AMSC 466: Midterm 2

Prof. Doron Levy
October 26, 2010

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 60 minutes
- Good luck!

Problems:

1. (a) (5 points) Write down the conditions that should be satisfied so that the following function is a natural cubic spline on the interval $[0,2]$:

$$
s(x)= \begin{cases}f_{1}(x), & x \in[0,1], \\ f_{2}(x), & x \in[1,2]\end{cases}
$$

(b) (5 points) Determine the values of the coefficients a, b, c, d, and e so that the following $s(x)$ is a natural cubic spline on $[0,2]$:

$$
s(x)= \begin{cases}1+x-a x^{2}+b x^{3}, & x \in[0,1], \\ c+d(x-1)+e(x-2)^{2}+(x-2)^{3}, & x \in[1,2] .\end{cases}
$$

2. (a) (5 points) Write the Hermite interpolation polynomial to $f(x)$ based on the given values of $f(a), f^{\prime}(a), f(b)$.
(b) (5 points) Based on the result of (a), write an approximation of

$$
\int_{a}^{b} f(x) d x
$$

3. (a) (5 points) Find the first two orthogonal polynomials $p_{0}(x)$ and $p_{1}(x)$, with respect to the weight function $w(x) \equiv 1$ on $[2,5]$. Show your calculations.
(b) (5 points) Find the polynomial $Q_{0}(x)$ of degree zero that minimizes

$$
\int_{2}^{5}\left[e^{-x}-Q_{0}(x)\right]^{2} d x
$$

