AMSC 466: Midterm 1

Prof. Doron Levy
March 1, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points. Maximum total points $=40$)

1. (a) Verify directly that for any three distinct points x_{0}, x_{1}, and x_{2},

$$
f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{2}, x_{0}, x_{1}\right] .
$$

(b) Assume that x_{0}, x_{1}, x_{2} are equally spaced, i.e., $x_{1}=x_{0}+h$ and $x_{2}=x_{1}+h$, with $h>0$. Compute $f\left[x_{0}, x_{1}, x_{2}\right]$.
2. Consider two distinct points $x_{0}<x_{1}$ and a twice continuously differentiable function $f(x)$. Let $Q_{1}(x)$ be the linear interpolant through $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.
(a) Write the Lagrange form of $Q_{1}(x)$.
(b) Using the general interpolation error formula, show that the interpolation error $\left|f(x)-Q_{1}(x)\right|$ in the interval $\left[x_{0}, x_{1}\right]$ is bounded by $\frac{1}{8} h^{2} M$, where $h=$ $x_{1}-x_{0}$ and $M=\max _{x_{0} \leq x \leq x_{1}}\left|f^{\prime \prime}(x)\right|$.
3. (a) Show that Newton's method for finding \sqrt{R} can be written as

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right) .
$$

(b) Let $R=A B$. Using two iterations of the formula from part (a) starting with $x_{0}=A$, show that an approximation of $\sqrt{A B}$ can be written as

$$
\sqrt{A B} \approx \frac{A+B}{4}+\frac{A B}{A+B} .
$$

What happens if $x_{0}=\frac{A+B}{2}$?
4. Denote the successive intervals that arise in the bisection method by $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right]$, etc.
(a) Show that $a_{0} \leq a_{1} \leq a_{2} \leq \cdots$ and that $b_{0} \geq b_{1} \geq b_{2} \geq \cdots$
(b) Show that $b_{n}-a_{n}=2^{-n}\left(b_{0}-a_{0}\right)$.
(c) Show that for all $n, a_{n} b_{n}+a_{n-1} b_{n-1}=a_{n-1} b_{n}+a_{n} b_{n-1}$.

