Name \qquad KEY

Answer all problems. There are 10 possible points.

1) The distance in feet of an object from a starting point is given by $S(t)=4 t+1$, where t is time in seconds.
(a) (3 pts) Find the average velocity of the object from 6 seconds to 8 seconds.

$$
\frac{S(8)-S(6)}{8-6}=\frac{(4(8)+1)-(4(6)+1)}{2}=\frac{33-25}{2}=\frac{8}{2}=4 \text { feet per second }
$$

(b)(3pts) Find the instantaneous velocity at 2 seconds.

$$
\lim _{h \rightarrow 0} \frac{S(2+h)-S(2)}{h}=\lim _{h \rightarrow 0} \frac{(4(2+h)+1)-(4(2)+1)}{h}=\lim _{h \rightarrow 0} \frac{4 h}{h}=4 \text { feet per second }
$$

2) (4pts) Use the limit definition of derivative to find $f^{\prime}(x)$ when $f(x)=5 \sqrt{x}$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 \sqrt{(x+h)}-5 \sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(\sqrt{(x+h)}-\sqrt{x})(\sqrt{(x+h)}+\sqrt{x})}{h(\sqrt{(x+h)}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h-x)}{h(\sqrt{(x+h)}+\sqrt{x})} \\
& =\frac{5}{2 \sqrt{x}} .
\end{aligned}
$$

