AMSC 466: Midterm 1

Prof. Doron Levy

March 1, 2016

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may <u>not</u> use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem = 10 points. Maximum total points = 40)

1. (a) Verify directly that for any three distinct points x_0, x_1 , and x_2 ,

$$f[x_0, x_1, x_2] = f[x_2, x_0, x_1].$$

- (b) Assume that x_0, x_1, x_2 are equally spaced, i.e., $x_1 = x_0 + h$ and $x_2 = x_1 + h$, with h > 0. Compute $f[x_0, x_1, x_2]$.
- 2. Consider two distinct points $x_0 < x_1$ and a twice continuously differentiable function f(x). Let $Q_1(x)$ be the linear interpolant through $f(x_0)$ and $f(x_1)$.
 - (a) Write the Lagrange form of $Q_1(x)$.
 - (b) Using the general interpolation error formula, show that the interpolation error $|f(x) Q_1(x)|$ in the interval $[x_0, x_1]$ is bounded by $\frac{1}{8}h^2M$, where $h = x_1 x_0$ and $M = \max_{x_0 \le x \le x_1} |f''(x)|$.
- 3. (a) Show that Newton's method for finding \sqrt{R} can be written as

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{R}{x_n} \right).$$

(b) Let R = AB. Using two iterations of the formula from part (a) starting with $x_0 = A$, show that an approximation of \sqrt{AB} can be written as

$$\sqrt{AB} \approx \frac{A+B}{4} + \frac{AB}{A+B}.$$

What happens if $x_0 = \frac{A+B}{2}$?

- 4. Denote the successive intervals that arise in the bisection method by $[a_0, b_0]$, $[a_1, b_1]$, etc.
 - (a) Show that $a_0 \leq a_1 \leq a_2 \leq \cdots$ and that $b_0 \geq b_1 \geq b_2 \geq \cdots$
 - (b) Show that $b_n a_n = 2^{-n}(b_0 a_0)$.
 - (c) Show that for all n, $a_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}$.