AMSC 466: Midterm 2 - SOLUTIONS

Prof. Doron Levy
April 14, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

1. (a) (10 points). Define a spline of degree k on $[a, b]$. Prove that if $S(x)$ is a spline of degree k on $[a, b]$ then $S^{\prime}(x)$ is a spline of degree $k-1$ on $[a, b]$.

Solution:

A spline of degree k on $[a, b]$ with knots $a<t_{0}<t_{1}<\ldots t_{n}<b$ is a piecewise polynomial function, $S(x)$, with the following properties:
i. $S(x)$ is a polynomial of degree k on each interval $\left[t_{i}, t_{i+1}\right), i=0, \ldots, n-1$.
ii. The function and its derivatives up to order $k-1$ are continuous in $[a, b]$.

The derivative of a Spline, $S^{\prime}(x)$, will therefore be a polynomial of degree $k-1$ on each interval $\left[t_{i}, t_{i+1}\right]$. It will also have $k-2$ continuous derivatives in $[a, b]$. Hence $S^{\prime}(x)$ is a spline of degree $k-1$.
(b) (10 points). Determine the coefficients a, b, c, d such that

$$
S(x)=\left\{\begin{array}{ll}
S_{0}(x), & 0 \leq x \leq 1, \\
S_{1}(x), & 1 \leq x \leq 2,
\end{array}=\left\{\begin{array}{cl}
x^{2}+x^{3}, & 0 \leq x \leq 1, \\
a+b x+c x^{2}+d x^{3}, & 1 \leq x \leq 2,
\end{array}\right.\right.
$$

is a cubic spline that satisfies $S_{1}^{\prime \prime \prime}(x)=12$.

Solution: The condition $S_{1}^{\prime \prime \prime}(x)=12$ implies that $d=2$. The continuity of S, S^{\prime}, and $S^{\prime \prime}$ at $x=1$ implies:

$$
\left\{\begin{array}{l}
a+b+c+d=2 \\
b+2 c+3 d=5 \\
2 c+6 d=8
\end{array}\right.
$$

The solution of this linear system is: $c=-2, b=3$, and $a=-1$.
2. (a) (10 points). Use $f(x-2 h), f(x), f(x+4 h)$ to write an approximation for $f^{\prime \prime}(x)$. What is the order of this approximation?

Solution:

We write the Taylor expansions of the above quantities, centered at x :

$$
\begin{aligned}
& f(x+4 h)=f(x)+4 h f^{\prime}(x)+\frac{1}{2}(4 h)^{2} f^{\prime \prime}(x)+\frac{1}{6}(4 h)^{3} f^{\prime \prime \prime}\left(\xi_{1}\right) . \\
& f(x-2 h)=f(x)-2 h f^{\prime}(x)+\frac{1}{2}(2 h)^{2} f^{\prime \prime}(x)-\frac{1}{6}(2 h)^{3} f^{\prime \prime \prime}\left(\xi_{2}\right) .
\end{aligned}
$$

We now consider a linear combination:

$$
A f(x+4 h)+B f(x)+C f(x-2 h) .
$$

To approximated the second derivative, $f^{\prime \prime}(x)$, we require

$$
\begin{aligned}
& A+B+C=0 \\
& 4 h A-2 h C=0 \\
& \frac{1}{2}(4 h)^{2} A+\frac{1}{2}(2 h)^{2} C=1 .
\end{aligned}
$$

The solution of this system is

$$
A=\frac{1}{12 h^{2}}, \quad B=-\frac{1}{4 h^{2}}, \quad C=\frac{1}{6 h^{2}} .
$$

The approximation is of order $O(h)$, since the error term is:

$$
\begin{aligned}
& A \frac{1}{6}(4 h)^{3} f^{\prime \prime \prime}\left(\xi_{1}\right)+C \frac{1}{6}(2 h)^{3} f^{\prime \prime \prime}\left(\xi_{2}\right)= \\
& =\frac{1}{12 h^{2}} \frac{1}{6}(4 h)^{3} f^{\prime \prime \prime}\left(\xi_{1}\right)-\frac{1}{6 h^{2}} \frac{1}{6}(2 h)^{3} f^{\prime \prime \prime}\left(\xi_{2}\right)=O(h)
\end{aligned}
$$

(b) (10 points). What is the most accurate approximation you can write for $f^{\prime}(x)$ using the same three values, $f(x-2 h), f(x), f(x+4 h)$? What is the order of this approximation?

