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1. Introduction

In [1], Björklund and Gorodnik proved Central Limit Theorem for exponentially
mixing actions of groups with subexponential growth. In this note we review the proof
of this remarkable result in the case where the group is an abelian Lie group (which is
thus isomorphic to Rd1 ×Zd2) and point out two useful extensions of the main result of
[1]: the Central Limit Theorem for arrays (Theorem 2.3) and Functional Central Limit
Theorem (Theorem 5.2). We follow the main ideas of the proof from [1], however,
to make the text more self contained we use the method of moments rather than the
method of cumulants.

2. The result.

Let H = Rd1 ×Zd2 , M be a compact manifold and G : H ×M →M be an C1 action
of H preserving a measure µ. We denote d = d1 + d2.

Definition 2.1. We say that G is exponentially mixing of all orders if for each p ∈ N
there exist constants C̄p, c̄p > 0 such that

(2.1)

∣∣∣∣∣µ
(

p∏
j=1

Aj(Gtjy)

)
−

p∏
j=1

µ(Aj)

∣∣∣∣∣ ≤ C̄pe
−c̄p∆(t1,...,tp)

p∏
j=1

‖Aj‖C1

where ∆(t1, . . . , tp) is the gap

∆ = min
i 6=j
‖ti − tj‖.

We shall assume throughout this note that G = Gt is exponentially mixing of all
orders and that the action G satisfies

(2.2) ‖Gt‖C1 ≤ CK‖t‖,

for some C,K > 0.

Remark 2.2. We note that (2.2) is always satisfied if M is compact and the map
(t, x) 7→ DxGt(x) is continuous. Indeed, in this case, we choose K = max

t∈H,‖t‖≤1
‖Gt‖C1

and use the fact that that for t = (t1, ..., td), Gt =
∏
i

Gbticei
G(ti−btic)ei , where ei is the

unit vector in the ith coordinate direction.

In the statement below we regard H as a subset of Rd.
1
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Theorem 2.3. Let {mT} be a family of finite measures on Rd and let {At,T}t∈H,T∈R
be a family of real valued functions on M such that ‖At,T‖C1(M) is uniformly bounded
and µ(At,T ) ≡ 0. Set ST (x) :=

∫
Rd At,T (Gtx)dmT (t). Suppose that

(a) lim
T→∞

‖mT‖ =∞ where ‖mT‖ = m(Rd)

(b) For each r ∈ N, r ≥ 3 and for each K > 0,

lim
T→∞

∫
mr−1
T (B(t,K ln ‖mT‖))dmT (t) = 0,

where B(t, u) ⊂ Rd denotes a ball centered at t ∈ Rd with radius u > 0;
(c) lim

T→∞
VT = σ2 where

VT :=

∫
S2
T (x)dµ(x) =

∫∫∫
At1,T (Gt1x)At2,T (Gt2x)dmT (t1)mT (t2)dµ(x).

Then ST converges as T →∞ to normal distribution with zero mean and variance σ2.

This theorem is proven in [1] in case At,T does not depend on t, T however the proof
does not use this assumption, see Section 4.

3. Preliminary estimates

3.1. Correlations with lonely terms. We start with the following useful consequence
of (2.1).

Lemma 3.1. For each p ∈ N there exist constants Cp, cp > 0 such that if µ(Aj) = 0
for all 1 ≤ j ≤ p then

(3.1)

∣∣∣∣∣µ
(

p∏
j=1

Aj(Gtjy)

)∣∣∣∣∣ ≤ Cpe
−cpl(t1,...,tp)

p∏
j=1

‖Aj‖C1 ,

where l(t1, . . . , tp) is the loneliness index

l = max
i

min
j 6=i
|ti − tj|.

Proof. We use induction on p. If p = 1 then the result is clear since A1 has zero mean.
If p = 2 then (2.1) and (3.1) are equivalent.

Next suppose that (3.1) is known for p < p0 where p0 > 2, and let us show that it
holds for p = p0. Fix a small κ > 0 and consider two cases:

(a) ∆(t1, . . . , tp0) > κl(t1, . . . tp0). In this case (3.1) follows from (2.1) provided that
cp0 ≤ κc̄p0 .

