Name \qquad KEY

Answer all problems. There are 10 possible points.

1) The distance in feet of an object from a starting point is given by $S(t)=2 t+9$, where t is time in seconds.
(a) (3 pts) Find the average velocity of the object from 2 seconds to 8 seconds.

$$
\frac{S(8)-S(2)}{8-2}=\frac{(2(8)+9)-(2(2)+9)}{6}=\frac{12}{6}=2 \text { feet per second. }
$$

(b)(3pts) Find the instantaneous velocity at 6 seconds.

$$
\lim _{h \rightarrow 0} \frac{S(6+h)-S(6)}{h}=\lim _{h \rightarrow 0} \frac{(2(6+h)+9)-(2(6)+9)}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h}=2 \text { feet per second. }
$$

2) (4pts) Use the limit definition of derivative to find $f^{\prime}(x)$ when $f(x)=\sqrt{x}+2$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{(x+h)}+2)-(\sqrt{x}+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{(x+h)}-\sqrt{x})(\sqrt{(x+h)}+\sqrt{x})}{h(\sqrt{(x+h)}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-x)}{h(\sqrt{(x+h)}+\sqrt{x})} \\
& =\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

