AMSC 466: Midterm 2 - SOLUTIONS

Prof. Doron Levy

April 14, 2016

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may <u>not</u> use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

1. (a) (10 points). Define a spline of degree k on [a, b]. Prove that if S(x) is a spline of degree k on [a, b] then S'(x) is a spline of degree k - 1 on [a, b].

Solution:

A spline of degree k on [a, b] with knots $a < t_0 < t_1 < \ldots t_n < b$ is a piecewise polynomial function, S(x), with the following properties:

- i. S(x) is a polynomial of degree k on each interval $[t_i, t_{i+1}), i = 0, \ldots, n-1$.
- ii. The function and its derivatives up to order k-1 are continuous in [a, b].

The derivative of a Spline, S'(x), will therefore be a polynomial of degree k-1 on each interval $[t_i, t_{i+1}]$. It will also have k-2 continuous derivatives in [a, b]. Hence S'(x) is a spline of degree k-1.

(b) (10 points). Determine the coefficients a, b, c, d such that

$$S(x) = \begin{cases} S_0(x), & 0 \le x \le 1, \\ S_1(x), & 1 \le x \le 2, \end{cases} = \begin{cases} x^2 + x^3, & 0 \le x \le 1, \\ a + bx + cx^2 + dx^3, & 1 \le x \le 2, \end{cases}$$

is a cubic spline that satisfies $S_1'''(x) = 12$.

Solution: The condition $S_1''(x) = 12$ implies that d = 2. The continuity of S, S', and S'' at x = 1 implies:

$$\begin{cases} a+b+c+d=2\\ b+2c+3d=5\\ 2c+6d=8 \end{cases}$$

The solution of this linear system is: c = -2, b = 3, and a = -1.

2. (a) (10 points). Use f(x - 2h), f(x), f(x + 4h) to write an approximation for f''(x). What is the order of this approximation?

Solution:

We write the Taylor expansions of the above quantities, centered at x:

$$f(x+4h) = f(x) + 4hf'(x) + \frac{1}{2}(4h)^2 f''(x) + \frac{1}{6}(4h)^3 f'''(\xi_1).$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{1}{2}(2h)^2 f''(x) - \frac{1}{6}(2h)^3 f'''(\xi_2).$$

We now consider a linear combination:

$$Af(x+4h) + Bf(x) + Cf(x-2h).$$

To approximated the second derivative, f''(x), we require

$$A + B + C = 0,$$

$$4hA - 2hC = 0,$$

$$\frac{1}{2}(4h)^{2}A + \frac{1}{2}(2h)^{2}C = 1.$$

The solution of this system is

$$A = \frac{1}{12h^2}, \quad B = -\frac{1}{4h^2}, \quad C = \frac{1}{6h^2}.$$

The approximation is of order O(h), since the error term is:

$$A\frac{1}{6}(4h)^{3}f'''(\xi_{1}) + C\frac{1}{6}(2h)^{3}f'''(\xi_{2}) =$$

= $\frac{1}{12h^{2}}\frac{1}{6}(4h)^{3}f'''(\xi_{1}) - \frac{1}{6h^{2}}\frac{1}{6}(2h)^{3}f'''(\xi_{2}) = O(h).$

(b) (10 points). What is the most accurate approximation you can write for f'(x) using the same three values, f(x - 2h), f(x), f(x + 4h)? What is the order of this approximation?

Solution:

Once again we consider a linear combination of the form

$$Af(x+4h) + Bf(x) + Cf(x-2h).$$

Only this time, we are asked to approximate the first derivative f'(x). Hence, we require

$$A + B + C = 0,$$

$$4hA - 2hC = 1.$$

Since we have three unknowns and only two equations, we can add an additional equation, and increase the order of accuracy of the approximation:

$$\frac{1}{2}(4h)^2A + \frac{1}{2}(2h)^2C = 0.$$

This time, the solution is

$$A = \frac{1}{12h}, \quad B = \frac{1}{4h}, \quad C = -\frac{1}{3h},$$

and the approximation will be second-order, $O(h^2)$.

3. (a) (6 points). Find the first two orthogonal polynomials, $P_0(x), P_1(x)$ with respect to the weight $w(x) = \sqrt{x}$ on the interval [0, 1]. Do not normalize them.

Solution: Set $P_0 = 1$, and $P_1 = x - c$. To compute *c* we require orthogonality, i.e.,

$$0 = \langle P_0, P_1 \rangle_w = \int_0^1 1 \cdot (x - c) \sqrt{x} dx = \frac{2}{5} - \frac{2}{3}c.$$

Hence c = 3/5, i.e. $P_1(x) = x - \frac{3}{5}$.

(b) (4 points). Normalize $P_0(x)$.

Solution: Denote the normalized $P_0(x)$ by $\tilde{P}_0(x)$. Then $\tilde{P}_0(x) = cP_0(x) = c$. Hence

$$1 = \left\langle \tilde{P}_0, \tilde{P}_0 \right\rangle_w = \int_0^1 c \cdot c \cdot \sqrt{x} dx = \frac{2}{3}c^2.$$

Hence $c = \sqrt{\frac{3}{2}}$, i.e., $\tilde{P}_0(x) = \sqrt{\frac{3}{2}}$.

(c) (6 points). Let $Q_1^*(x) = a_0 P_0(x) + a_1 P_1(x)$. What should a_0, a_1 satisfy so that $Q_1^*(x)$ minimizes

$$\int_0^1 (x - Q_1(x))^2 \sqrt{x} dx.$$

over all linear polynomials $Q_1(x)$. Express a_0 and a_1 as integrals. Do not explicitly compute these integrals quite yet.

Solution: Note that $Q_1(x) = x$ is the solution of this least squares problem. However, we are explicitly asked to find a_0 and a_1 :

$$a_{0} = \frac{\langle x, P_{0} \rangle_{w}}{\langle P_{0}, P_{0} \rangle_{w}} = \frac{\int_{0}^{1} x \cdot 1 \cdot \sqrt{x} dx}{\int_{0}^{1} 1 \cdot 1 \cdot \sqrt{x} dx} = \frac{\int_{0}^{1} x^{3/2} dx}{\int_{0}^{1} x^{1/2} dx}$$
$$a_{1} = \frac{\langle x, P_{1} \rangle_{w}}{\langle P_{1}, P_{1} \rangle_{w}} = \frac{\int_{0}^{1} x \left(x - \frac{3}{5}\right) \sqrt{x} dx}{\int_{0}^{1} \left(x - \frac{3}{5}\right)^{2} \sqrt{x} dx}.$$

Here, I chose to use the non-normalized polynomials, $P_0(x)$ and $P_1(x)$.

(d) (4 points). Find a_0 .

Solution: In solving this question we are using the expression from Part (c). If a_0 was written as the coefficient of the normalized \tilde{P}_0 , then the answer would have been different.

$$a_{0} = \frac{\int_{0}^{1} x^{3/2} dx}{\int_{0}^{1} x^{1/2} dx} = \frac{\frac{2}{5} x^{5/2} \Big|_{0}^{1}}{\frac{2}{3} x^{3/2} \Big|_{0}^{1}} = \frac{\frac{2}{5}}{\frac{2}{3}} = \frac{3}{5}.$$