(b) ∆(t1, . . . , tp0) = ‖ti0 − tj0‖ ≤ κl(t1, . . . tp0). Write

Ai0(Gti0
y)Aj0(Gtj0

y) = Ã(Gti0
y)

where Ã(y) = Ai0(y)Aj0(Gtj0−ti0y). We now decompose Ã(y) = µ(Ã) +
[
Ã− µ(Ã)

]
and

apply (3.1) with p = p0−2 and p = p0−1 respectively. In the case of µ(Ã), we apply the
inductive hypothesis to {t1, . . . tp0}\{ti0 , tj0}. Clearly, ‖µ(Ã)‖C1 ≤ ‖Ai0‖C0‖Aj0‖C0 and
our assumption ∆(t1, . . . , tp0) = ‖ti0 − tj0‖ ≤ κl(t1, . . . tp0) implies that the maximum
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in the definition of l is achieved for i 6∈ {i0, j0} and so removing those points does not
decrease the loneliness index.

In the case of Ã−µ(Ã), we apply the inductive hypothesis to {t1, . . . tp0}\{ti0}. Note
that

‖Ã− µ(Ã)‖C1 ≤ ‖Ã‖C0 + ‖∇Ã‖C0

≤ ‖Ai0‖C0‖Aj0‖C0 + (1 + CK‖tj0−ti0‖)‖Ai0‖C1‖Aj0‖C1(3.2)

by (2.2). Thus

(∏
i 6=i0

‖Ai‖C1

)
‖Ã−µ(Ã)‖C1 ≤ (2+CK‖tj0−ti0‖)

p0∏
i=1

‖Ai‖C1 ≤ 2Ce(lnK)κl(t1,...tp0 )

p0∏
i=1

‖Ai‖C1 .

This proves (3.1) with c̄p0 = min{c̄p0−2, c̄p0−1 − κ lnK} provided that c̄p0 is positive
which can be ensured by choosing κ = c̄p0−1/(2 lnK). �

3.2. Well separated clusters. Fix a positive integer m and a partition P = Pm of
the set {1, 2, ...,m}. For some R, T > 1 and (t1, ..., tm) ∈ Rmd, let G = G(R, T, t1, ..., tm)
be the graph on {1, 2, ...,m} where i and j are connected by an edge if and only if
‖ti − tj‖ ≤ R lnT .

We say that (t1, ..., tm) is in C(P , R, T ) if the set of connected components of G is P .
We say that (t1, ..., tm) ∈W(P , R, T ) if (t1, ..., tm) ∈ C(P , R, T ) and for any i, j not in
the same atom of P , ‖ti − tj‖ ≥ R2 lnT .

Here C stands for clusters and W is stands for well separated clusters.

Lemma 3.2. For every positive integer m there is R0(m) so that for all R ≥ R0(m)
and for any partition P = {P1, ..., Ps} of the set {1, ...,m},

(3.3) sup
(t1,...,tm)∈W(P,R,T )

∣∣∣∣∣µ
(

m∏
j=1

Aj(Gtjx)

)
−

s∏
k=1

µ

(∏
j∈Pk

Aj(Gtjx)

)∣∣∣∣∣ ≤ CT−10m.

Proof. It is clearly enough to prove the lemma for a fixed partition P . Denote Bk =∏
j∈Pk

Aj(Gtjx) and B̄k = Bk − µ(Bk). Then we have

µ

(
m∏
j=1

Atj(Gtjx)

)
= µ

(
s∏

k=1

Bk(x)

)
= µ

(
s∏

k=1

[
B̄k(x) + µ(Bk)

])

=
∑
J

 ∏
k∈{1,...,s}\J

µ(Bk)

µ

(∏
k∈J

B̄k(x)

)
=:
∑
J

QJ

where the sum is over all subsets J of {1, . . . , s}.
If J = ∅, then QJ is the second term on the left hand side of (3.3). If J = {k}, then

µ(B̄k) = 0 and so QJ = 0. Let us now fix J with |J | ≥ 2. Then, as in (3.2), we have
‖Bk‖C1 ≤ CKRm lnT . Since |J | ≥ 2 and the clusters are well separated, the exponential
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mixing of all orders implies

µ

(∏
k∈J

B̄k(x)

)
= O

(
e−c̄sR

2 lnTKRm lnT
)
.

