## AMSC 466: Midterm 1

Prof. Doron Levy
March 1, 2016

## Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points. Maximum total points $=40$ )

1. (a) Verify directly that for any three distinct points $x_{0}, x_{1}$, and $x_{2}$,

$$
f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{2}, x_{0}, x_{1}\right] .
$$

## Solution:

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}}= \\
& =\frac{\left(x_{1}-x_{0}\right)\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\left(x_{2}-x_{1}\right)\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)}= \\
& =\frac{\left(x_{1}-x_{0}\right)\left(f\left(x_{2}\right)\right)+\left(x_{0}-x_{2}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{0}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)} .
\end{aligned}
$$

while

$$
\begin{aligned}
f\left[x_{2}, x_{0}, x_{1}\right] & =\frac{f\left[x_{0}, x_{1}\right]-f\left[x_{2}, x_{0}\right]}{x_{1}-x_{2}}=\frac{\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}-\frac{f\left(x_{0}\right)-f\left(x_{2}\right)}{x_{0}-x_{2}}}{x_{1}-x_{2}}= \\
& =\frac{\left(x_{0}-x_{2}\right)\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)-\left(x_{1}-x_{0}\right)\left(f\left(x_{0}\right)-f\left(x_{2}\right)\right)}{\left(x_{1}-x_{0}\right)\left(x_{0}-x_{2}\right)\left(x_{1}-x_{2}\right)}= \\
& =\frac{\left(x_{1}-x_{0}\right)\left(f\left(x_{2}\right)\right)+\left(x_{0}-x_{2}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{0}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)},
\end{aligned}
$$

and we conclude that $f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{2}, x_{0}, x_{1}\right]$.
(b) Assume that $x_{0}, x_{1}, x_{2}$ are equally spaced, i.e., $x_{1}=x_{0}+h$ and $x_{2}=x_{1}+h$, with $h>0$. Compute $f\left[x_{0}, x_{1}, x_{2}\right]$.

## Solution:

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}}= \\
& =\frac{1}{2} \frac{f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)}{h^{2}}
\end{aligned}
$$

2. Consider two distinct points $x_{0}<x_{1}$ and a twice continuously differentiable function $f(x)$. Let $Q_{1}(x)$ be the linear interpolant through $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.
(a) Write the Lagrange form of $Q_{1}(x)$.

## Solution:

$$
Q_{1}(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}}
$$

(b) Using the general interpolation error formula, show that the interpolation error $\left|f(x)-Q_{1}(x)\right|$ in the interval $\left[x_{0}, x_{1}\right]$ is bounded by $\frac{1}{8} h^{2} M$, where $h=$ $x_{1}-x_{0}$ and $M=\max _{x_{0} \leq x \leq x_{1}}\left|f^{\prime \prime}(x)\right|$.

## Solution:

The polynomial interpolation error in this case is given by

$$
f(x)-Q_{1}(x)=\frac{1}{2!} f^{\prime \prime}(\xi)\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

with $\xi$ being an intermediate point in the interval $\xi \in\left(x_{0}, x_{1}\right)$. Hence

$$
\left|f(x)-Q_{1}(x)\right| \leq \frac{1}{2} M \max _{x_{0} \leq x \leq x_{1}}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right|,
$$

with $M=\max _{x_{0} \leq x \leq x_{1}}\left|f^{\prime \prime}(x)\right|$. If we let $g(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)$, then $g^{\prime}(x)=$ $2 x-\left(x_{0}+x_{1}\right)$, and $g^{\prime \prime}(x)=2 \geq 2$. Hence $g(x)$ obtains a maximum at $x=\left(x_{0}+x_{1}\right) / 2$. This means that

$$
\max _{x_{0} \leq x \leq x_{1}}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right|=\left|\left(\frac{x_{0}+x_{1}}{2}-x_{0}\right)\left(\frac{x_{0}+x_{1}}{2}-x_{1}\right)\right|=\frac{h}{2} \cdot \frac{h}{2} .
$$

Therefore

$$
\left|f(x)-Q_{1}(x)\right| \leq \frac{1}{2} M \frac{h^{2}}{4}=\frac{1}{8} M h^{2}
$$

3. (a) Show that Newton's method for finding $\sqrt{R}$ can be written as

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right)
$$

## Solution:

To compute $\sqrt{R}$ let $f(x)=x^{2}-R$. Then the roots of $f(x)$ are $\pm \sqrt{R}$.
Newton's method for this $f(x)$ is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-R}{2 x_{n}}=\frac{2 x_{n}^{2}-x_{n}^{2}+R}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right) .
$$

(b) Let $R=A B$. Using two iterations of the formula from part (a) starting with $x_{0}=A$, show that an approximation of $\sqrt{A B}$ can be written as

$$
\sqrt{A B} \approx \frac{A+B}{4}+\frac{A B}{A+B} .
$$

What happens if $x_{0}=\frac{A+B}{2}$ ?

## Solution:

We use the result from part (a) with $R=A B$ and $x_{0}=A$. In this case

$$
x_{1}=\frac{1}{2}\left(A+\frac{R}{A}\right)=\frac{A+B}{2} .
$$

This means that

$$
x_{2}=\frac{1}{2}\left(\frac{1}{2} \frac{A+B}{2}+\frac{R}{\frac{A+B}{2}}\right)=\frac{A+B}{4}+\frac{A B}{A+B},
$$

which is the desired approximation of $\sqrt{A B}$. If $x_{0}=\frac{A+B}{2}$, we reach the same approximation after one iteration. If we have two iterations starting from that point, we will get a better approximation of $\sqrt{A B}$ which can be computed.
4. Denote the successive intervals that arise in the bisection method by $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right]$, etc.
(a) Show that $a_{0} \leq a_{1} \leq a_{2} \leq \cdots$ and that $b_{0} \geq b_{1} \geq b_{2} \geq \cdots$

Solution: This is the bisection method, see notes.
(b) Show that $b_{n}-a_{n}=2^{-n}\left(b_{0}-a_{0}\right)$.

Solution: A standard result for the bisection method, see notes.
(c) Show that for all $n, a_{n} b_{n}+a_{n-1} b_{n-1}=a_{n-1} b_{n}+a_{n} b_{n-1}$.

## Solution:

In the bisection method either $a_{n-1}=a_{n}$ or $b_{n-1}=b_{n}$, and the result holds.

