Stat 410: Midterm 1 - Solutions

Prof. Doron Levy

September 29, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems: (Each problem $=10$ points. Maximum total points $=50$)

1. (a) How many different numbers can be obtained by arranging the digits contained in the number 5,751,542,269?

Solution: There are 10 digits in the given number. The digit 2 repeats twice, and the digit 5 repeats 3 times. This means that the answer is:

$$
\binom{10}{2,3}=\frac{10!}{2!3!} .
$$

(b) How many of these numbers have the digit 9 followed by the three 5 's?

Solution: When the digit 9 is followed by 555 , the sequence 9555 shows as a group in the 10 -digit number. There are seven locations for this sequence (starting from the first digit, through starting with the seventh digit). Once we fix a location for 9555 , there are 6 remaining digits to arrange (out of which the digit 2 repeats twice). Hence the solution is

$$
7 \frac{6!}{2!}
$$

2. An American citizenship test is given in a class with 10 Mexican nationals, 8 Saudi nationals, and 3 French nationals. What is the probability that the first three to finish the test are all Mexican?

Solution:

There are $10+8+3=21$ students taking the exam. Accounting for the repetitions, there are $\binom{21}{10,8,3}=\frac{21!}{10!8!3!}$ options for the order of finishing the exam.
If the first three to finish the exam are all Mexican, there are $21-3=18$ students remaining, out of which, 7 are Mexican, 8 Saudi, and 3 French. This means that the desired probability is

$$
P=\frac{\binom{18}{7,8,3}}{\binom{21}{0,8,3}}=\frac{\frac{18!}{7!8!3!}}{\frac{21!}{10!8!3!}}=\frac{8 \cdot 9 \cdot 10}{19 \cdot 20 \cdot 21}=\frac{12}{133} .
$$

Alternatively, we can choose 3 out of 10 for the first 3 to finish the exam, and divide by the number of options for the first 3 to finish the exam, as they can be selected from the 21 exam takers, we have

$$
P=\frac{\binom{10}{3}}{\binom{21}{3}} .
$$

3. A box contains 7 fair dice and 3 unfair dice. For the unfair dice, the probability that 6 comes out is $1 / 4$. Suppose a die is randomly selected and tossed 5 times.
(a) Compute the probability that the first toss was a 6.

Solution:

Let F denote the event that a fair dice was chosen. Let E denote the event that the first toss was a 6 . Then

$$
P(E)=P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)=\frac{1}{6} \cdot \frac{7}{10}+\frac{1}{4} \cdot \frac{3}{10}=\frac{23}{60} .
$$

(b) Compute the probability that the dice is unfair given that all 5 times it landed on 6 .

Solution:

Let G denote the event that all 5 tosses were 6 . Then

$$
P\left(F^{c} \mid G\right)=\frac{P\left(F^{c} \cap G\right)}{P(G)}=\frac{P\left(G \mid F^{c}\right) P\left(F^{c}\right)}{P\left(G \mid F^{c}\right) P\left(F^{c}\right)+P(G \mid F) P(F)}=\frac{\left(\frac{1}{4}\right)^{5} \frac{3}{10}}{\left(\frac{1}{4}\right)^{5} \frac{3}{10}+\left(\frac{1}{6}\right)^{5} \frac{7}{10}}
$$

4. There are 5 boxes. Each of them contains 4 red balls, 3 green balls, and i blue balls $(i=1, \ldots, 5)$. (The first box contains 4 red balls, 3 green balls, and one blue ball. The second box contains 4 red balls, 3 green balls, and two blue balls, etc.). Carly randomly selects a box and then removes two balls from that box (without replacement).
(a) What is the probability that the two balls are one red and one blue?

Solution:

Let E_{i} be the event that box i was chosen. Let B be the event that the two chosen balls are one red and one blue. Then

$$
P(B)=\sum_{i=1}^{5} P\left(B \mid E_{i}\right) P\left(E_{i}\right)=\frac{1}{5} \sum_{i=1}^{5} P\left(B \mid E_{i}\right)=\frac{1}{5} \sum_{i=1}^{5} \frac{\binom{i}{1}\binom{4}{1}}{\binom{7+i}{2}} .
$$

(b) Assume that the two chosen balls are one red and one blue. What is the probability that the i-th box has been selected, for each $i=1, \ldots, 5$?

Solution:

$$
P\left(E_{i} \mid B\right)=\frac{P\left(E_{i} \cap B\right)}{P(B)}=\frac{\frac{\frac{1}{5}\binom{i}{1}\binom{4}{1}}{\binom{7+i}{2}}}{P(B)}
$$

where $P(B)$ is the value computed in part (a).
5. Bernie and Ted choose 3 rocks each from a box containing 7 red and 7 blue rocks.
(a) Find the probability that Bernie gets 1 red and 2 blue rocks.

Solution:

Let B be the event that Bernie chooses 1 red rock and 2 blue rocks. We are asked to compute $P(B)$. Bernie has to choose 1 red rock out of 7 rocks and two blue rocks out of 7 rocks. This can be done in $\binom{7}{1}\binom{7}{2}$ ways. The total number of ways to choose 3 rocks out of 14 rocks is $\binom{14}{3}$. Hence the probability is

$$
P(B)=\frac{\binom{7}{1}\binom{7}{2}}{\binom{14}{3}}
$$

Here, if we want to multiply the numerator by $\binom{11}{3}$ for Ted, then we should do the same in the denominator. Note that

$$
\binom{6}{3}\binom{14}{6}=\binom{14}{3}\binom{11}{3} .
$$

The LHS means that we choose 6 out of 14 , and then have to split them into two groups of 3 between Ted and Bernie, while the RHS means that we choose 3 out of 14 for Bernie and 3 out of the remaining 11 for Ted.
(b) Find the probability that Bernie gets 1 red and 2 blue rocks given that Ted got 2 red and 1 blue rocks.

Solution: Let T be the event that Ted chooses 2 red rocks and 1 blue rocks. Given the choice of Ted, Bernie is left with 2 less red and 1 less blue to choose from. Hence

$$
P(B \mid T)=\frac{\binom{5}{1}\binom{6}{2}}{\binom{11}{3}}
$$

(c) Find the probability that Bernie gets 1 red and 2 blue rocks given that Ted did not get 2 red and 1 blue rocks. (Hint: use the law of total probability).

Solution:

According to the law of total probability:

$$
P(B)=P\left(B \mid T^{c}\right) P\left(T^{c}\right)+P(B \mid T) P(T)
$$

We are asked to find $P\left(B \mid T^{c}\right)$. Now $P(B)$ is the answer to part (a). $P(B \mid T)$ is the answer to part (b). $P(T)=P(B)$, and $P\left(T^{c}\right)=1-P(T)$. From this we can compute $P(B \mid T)$. Alternatively

$$
P\left(B \mid T^{c}\right)=\frac{P\left(B \cap T^{c}\right)}{P\left(T^{c}\right)}=\frac{P\left(T^{c} \mid B\right) P(B)}{1-P(T)}=\frac{(1-P(T \mid B)) P(B)}{1-P(T)} .
$$