We conclude∑
J :|J |≥2

O
(
e−c̄sR

2 lnTKRm lnT
)

= O
(

2me−c̄sR
2 lnTKRm lnT

)
= O(T−10m),

where the last equation holds for R ≥ R0(m) sufficiently large. �

3.3. Enforcing the separation. We need some notations. Let Pm be the set of all
partitions of {1, ...,m} and let us write Q ≤ P for P ,Q ∈ Pm if for all P ∈ P there is
Q ∈ Q with P ⊆ Q. As usual, Q < P means that Q ≤ P and Q 6= P . Thus if Q < P ,
then Q is coarser than P in the sense that all atoms in Q are unions of some atoms of
P and at least one union is non-trivial, i.e. Q 6= P . In particular if Q < P then the
number of atoms in Q is smaller than the number of atoms in P .

Let us also write t̄ = (t1, ..., tm).

Lemma 3.3. Given t̄ ∈ Rmd we can find a unique non-negative integer L = L(t̄) ≤ m

and a sequence of partitions P = P0 > P2 > ... > PL so that t̄ ∈ C(P`, R2` , T ) \
W(P`, R2` , T ) for all ` = 0, ..., L− 1and t̄ ∈W(PL, R2L , T ).

Proof. We have t̄ ∈ C(P0, R, T ). If t̄ ∈ W(P0, R, T ), then L = 0. If not, then there
are at least two connected components whose distance is less than R2 lnT . Thus t̄ ∈
C(P1, R

2, T ) with some P1 < P0. If t̄ ∈ W(P1, R
2, T ), then L = 1. We continue

this process until t̄ ∈ W(PL, R2L , T ) holds. Since at each step we merge at least two
components, the process will finish in less than m steps. �

Given a sequence of partitions S = 〈P0, ...,PL〉 with P0 > P1... > PL, we denote by
S(S) for the set of points t̄ ∈ Rmd for which Lemma 3.3 holds with the sequence S.
Thus

Rmd =
⊔
S

S(S),

where
⊔

denotes disjoint union.

4. Multiple exponential mixing and CLT. Proof of Theorem 2.3

We will use Lemmas 3.1–3.3 to compute the asymptotics of moments of ST . It suffices
to show that for each p ∈ N

(4.1) lim
T→∞

E
(
S2p
T

)
= (2p− 1)!!σ2p,

and

(4.2) lim
T→∞

E
(
S2p−1
T

)
= 0.



NOTES ON BJÖRKLUND-GORODNIK CLT 5

To simplify the notation we suppose that ‖mT‖ = T . We also drop the subscript T in
At,T . We have

(4.3) E (SmT ) =

∫
· · ·
∫ (∫

At1(Gt1x) . . . Atm(Gtmx)dµ(x)

)
dmm

T (t̄).

We will discuss the contribution to (4.3) of terms with different cluster combinatorics.
To further simplify notations, we write

α(t̄) = µ

(
m∏
j=1

Atj(Gtjx)

)
.

Thus we have to prove that

(4.4)
∑
S

∫
t̄∈S(S)

α(t̄)dmm
T (t̄) = 1m is even(m− 1)!!σm + oT→∞(t).

We say that a partition is pairing if all atoms have size 2. In fact, we prove the
following statement. For any sequence S = 〈P0, ...,PL〉 of partitions in Pm

(4.5)

∫
t̄∈S(S)

α(t̄)dmm
T (t̄) = 1 L = 0,P0 is pairingσ

m + o(1).

(4.5) implies (4.4) since in case m is even, there are (m− 1)!! pairings and if m is odd,
there are no pairings.

The proof of (4.5) relies on an auxiliary statement. We claim that for any sequence
S = 〈P0, ...,PL〉 of partitions in Pm and for any Q ≥ PL so that Q does not contain
singletons,

(4.6)

∫
t̄∈S(S)

βQ(t̄)dmm
T (t̄) = 1L = 0,P0 is pairingσ

m + o(1)

where

βQ(t̄) =
∏
Q∈Q

µ

(∏
j∈Q

Atj(Gtjx)

)
.

We will prove (4.5), (4.6) by induction on m.
It is easy to check (4.5) for m = 1, 2. If m = 1, then the only possible sequence is
S = 〈{{1}}〉 and since µ(At,jx) = 0 for all tj, (4.5) follows.

