since x0, . . . , xn are the zeros of q(x) then

f(xi) = r(xi).

Hence,∫ b

a

f(x)w(x)dx =

∫ b

a

[q(x)p(x) + r(x)]w(x)dx =

∫ b

a

r(x)w(x)dx (6.33)

=
n∑

i=0

Air(xi) =
n∑

i=0

Aif(xi).

The second equality in (6.33) holds since q(x) is w-orthogonal to Πn. The third equality
(6.33) holds since (6.31), with Ai given by (6.32), is exact for polynomials in Πn. �

According to Theorem 6.7 we already know that the quadrature points that will
provide the most accurate quadrature rule are the n+1 roots of an orthogonal polynomial
of degree n + 1 (where the orthogonality is with respect to the weight function w(x)).
We recall that the roots of q(x) are real, simple and lie in (a, b), something we know
from our previous discussion on orthogonal polynomials (see Theorem ??). In other
words, we need n + 1 quadrature points in the interval, and an orthogonal polynomial
of degree n + 1 does have n + 1 distinct roots in the interval. We now restate the result
regarding the roots of orthogonal functions with an alternative proof.

Theorem 6.8 Let w(x) be a weight function. Assume that f(x) is continuous in [a, b]
that is not the zero function, and that f(x) is w-orthogonal to Πn. Then f(x) changes
sign at least n + 1 times on (a, b).

Proof. Since 1 ∈ Πn,∫ b

a

f(x)w(x)dx = 0.

Hence, f(x) changes sign at least once. Now suppose that f(x) changes size only r
times, where r 6 n. Choose {ti}i>0 such that

a = t0 < t1 < · · · < tr = b,

and f(x) is of one sign on (t0, t1), (t1, t2), . . . , (tr−1, tr). The polynomial

p(x) =
r−1∏
i=0

(x− ti),

18



D. Levy 6.7 Gaussian Quadrature

has the same sign property. Hence∫ b

a

f(x)p(x)w(x)dx 6= 0,

which leads to a contradiction since p(x) ∈ Πn. �

Example 6.9
We are looking for a quadrature of the form∫ 1

−1

f(x)dx ≈ A0f(x0) + A1f(x1).

A straightforward computation will amount to making this quadrature exact for the
polynomials of degree 6 3. The linearity of the quadrature means that it is sufficient to
make the quadrature exact for 1, x, x2, and x3. Hence we write the system of equations∫ 1

−1

f(x)dx =

∫ 1

−1

xidx = A0x
i
0 + A1x

i
1, i = 0, 1, 2, 3.

From this we can write
A0 + A1 = 2,
A0x0 + A1x1 = 0,
A0x

2
0 + A1x

2
1 = 2

3
,

A0x
3
0 + A1x

3
1 = 0.

Solving for A1, A2, x0, and x1 we get

A1 = A2 = 1, x0 = −x1 =
1√
3
,

so that the desired quadrature is∫ 1

−1

f(x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
. (6.34)

Example 6.10
We repeat the previous problem using orthogonal polynomials. Since n = 1, we expect
to find a quadrature that is exact for polynomials of degree 2n+1 = 3. The polynomial
of degree n+1 = 2 which is orthogonal to Πn = Π1 with weight w(x) ≡ 1 is the Legendre
polynomial of degree 2, i.e.,

P2(x) =
1

2
(3x2 − 1).

19



6.7 Gaussian Quadrature D. Levy

The integration points will then be the zeros of P2(x), i.e.,

x0 = − 1√
3
, x1 =

1√
3
.

All that remains is to determine the coefficients A1, A2. This is done in the usual way,
assuming that the quadrature∫ 1

−1

f(x)dx ≈ A0f(x0) + A1f(x1),

is exact for polynomials of degree 6 1. The simplest will be to use 1 and x, i.e.,

2 =

∫ 1

−1

1dx = A0 + A1,

and

0 =

∫ 1

−1

xdx = −A0
1√
3

+ A1
1√
3
.

