AMSC 466: Midterm 2 - SOLUTIONS

Prof. Doron Levy

October 26, 2010

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 60 minutes
- Good luck!

Problems:

1. (10 points)
(a) Write down the conditions that should be satisfied so that the following function is a natural cubic spline on the interval $[0,2]$:

$$
s(x)= \begin{cases}f_{1}(x), & x \in[0,1], \\ f_{2}(x), & x \in[1,2] .\end{cases}
$$

Solution: For $s(x)$ to be a cubic spline, $f_{1}(x)$ and $f_{2}(x)$ should be cubic polynomials that satisfy the following conditions: $f_{1}(1)=f_{2}(1), f_{1}^{\prime}(1)=$ $f_{2}^{\prime}(1)$, and $f_{1}^{\prime \prime}(1)=f_{2}^{\prime \prime}(1)$. In addition, in order for $s(x)$ to be a natural spline on $[0,2]$ we must require that $f_{1}^{\prime \prime}(0)=0$, and that $f_{2}^{\prime \prime}(2)=0$.
(b) Determine the values of the coefficients a, b, c, d, and e so that the following $s(x)$ is a natural cubic spline on $[0,2]$:

$$
s(x)= \begin{cases}1+x-a x^{2}+b x^{3}, & x \in[0,1], \\ c+d(x-1)+e(x-2)^{2}+(x-2)^{3}, & x \in[1,2]\end{cases}
$$

Solution: We denote the function in $[0,1]$ by $f_{1}(x)$ and the function in $[1,2]$ by $f_{2}(x)$. We then have

$$
\begin{aligned}
f_{1}(x) & =1+x-a x^{2}+b x^{3} \\
f_{1}^{\prime}(x) & =1-2 a x+3 b x^{2} \\
f_{1}^{\prime \prime}(x) & =-2 a+6 b x \\
f_{2}(x) & =c+d(x-1)+e(x-2)^{2}+(x-2)^{3} \\
f_{2}^{\prime}(x) & =d+2 e(x-2)+3(x-2)^{2} \\
f_{2}^{\prime \prime}(x) & =2 e+6(x-2)
\end{aligned}
$$

For $s(x)$ to be a natural spline we ask that $f_{1}^{\prime \prime}(0)=0$. This implies that $a=0$. Also $f_{2}^{\prime \prime}(2)=0$, which implies that $e=0$.
The continuity of $s(x)$ at $x=1$ implies that:

$$
2+b=c-1
$$

The continuity of $s^{\prime}(x)$ at $x=1$ implies that:

$$
1+3 b=d+3
$$

Finally, the continuity of $s^{\prime \prime}(x)$ at $x=1$ implies that

$$
6 b=-6
$$

These equations are satisfies when $b=-1, c=2$, and $d=-5$.
2. (10 points)
(a) Write the Hermite interpolation polynomial to $f(x)$ based on the given values of $f(a), f^{\prime}(a), f(b)$.

Solution: The Newton form of the Hermite interpolation polynomial in this case is:

$$
P_{2}(x)=f(a)+f[a, a](x-a)+f[a, a, b](x-a)^{2} .
$$

The divided differences are:

$$
f[a, a]=f^{\prime}(a),
$$

and

$$
f[a, a, b]=\frac{f[a, b]-f[a, a]}{b-a}=\frac{\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)}{b-a}=\frac{f(b)-f(a)-(b-a) f^{\prime}(a)}{(b-a)^{2}}
$$

Hence, the requested interpolant is:

$$
P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f(b)-f(a)-(b-a) f^{\prime}(a)}{(b-a)^{2}}(x-a)^{2} .
$$

(b) Based on the result of (a), write an approximation of

$$
\int_{a}^{b} f(x) d x .
$$

Solution: The idea is to approximate the integral of $f(x)$ on the interval $[a, b]$ by integrating the Hermite interpolant $P_{2}(x)$ on this interval. In order to do that, we note that

$$
\int_{a}^{b}(x-a) d x=\frac{1}{2}(b-a)^{2},
$$

and

$$
\int_{a}^{b}(x-a)^{2} d x=\frac{1}{3}(b-a)^{3} .
$$

Hence

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{2}(x) d x \\
& =\int_{a}^{b}\left[f(a)+f^{\prime}(a)(x-a)+\frac{f(b)-f(a)-(b-a) f^{\prime}(a)}{(b-a)^{2}}(x-a)^{2}\right] d x \\
& =f(a)(b-a)+f^{\prime}(a) \frac{1}{2}(b-a)^{2}+\frac{f(b)-f(a)-(b-a) f^{\prime}(a)}{(b-a)^{2}} \frac{1}{3}(b-a)^{3},
\end{aligned}
$$

which is the desired approximation (that can be further simplified).
3. (a) (5 points) Find the first two orthogonal polynomials $p_{0}(x)$ and $p_{1}(x)$, with respect to the weight function $w(x) \equiv 1$ on $[2,5]$. Show your calculations.

Solution: We will use the Gram-Schmidt orthogonalization process to replace the polynomials $\left\{1, x, x^{2}\right\}$ with polynomials that are orthogonal with respect to the inner product

$$
(f, g)=\int_{2}^{5} f(x) g(x) d x
$$

We now set the first polynomial as

$$
P_{0}(x)=1 .
$$

The next polynomial is of the form

$$
P_{1}(x)=x-c_{0} P_{0}(x)=x-c_{0} .
$$

To find the constant c_{0}, we invoke the orthogonality condition, i.e., we require that

$$
\int_{2}^{5} P_{0}(x) P_{1}(x) d x=0 .
$$

We thus have

$$
0=\int_{2}^{5} 1 \cdot\left(x-c_{0}\right) d x=\int_{2}^{5} x d x-c_{0} \int_{2}^{5} d x=\frac{1}{2}\left(5^{2}-2^{2}\right)-3 c_{0}=\frac{21}{2}-3 c_{0}
$$

which means that $c_{0}=7 / 2$, and the polynomial $P_{1}(x)$ is

$$
P_{1}(x)=x-\frac{7}{2}
$$

(b) (5 points) Find the polynomial $Q_{0}(x)$ of degree zero that minimizes

$$
\int_{2}^{5}\left[e^{-x}-Q_{0}(x)\right]^{2} d x
$$

Solution: This is a very simple weighted least squares problem. The polynomial that we are looking for is $Q_{0}=a_{0}$. To determine the value of the constant a_{0} we compute

$$
a_{0}=\frac{\int_{2}^{5} f(x) P_{0}(x) d x}{\int_{2}^{5}\left(P_{0}\right)^{2} d x} .
$$

Here $P_{0}=1$ and $f(x)=e^{-x}$. So the integrals are:

$$
\int_{2}^{5} e^{-x} d x=-\left.e^{-x}\right|_{2} ^{5}=e^{-2}-e^{-5}
$$

and

$$
\int_{2}^{5} d x=3
$$

so the polynomial $Q_{0}(x)$ is

$$
Q_{0}(x)=\frac{e^{-2}-e^{-5}}{3}
$$