If m = 2, then there are three possible sequences:

S = 〈{{1, 2}}〉, S ′ = 〈{{1}, {2}}, {{1, 2}}〉, S ′′ = 〈{{1}, {2}}〉.
Thus

S(S) = {(t1, t2) : ‖t1 − t2‖ ≤ R lnT},
S(S ′) = {(t1, t2) : R lnT < ‖t1−t2‖ ≤ R2 lnT}, S(S ′′) = {(t1, t2) : R2 lnT < ‖t1−t2‖}.
We see that ∫

S(S)

αdm2(t̄) =

∫
R2d

αdm2(t̄) = σ2 + o(1)

where the first equality uses the exponential mixing while the second one holds by
assumption (c). Likewise

∫
S(S′) |α|+

∫
S(S′′) |α| = o(1) by the exponential mixing.
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Next, (4.6) is vacuous if m = 1 since a partition of a one point set should contain
singletons. If m = 2, the only non trivial case if when Q = PL = {1, 2} in which case
(4.6) reduces to (4.5).

Now assume that (4.5), (4.6) hold for 1, ...,m− 1 with m ≥ 3.
To prove (4.5), (4.6) for m, we first note that in the case when P0 contains singletons,

the required estimate follows from Lemma 3.1. Namely (4.5) is a direct consequence of
Lemma 3.1, while (4.6) is obtained by applying Lemma 3.1, to the atom of Q which
contains one of the singletons of P0.

Thus we assume henceforth that all atoms of P0 (and so all atoms of Pl for l ≥ 0)
have size at least 2. In particular, the only way PL can be pairing is when L = 0.

Now for the given m ≥ 3, we proceed by induction on |PL|: the number of atoms
in PL. If |PL| = 1, then we need to prove that for all Q ∈ Pm, (4.6) holds (the case
Q = PL gives (4.5). This is immediate from∣∣∣∣∫

t̄∈S(S)

βQ(t̄)dmm
T (t̄)

∣∣∣∣ ≤ ∫
t̄∈S(S)

‖A‖m∞dmm
T (t̄)

≤ ‖A‖m∞
∫
t1∈Rd

mm−1
T (B(t1,mR lnT ))dmT (t1) = o(1),

where we used assumption (b).

Now assume that (4.5), (4.6) hold for all sequences S so that |PL| < k and fix a
sequence S with |PL| = k. First we prove (4.5). Note that by Lemma 3.2,

(4.7)

∫
t̄∈S(S)

α(t̄)dmm
T (t̄) =

∫
t̄∈S(S)

βPL
(t̄)dmm

T (t̄) + o(1) =: I1 + o(1).

Since now the integrand is a product over variables in P ∈ PL, we wish to replace the
integration domain with such a product domain as well. Thus we approximate I1 by

I2 =

∫
t̄∈S′(S)

βPL
(t̄)dmm

T (t̄)

where for S = 〈P0, ...,PL〉, S′(S) is defined as

S′(S) = {t̄ : ∀P ∈ PL,∀` = 0, ..., L : (tj, j ∈ P ) ∈ C({Q ∈ P` : Q ⊆ P}, R2` , T )}.

In other words, S′(S) is obtained from S(S) by waiving all restrictions in S which

come from different atoms of PL. Hence S′(S) is a product S′(S) =
∏
P∈PL

S(SP ) where

SP = 〈R0, . . .RL∗〉 with R` = R`(P ) = {Q ∈ P` : Q ⊆ P} and

L∗ = L∗(P ) = L ∧ inf{` = 0, ..., L− 1 : R` = R`+1}.

Thus

I2 =
∏
P∈PL

∫
S(SP )

µ

(∏
j∈P

Atj(Gtjx)

)∏
j∈P

dmT (tj).
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Note that PL is pairing iff (P0 is pairing and L = 0) iff for all P , SP has a single
partition which is the pairing of a set of two elements. Therefore by the inductive
hypothesis (namely, (4.5) for smaller m)

I2 = 1PL is pairingσ
m + o(1).

It remains to verify that |I1 − I2| = o(1). To this end, we note that S(S) ⊂ S′(S) and

S′(S) \S(S) =

|P0|−1⊔
L′=L

⊔
P ′0>P ′2>...>P ′L′ :

∀`=0,...,L:P ′`≤P`, P ′L′<PL

S(〈P ′0, ...,P ′L′〉).

Now the inductive hypothesis, namely (4.6) applied with S ′ = 〈P ′0, ...,P ′L′〉 as in the
previous display and with Q = PL, implies that |I1 − I2| = o(1) (indeed, since P0 does
not contain singletons, PL does not contain singletons either and since P ′L′ has strictly
less atoms than PL, it follows that P ′L′ cannot be pairing). We have verified (4.5).

