AMSC 466: Midterm 1

Prof. Doron Levy

March 1, 2016

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may <u>not</u> use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem = 10 points. Maximum total points = 40)

1. (a) Verify directly that for any three distinct points x_0, x_1 , and x_2 ,

$$f[x_0, x_1, x_2] = f[x_2, x_0, x_1].$$

Solution:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{(x_1 - x_0)(f(x_2) - f(x_1)) - (x_2 - x_1)(f(x_1) - f(x_0))}{(x_2 - x_1)(x_1 - x_0)(x_2 - x_0)} = \frac{(x_1 - x_0)(f(x_2)) + (x_0 - x_2)f(x_1) + (x_2 - x_1)f(x_0)}{(x_2 - x_1)(x_1 - x_0)(x_2 - x_0)}.$$

while

$$\begin{split} f[x_2, x_0, x_1] &= \frac{f[x_0, x_1] - f[x_2, x_0]}{x_1 - x_2} = \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0} - \frac{f(x_0) - f(x_2)}{x_0 - x_2}}{x_1 - x_2} = \\ &= \frac{(x_0 - x_2)(f(x_1) - f(x_0)) - (x_1 - x_0)(f(x_0) - f(x_2))}{(x_1 - x_0)(x_0 - x_2)(x_1 - x_2)} = \\ &= \frac{(x_1 - x_0)(f(x_2)) + (x_0 - x_2)f(x_1) + (x_2 - x_1)f(x_0)}{(x_2 - x_1)(x_1 - x_0)(x_2 - x_0)}, \end{split}$$

and we conclude that $f[x_0, x_1, x_2] = f[x_2, x_0, x_1]$.

(b) Assume that x_0, x_1, x_2 are equally spaced, i.e., $x_1 = x_0 + h$ and $x_2 = x_1 + h$, with h > 0. Compute $f[x_0, x_1, x_2]$.

Solution:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{1}{2} \frac{f(x_2) - 2f(x_1) + f(x_0)}{h^2}.$$

- 2. Consider two distinct points $x_0 < x_1$ and a twice continuously differentiable function f(x). Let $Q_1(x)$ be the linear interpolant through $f(x_0)$ and $f(x_1)$.
 - (a) Write the Lagrange form of $Q_1(x)$.

Solution:

$$Q_1(x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0}.$$

(b) Using the general interpolation error formula, show that the interpolation error $|f(x) - Q_1(x)|$ in the interval $[x_0, x_1]$ is bounded by $\frac{1}{8}h^2M$, where $h = x_1 - x_0$ and $M = \max_{x_0 \le x \le x_1} |f''(x)|$.

Solution:

The polynomial interpolation error in this case is given by

$$f(x) - Q_1(x) = \frac{1}{2!}f''(\xi)(x - x_0)(x - x_1),$$

with ξ being an intermediate point in the interval $\xi \in (x_0, x_1)$. Hence

$$|f(x) - Q_1(x)| \le \frac{1}{2}M \max_{x_0 \le x \le x_1} |(x - x_0)(x - x_1)|,$$

with $M = \max_{x_0 \le x \le x_1} |f''(x)|$. If we let $g(x) = (x - x_0)(x - x_1)$, then $g'(x) = 2x - (x_0 + x_1)$, and $g''(x) = 2 \ge 2$. Hence g(x) obtains a maximum at $x = (x_0 + x_1)/2$. This means that

$$\max_{x_0 \le x \le x_1} |(x - x_0)(x - x_1)| = \left| \left(\frac{x_0 + x_1}{2} - x_0 \right) \left(\frac{x_0 + x_1}{2} - x_1 \right) \right| = \frac{h}{2} \cdot \frac{h}{2}$$

Therefore

$$|f(x) - Q_1(x)| \le \frac{1}{2}M\frac{h^2}{4} = \frac{1}{8}Mh^2.$$

3. (a) Show that Newton's method for finding \sqrt{R} can be written as

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{R}{x_n} \right).$$

Solution:

To compute \sqrt{R} let $f(x) = x^2 - R$. Then the roots of f(x) are $\pm \sqrt{R}$. Newton's method for this f(x) is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - R}{2x_n} = \frac{2x_n^2 - x_n^2 + R}{2x_n} = \frac{1}{2}\left(x_n + \frac{R}{x_n}\right).$$

(b) Let R = AB. Using two iterations of the formula from part (a) starting with $x_0 = A$, show that an approximation of \sqrt{AB} can be written as

$$\sqrt{AB} \approx \frac{A+B}{4} + \frac{AB}{A+B}.$$

What happens if $x_0 = \frac{A+B}{2}$?

Solution:

We use the result from part (a) with R = AB and $x_0 = A$. In this case

$$x_1 = \frac{1}{2}\left(A + \frac{R}{A}\right) = \frac{A+B}{2}$$

This means that

$$x_2 = \frac{1}{2}\left(\frac{1}{2}\frac{A+B}{2} + \frac{R}{\frac{A+B}{2}}\right) = \frac{A+B}{4} + \frac{AB}{A+B},$$

which is the desired approximation of \sqrt{AB} . If $x_0 = \frac{A+B}{2}$, we reach the same approximation after one iteration. If we have two iterations starting from that point, we will get a better approximation of \sqrt{AB} which can be computed.

- 4. Denote the successive intervals that arise in the bisection method by $[a_0, b_0]$, $[a_1, b_1]$, etc.
 - (a) Show that $a_0 \leq a_1 \leq a_2 \leq \cdots$ and that $b_0 \geq b_1 \geq b_2 \geq \cdots$

Solution: This is the bisection method, see notes.

(b) Show that $b_n - a_n = 2^{-n}(b_0 - a_0)$.

Solution: A standard result for the bisection method, see notes.

(c) Show that for all n, $a_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}$.

Solution:

In the bisection method either $a_{n-1} = a_n$ or $b_{n-1} = b_n$, and the result holds.