Hence A0 = A1 = 1, and the quadrature is the same as (6.34) (as should be).

6.7.2 Convergence and error analysis

Lemma 6.11 In a Gaussian quadrature formula, the coefficients are positive and their
sum is

∫ b

a
w(x)dx.

Proof. Fix n. Let q(x) ∈ Πn+1 be w-orthogonal to Πn. Also assume that q(xi) = 0 for
i = 0, . . . , n, and take {xi}n

i=0 to be the quadrature points, i.e.,∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Aif(xi). (6.35)

Fix 0 6 j 6 n. Let p(x) ∈ Πn be defined as

p(x) =
q(x)

x− xj

.

Since xj is a root of q(x), p(x) is indeed a polynomial of degree 6 n. The degree of
p2(x) 6 2n which means that the Gaussian quadrature (6.35) is exact for it. Hence

0 <

∫ b

a

p2(x)w(x)dx =
n∑

i=0

Aip
2(xi) =

n∑
i=0

Ai
q2(xi)

(xi − xj)2
= Ajp

2(xj),

20



D. Levy 6.7 Gaussian Quadrature

which means that ∀j, Aj > 0. In addition, since the Gaussian quadrature is exact for
f(x) ≡ 1, we have∫ b

a

w(x)dx =
n∑

i=0

Ai. �

In order to estimate the error in the Gaussian quadrature we would first like to
present an alternative way of deriving the Gaussian quadrature. Our starting point
is the Lagrange form of the Hermite polynomial that interpolates f(x) and f ′(x) at
x0, . . . , xn. It is given by (??), i.e.,

p(x) =
n∑

i=0

f(xi)ai(x) +
n∑

i=0

f ′(xi)bi(x),

with

ai(x) = (li(x))2[1 + 2l′i(xi)(xi − x)], bi(x) = (x− xi)l
2
i (x), 0 ≤ i ≤ n,

and

li(x) =
n∏

j=0
j 6=i

x− xj

xi − xj

.

We now assume that w(x) is a weight function in [a, b] and approximate∫ b

a

w(x)f(x)dx ≈
∫ b

a

w(x)p2n+1(x)dx =
n∑

i=0

Aif(xi) +
n∑

i=0

Bif
′(xi), (6.36)

where

Ai =

∫ b

a

w(x)ai(x)dx, (6.37)

and

Bi =

∫ b

a

w(x)bi(x)dx. (6.38)

In some sense, it seems to be rather strange to deal with the Hermite interpolant when
we do not explicitly know the values of f ′(x) at the interpolation points. However, we
can eliminate the derivatives from the quadrature (6.36) by setting Bi = 0 in (6.38).
Indeed (assuming n 6= 0):

Bi =

∫ b

a

w(x)(x− xi)l
2
i (x)dx =

n∏
j=0
j 6=i

(xi − xj)

∫ b

a

w(x)
n∏

j=0

(x− xj)li(x)dx.
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6.7 Gaussian Quadrature D. Levy

Hence, Bi = 0, if the product
∏n

j=0(x − xj) is orthogonal to li(x). Since li(x) is a
polynomial in Πn, all that we need is to set the points x0, . . . , xn as the roots of a
polynomial of degree n+1 that is w-orthogonal to Πn. This is precisely what we defined
as a Gaussian quadrature.

We are now ready to formally establish the fact that the Gaussian quadrature is
exact for polynomials of degree 6 2n + 1.

Theorem 6.12 Let f ∈ C2n+2[a, b] and let w(x) be a weight function. Consider the
Gaussian quadrature∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Aif(xi).

Then there exists ζ ∈ (a, b) such that∫ b

a

f(x)w(x)dx−
n∑

i=0

Aif(xi) =
f (2n+2)(ζ)

(2n + 2)!