The proof of (4.6) is similar. Consider first the case where PL is pairing. In this case
Q = PL since Q does not contain singletons and so the left hand side of (4.6) is I1.
Thus (4.6) follows as above.

Next, consider the case where PL is not pairing. We need to show that

Ī2 = o(1), Ī1 − Ī2 = o(1)

where

Ī1 =

∫
t̄∈S(S)

βQ(t̄)dmm
T (t̄), Ī2 =

∫
t̄∈S′(S)

βQ(t̄)dmm
T (t̄)

(note that the difference between Īj and Ij is that PL is replaced by Q). To bound Ī2

we write it as

Ī2 =
∏
P∈PL

∫
S(SP )

βQ(P )(tj, j ∈ P )
∏
j∈P

dmT (tj)

where Q(P ) denotes the restriction of Q to P and apply the inductive hypothesis
(noting that at least one atom of PL has size greater than 2 and so the corresponding
integral is in o(1), while all other integrals are (at least) bounded).

The estimate Ī1 − Ī2 = o(1) is proven similarly using the fact that Q ≥ PL > P ′L′ .
This completes the proof.

5. Functional CLT

5.1. Multidimensional observables.

Corollary 5.1. Theorem 2.3 remains valid if At,Y are Rp valued functions for some
p > 1, provided that condition (c) is updated to require that the matrix VT with
components

(VT )α,β =

∫
(ST )(α)(x)(ST )(β)(x)dµ(x)

satisfies lim
T→∞

VT = σ2 and the conclusion is convergence to the p-dimensional Gaussian

law with covariance matrix σ2.
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Proof. By the Cramér-Wold Theorem, it suffices to show that for each ξ ∈ (Rp)∗ the
product 〈ξ, ST 〉 converges to a centered normal random variable with variance
σ2
ξ = 〈σ2ξ, ξ〉. This follows, since for each ξ the assumptions of Theorem 2.3 are satisfied

for At,T,ξ = 〈ξ, At,T 〉 with the asymptotic variance σ2
ξ . �

5.2. Følner sets.

Theorem 5.2. Let ST =
∫
DT

A(Gtx)dt where DT ⊂ Rd is an increasing (DT1 ⊂ DT2 for

T1 ≤ T2) Følner sequence, such that Vol(DT ) = T and µ(A) = 0. Then (WT (uT ))u≥0 =(
1√
T
SuT

)
u≥0

converges weakly to a Brownian Motion with asymptotic variance

(5.1) σ2 =

∫
Rd

µ(A(x)A(Gtx))dt.

Proof. Step I. The fact that ST√
T

converges to normal distribution is proven in [1]. We

repeat the argument since it will be used at steps II and III. We verify the assumptions

of Theorem 2.3. Let mT =
LebDT√

T
. Then (a) is evident. To check (b), note that for each

K, t, mT (t,K lnT ) ≤ C(K) lnd T√
T
, so

1√
T

∫
DT

mr−1
T (t,K lnT )dt ≤ Vol(DT )√

T
×
(
C(K) lnd T√

T

)r−1

→ 0

as r > 2. To check (c), we note that

VT =
1

T

∫∫∫
M×DT×DT

A(Gt1x)A(Gt2x)dµ(x)dt1dt2.

Denote ρ(t) =
∫
A(x)A(Gtx)dµ(x). Fix a large R and split this integral into two parts.

(i) The integral over ‖t1 − t2‖ > R is bounded by

1

T

∫
DT

(∫
Rd\B(t1,R)

|ρ(t2 − t1)|dt2
)
dt1 ≤ Ce−cR

by the exponential mixing.
(ii) The integral over ‖t1 − t2‖ ≤ R is equal to

1

T

∫
DT

(∫
B(t1,R)

ρ(t2 − t1)dt2

)
dt1 + εR,T .

The first term equals to

Vol(DT )

T

(∫
B(0,R)

ρ(t)dt

)
=

∫
B(0,R)

ρ(t)dt,

while the error term is bounded by

|εR,T | ≤ ‖A‖2
C0 ×

1

T

∫
B(0,R)

Vol(DT \ (DT + u))du→ 0

since DT is a Følner sequence.
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Taking R to infinity we obtain that lim
T→∞

V (ST )

T
=

∫
Rd

ρ(t)dt proving (5.1).

