\qquad

MATH 130

Project \#1 (2.1-2.3): Applications of exponential functions to biology

1. Many bacteria reproduce by binary fission, in which a single-celled bacterium divides into two bacteria, which each have identical genetic information. Write an equation describing reproduction in a bacterium that can reproduce itself by binary fission.

Using this equation, calculate how many bacteria there would be after 3 hours and after 10 hours, if the bacteria could reproduce itself by binary fission every 30 minutes.

What does this equation assume about the bacteria?
2. Consider the exponential equation of population growth: $N(t)=N_{0} e^{r t}$
$\mathbf{N}(\mathbf{t})=$ number of individuals in population at time t
$\mathbf{N}_{\mathbf{0}}=$ initial population (number of individuals in population at time 0)
$\mathbf{r}=$ intrinsic rate of population growth
$t=$ time
Write an equation using the same variables to describe linear population growth.
\qquad

For what values of the intrinsic growth rate \mathbf{r} will the exponential growth equation overtake the linear growth equation over time?

Give an example of a situation where you would expect exponential population growth. Why would this population not experience linear population growth?
3. A male and a female rabbit are introduced to an island. Graph the estimated island rabbit population over 5 years for each of the following intrinsic population growth rates: $r=0.5$ and $r=2$. Remember to include your axes and labels.

What does the different r value imply for the rabbit population?