∫ b

a

n∏
j=0

(x− xj)
2w(x)dx.

Proof. We use the characterization of the Gaussian quadrature as the integral of a
Hermite interpolant. We recall that the error formula for the Hermite interpolation is
given by (??),

f(x)− p2n+1(x) =
f (2n+2)(ξ)

(2n + 2)!

n∏
j=0

(x− xj)
2, ξ ∈ (a, b).

Hence according to (6.36) we have∫ b

a

f(x)w(x)dx−
n∑

i=0

Aif(xi) =

∫ b

a

f(x)w(x)dx−
∫ b

a

p2n+1w(x)dx

=

∫ b

a

w(x)
f (2n+2)(ξ)

(2n + 2)!

n∏
j=0

(x− xj)
2dx.

The integral mean value theorem then implies that there exists ζ ∈ (a, b) such that∫ b

a

f(x)w(x)dx−
n∑

i=0

Aif(xi) =
f (2n+2)(ζ)

(2n + 2)!

∫ b

a

n∏
j=0

(x− xj)
2(x)w(x)dx. �

We conclude this section with a convergence theorem that states that for continuous
functions, the Gaussian quadrature converges to the exact value of the integral as the
number of quadrature points tends to infinity. This theorem is not of a great practical
value because it does not provide an estimate on the rate of convergence. A proof of
the theorem that is based on the Weierstrass approximation theorem can be found in,
e.g., in [?].
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D. Levy 6.8 Romberg Integration

Theorem 6.13 We let w(x) be a weight function and assuming that f(x) is a con-
tinuous function on [a, b]. For each n ∈ N we let {xni

}n
i=0 be the n + 1 roots of the

polynomial of degree n + 1 that is w-orthogonal to Πn, and consider the corresponding
Gaussian quadrature:∫ b

a

f(x)w(x)dx ≈
n∑

i=0

Ani
f(xni

). (6.39)

Then the right-hand-side of (6.39) converges to the left-hand-side as n →∞.

6.8 Romberg Integration

We have introduced Richardson’s extrapolation in Section ?? in the context of numerical
differentiation. We can use a similar principle with numerical integration.

We will demonstrate this principle with a particular example. Let I denote the exact
integral that we would like to approximate, i.e.,

I =

∫ b

a

f(x)dx.

Let’s assume that this integral is approximated with a composite trapezoidal rule on a
uniform grid with mesh spacing h (6.13),

T (h) = h
n∑

i=0

′′f(a + ih).

We know that the composite trapezoidal rule is second-order accurate (see (6.14)).
A more detailed study of the quadrature error reveals that the difference between I and
T (h) can be written as

I = T (h) + c1h
2 + c2h

4 + . . . + ckh
k + O(h2k+2).

The exact values of the coefficients, ck, are of no interest to us as long as they do not
depend on h (which is indeed the case). We can now write a similar quadrature that is
based on half the number of points, i.e., T (2h). Hence

I = T (2h) + c1(2h)2 + c2(2h)4 + . . .

This enables us to eliminate the h2 error term:

I =
4T (h)− T (2h)

3
+ ĉ2h

4 + . . .
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Therefore

4T (h)− T (2h)

3
=

1

3

[
4h

(
1

2
f0 + f1 + . . . + fn−1 +

1

2
fn

)
−2h

(
1

2
f0 + f2 + . . . + fn−2 +

1

2
fn

)]
=

h

3
(f0 + 4f1 + 2f2 + . . . + 2fn−2 + 4fn−1 + fn) = S(n).

Here, S(n) denotes the composite Simpson’s rule with n subintervals. The procedure of
increasing the accuracy of the quadrature by eliminating the leading error term is known
as Romberg integration. In some places, Romberg integration is used to describe the
specific case of turning the composite trapezoidal rule into Simpson’s rule (and so on).
The quadrature that is obtained from Simpson’s rule by eliminating the leading error
term is known as the super Simpson rule.
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