Step II. Convergence of finite dimensional distributions. We need to
show that for each u1 < u2 < . . . uk

Su1T√
T
,
Su2T − Su1T√

T
, . . . ,

SukT − Suk−1T√
T

are asymptotically independent Gaussian random variables. By Step I and by the
properties of the multivariate Gaussian law, it is sufficient to check that for each

0 ≤ u1 < u2 ≤ u3 < u4,
Su2T

−Su1T√
T

and
Su4T

−Su3T√
T

are asymptotically uncorrelated.

Notice that for u1, u2, u3, u4 as above, we have

1

T
µ((Su2T − Su1T )(Su4T − Su3T )) =

1

T

∫
(Du4T

\Du3T
)×(Du2T

\Du1T
)

ρ(t2 − t1)dt1dt2

Splitting this integral as in Step I and using that the terms with ‖t2−t1‖ < R contribute
at most

‖A‖2
C0

T

∫
Du2T

Vol(B(t1, R) \Du2T )dt1,

which tends to zero due to the Følner condition, we conclude the proof.

Step III. Tightness. By a standard argument, it is enough to verify tightness for
u ∈ [0, 1]. Denote

AK,γ = {W : [0, 1]→ R : ∀u1, u2 ∈ [0, 1] |W(u2)−W(u1)| ≤ K|u2 − u1|γ}.
We shall show that if γ < 1

4
, then for every ε > 0 there is K such that for large T ,

P(WT 6∈ AK,γ) ≤ ε.

We say that [t1, t2] is a diadic interval, if t1 = j
2m
, t2 = j+1

2m
for some m ∈ N and

j ∈ 0, . . . , 2m − 1. It suffices to prove that with probability 1− ε it holds that for each
diadic interval

(5.2) |WT (u2)−WT (u1)| ≤ K̄|u2 − u1|γ

since in this case WT (·) ∈ AK,γ for a sufficiently large K > K̄ as can be seen by
decomposing an arbitrary interval into diadic intervals. Let L = |u2 − u1|T.

We claim that

(5.3) E
(
(Su2T − Su1T )4

)
≤ CL2.

To prove this claim, denote ∆ = Su2T − Su1T . In the proof of (4.1) in Section 4 we saw
that

E
(
∆4
)

= 3(E(∆2))2(1 + o(1)).

In the present situation we do not need precise asymptotics of E(∆2) in case L � T ,
instead, we use the upper bound

E(∆2) ≤
∫
Du2T

\Du1T

∫
Rd

ρ(t2 − t1)dm(t1)dm(t2) ≤ CVol(Du2T \Du1T ) = CL

which proves (5.3)
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Next, (5.3) and the Markov inequality implies

P
(
∃j < 2m :

∣∣∣∣WT

(
j + 1

2m

)
−WT

(
j

2m

)∣∣∣∣ ≥ K̄2−mγ
)

≤
2m−1∑
j=0

P
(∣∣∣S j+1

2m
T − S j

2m
T

∣∣∣ ≥ K̄2−mγ
√
T
)
≤ C

2(4γ−1)m

K̄4
.

Summing over m ≥ 1 and then choosing K̄ = K̄(ε), we obtain that (5.2) holds for all
dyadic intervals with probability 1− ε. The tightness follows. �

Remark 5.3. The condition that γ < 1
4

was imposed since we use the fourth moment
in the argument above. Considering higher moments one can make γ arbitrarily close to
1/2 which is an optimal result. Namely, using the estimate E(∆2p) ≤ CLp one obtains
the bound

P
(
∃j < 2m

∣∣∣∣WT

(
j + 1

2m

)
−WT

(
j

2m

)∣∣∣∣ ≥ K̄2−mγ
)
≤ 2m(1+p(2γ−1))

K̄2p

which decays exponentially in m if p is sufficiently large and γ < 1/2. However, taking
γ < 1/4 is sufficient for proving tightness.

5.3. Brownian sheet. Recall that the Brownian sheet is a Gaussian process
{W (u1, u2, . . . , ud)}uj∈R+ such that E(W (u1, u2, . . . , ud)) = 0 and

Cov(W (u′1, u
′
2, . . . , u

′
d),W (u′′1, u

′′
2, . . . , u

′′
d)) = σ2

d∏
j=1

min(u′j, u
′′
j ).

Let WT (s1, s2, . . . sd) =
1

T d/2

∫
u∈

∏
j [0,sjT ]

A(Guy)du.

Theorem 5.4. WT converges weakly as T →∞ to a Brownian sheet.