Solution:

Once again we consider a linear combination of the form

$$
A f(x+4 h)+B f(x)+C f(x-2 h) .
$$

Only this time, we are asked to approximate the first derivative $f^{\prime}(x)$. Hence, we require

$$
\begin{aligned}
& A+B+C=0 \\
& 4 h A-2 h C=1
\end{aligned}
$$

Since we have three unknowns and only two equations, we can add an additional equation, and increase the order of accuracy of the approximation:

$$
\frac{1}{2}(4 h)^{2} A+\frac{1}{2}(2 h)^{2} C=0 .
$$

This time, the solution is

$$
A=\frac{1}{12 h}, \quad B=\frac{1}{4 h}, \quad C=-\frac{1}{3 h},
$$

and the approximation will be second-order, $O\left(h^{2}\right)$.
3. (a) (6 points). Find the first two orthogonal polynomials, $P_{0}(x), P_{1}(x)$ with respect to the weight $w(x)=\sqrt{x}$ on the interval $[0,1]$. Do not normalize them.

Solution: Set $P_{0}=1$, and $P_{1}=x-c$. To compute c we require orthogonality, i.e.,

$$
0=\left\langle P_{0}, P_{1}\right\rangle_{w}=\int_{0}^{1} 1 \cdot(x-c) \sqrt{x} d x=\frac{2}{5}-\frac{2}{3} c .
$$

Hence $c=3 / 5$, i.e. $P_{1}(x)=x-\frac{3}{5}$.
(b) (4 points). Normalize $P_{0}(x)$.

Solution: Denote the normalized $P_{0}(x)$ by $\tilde{P}_{0}(x)$. Then $\tilde{P}_{0}(x)=c P_{0}(x)=$ c. Hence

$$
1=\left\langle\tilde{P}_{0}, \tilde{P}_{0}\right\rangle_{w}=\int_{0}^{1} c \cdot c \cdot \sqrt{x} d x=\frac{2}{3} c^{2} .
$$

Hence $c=\sqrt{\frac{3}{2}}$, i.e., $\tilde{P}_{0}(x)=\sqrt{\frac{3}{2}}$.
(c) (6 points). Let $Q_{1}^{*}(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x)$. What should a_{0}, a_{1} satisfy so that $Q_{1}^{*}(x)$ minimizes

$$
\int_{0}^{1}\left(x-Q_{1}(x)\right)^{2} \sqrt{x} d x
$$

over all linear polynomials $Q_{1}(x)$. Express a_{0} and a_{1} as integrals. Do not explicitly compute these integrals quite yet.

Solution: Note that $Q_{1}(x)=x$ is the solution of this least squares problem. However, we are explicitly asked to find a_{0} and a_{1} :

$$
\begin{aligned}
& a_{0}=\frac{\left\langle x, P_{0}\right\rangle_{w}}{\left\langle P_{0}, P_{0}\right\rangle_{w}}=\frac{\int_{0}^{1} x \cdot 1 \cdot \sqrt{x} d x}{\int_{0}^{1} 1 \cdot 1 \cdot \sqrt{x} d x}=\frac{\int_{0}^{1} x^{3 / 2} d x}{\int_{0}^{1} x^{1 / 2} d x} . \\
& a_{1}=\frac{\left\langle x, P_{1}\right\rangle_{w}}{\left\langle P_{1}, P_{1}\right\rangle_{w}}=\frac{\int_{0}^{1} x\left(x-\frac{3}{5}\right) \sqrt{x} d x}{\int_{0}^{1}\left(x-\frac{3}{5}\right)^{2} \sqrt{x} d x}
\end{aligned}
$$

Here, I chose to use the non-normalized polynomials, $P_{0}(x)$ and $P_{1}(x)$.
(d) (4 points). Find a_{0}.

Solution: In solving this question we are using the expression from Part (c). If a_{0} was written as the coefficient of the normalized \tilde{P}_{0}, then the answer would have been different.

$$
a_{0}=\frac{\int_{0}^{1} x^{3 / 2} d x}{\int_{0}^{1} x^{1 / 2} d x}=\frac{\left.\frac{2}{5} x^{5 / 2}\right|_{0} ^{1}}{\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{1}}=\frac{\frac{2}{5}}{\frac{2}{3}}=\frac{3}{5}
$$