Proof. The proof of this result is similar to the proof of Theorem 5.2 so we just sketch
the argument.

(I) Similar to step I in the proof of Theorem 5.2 we obtain that WT (s1, s2, . . . sd) is

asymptotically normal with zero mean and variance T−dVol

(
d∏
j=1

[0, sjT ]

)
σ2 =

(
d∏
j=1

sj

)
σ2

where σ2 is given by (5.1).
(II) Similarly to Step II in the proof of Theorem 5.2 we obtain that

lim
T→∞

Cov(WT (u′1, . . . , u
′
d)WT (u′′1, . . . u

′′
d)) =

d∏
j=1

min(u′j, u
′′
j )σ

2.

(III) We say that [(u′1, . . . u
′
d), (u

′′
1, . . . u

′′
d)] is a diadic segment if there is ` ∈ {1, . . . d}

and m ∈ N such that u′` = j
2m
, u′′` = j+1

2m
, and for all i 6= `, u′i = u′′i and 2mu′′i ∈ N.

Similarly to Remark 5.3, one can show that for each ε > 0 there exist K̄ and γ > 0
such that with probability 1− ε , for each diadic segment

|WT (u′′1, . . . u
′′
d)−WT (u′1, . . . u

′
d)| ≤ K̄|u′′` − u′`|γ.
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Joining every two points by a union of diadic segments we see that with probability
1− ε it holds that for each (u′1, . . . u

′
d), (u

′′
1, . . . u

′′
d) ∈ [0, 1]d we have

|WT (u′′1, . . . u
′′
d)−WT (u′1, . . . u

′
d)| ≤ K

d∑
j=1

|u′′j − u′j|γ.

This shows that the family WT (·) is tight and completes the proof of the theorem. �

5.4. Limiting Gaussian field.

Lemma 5.5. Let CT = [0, T ]d and φ : C1 → R be a continuous function. Denote

W φ
T =

∫
CT

A(Gt(x))φ(t/T )dt then W φ
T /T

d/2 converges as T → ∞ to a normal random

variable with zero mean and variance σ2‖φ‖2
L2 where σ2 is given by (5.1).

Proof. We verify the conditions of Theorem 2.3 with mT = T−d/2× the Lebesgue mea-

sure on CT and At = φ(t)A. Condition (b) follows since m(B(t, R lnT )) ≤ C(R) lnd T
T d/2 .

Condition (c) follows since

VT =
1

T d

∫
t1,t2∈CT

µ(A(Gt1x)A(Gt2x))φ(t1/T )φ(t2/T )dt1dt2

=
1

T d

∫
t1,t2∈Ct

|t1−t2|≤ln2 T

µ(A(Gt1x)A(Gt2x))φ(t1/T )φ(t2/T )dt1dt2 + o(1)

=
1

T d

∫
t1,t2∈Ct

|t1−t2|≤ln2 T

µ(A(x)A(Gt2−t1x))φ2(t1/T )dt1dt2 + o(1)

=
1

T d

∫
t∈CT ,s∈Rd

µ(A(x)A(Gsx))φ2(t/T )dtds+ o(1) = σ2

∫
C1

φ2(t)dt+ o(1)

where the second and the fourth line follow by exponential mixing and the third line
follows by the uniform continuity of φ. �

Corollary 5.6. The family {W φ
T }φ∈C2d converges as T → ∞ to a Gaussian random

field Wφ on C2d(C1) with zero mean and covariance Cov(Wφ,Wψ) = 〈φ, ψ〉L2 .

Proof. The convergence of finite dimensional distributions holds because by Lemma 5.5

for any a1, . . . , ak, φ1, . . . φk W
∑

j ajφj
T is asymptotically normal with zero mean and

variance

∥∥∥∥∥∑
j

ajφj

∥∥∥∥∥
2

L2

. To prove tightness we will show that for each ε there is a finite

dimensional space V such that with probability 1 − ε for each φ ∈ C2d(C1) we have∣∣∣W φ
T −W

πV (φ)
T

∣∣∣ ≤ ε‖φ‖C2d . For n ∈ Zd denote en(t) = exp

(
2πi

d∑
j=1

njtj

)
. Using the

same argument as in Remark 5.3 one can show that for each κ > 0 there is N0 such
that with probability 1 − ε if n satisfies maxj |nj| ≥ N0 then |W en

T | ≤ nκ. Take κ < 1

and V = span(en : max
j
|nj| ≤ N0). Let ψ = φ − πV φ. Then ψ =

∑
n∈I

anen(t) where



12 D. DOLGOPYAT, C. DONG, A. KANIGOWSKI, AND P. NÁNDORI

I includes the terms satisfying maxj |nj| > N0. Note that ‖an‖ ≤ CΠ−2(n)‖ψ‖ where

Π(n) :=
∏
j

(|nj|+ 1). It follows that with probability 1− ε

|Wψ
T | =

∣∣∣∣∣∑
n∈I

anW
en

∣∣∣∣∣ ≤ C
∑
n∈I

Πκ−2(n).

The last sum is smaller than ε if N0 is large enough. �

6. Applications.

We say that a function w : Zd → R is selfaveraging if the limit w̄ =
1

Nd

∑
CN

w(n)

exists where CN denotes the cube [0, N ]d.

Theorem 6.1. Let w : Zd → R be a bounded function such that for each m the
map wm(n) = w(n)w(n + m) is selfaveraging. Let SN =

∑
n∈CN

w(n)A(Gny). Then SN

Nd/2

converges as N →∞ to normal distribution with zero mean and varaince

(6.1) σ2 =
∑
m∈Zd

wm ρ(m),

where ρ(m) = µ(A(y)A(Gmy)).

Proof. We define mN =
1

Nd/2

∑
nj∈[0,N ]

δn. Then property (a) is evident, (b) is shown at

the first step of the proof of Theorem 5.2.
It remains to prove property (c). We have

V (SN)

Nd
=

1

Nd

∑
n∈CN

∑
m∈Zd

µ(A(y)A(Gmy))wm(n)1n+m∈CN
dµ(x) =

∑
m∈Zd

ρ(m)h(m,N)

where h(m,N) =
1

Nd

∑
n∈CN

wm(N)1n+m∈CN
. Note that for each m, h(m,N) ≤ ‖w‖2

∞

and moreover lim
N→∞

h(m,N) = wm because wm are selfaveraging. Thus (6.1) follows by

Dominated Convergence Theorem. �

Corollary 6.2. Let f : Y → Y be exponentially mixing and µ2 be the square of the
Mobius function, that is µ2 is the indicator function of square free numbers. Then for

each smooth zero mean A,
1√
N

N∑
n=1

µ2(n)A(fny) converges to a normal distribution.

The corollary follows since n 7→ µ2(n)µ2(n+m) is self averaging by [4].

Remark 6.3. The above results would also hold for the Möbius function µ provided
it is self averaging. However this property is precisely Chowla’s conjecture [3] for µ
for correlations of order 2 which is widely open. One can also consider logarithmic
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averages, i.e. expressions of the form SN =
∑

n∈[0,N ]

µ(n)A(Gny)√
n

. The above reasoning

can be used to show that SN√
logN

converges to the normal distribution with zero mean

and variance σ2 = µ̃ · µ(A2), where µ̃ = lim
N→∞

1

logN

∑
n∈[0,N ]

µ2(n)

n
. Here we use the fact

that the Möbius functions is logarithmically self averaging, i.e. for every m ∈ Z \ {0},
1

logN

∑
n∈[0,N ]

µ(n)µ(n+m)

n
→ 0, as N →∞, which follows from [5], Theorem 1.3.

Lemma 6.4. Let f : Y → Y be exponentially mixing and A be a smooth zero mean

function. Let SN =
∑
p≤N

A(fpy) where the sum is over primes. Then SN√
N/ lnN

converges

as N →∞ to a normal random variable with zero mean and variance ν(A2).

Proof. Let mN =

√
lnN

N

∑
p≤N

δp. Then (a) is evident. (b) follows because

mN(B(n,K ln ‖mN‖)) ≤ mN(B(n,K lnN)) ≤ CK ln3/2N√
N

.

To prove (c) note that VN =
∑
m∈Z

lnN

N
Q(m,N)ρ(m) where Q(m,N) is the number of

primes p less that N −m such that p + m is a prime. Observe that m-th term in this
sum is O

(
θ|m|
)
. Therefore by Dominated Convergence Theorem it suffices to compute

the limit for each term. Now for m = 0, ρ(0) = µ(A2) while lim
N→∞

lnN Q(0, N)

N
= 1 by

the Prime Number Theorem, while for m 6= 0 lim
N→∞

lnN Q(m,N)

N
= 0 by [2]. �
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