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1.3. Expanding Endomorphisms of the circle. Let E10 : S1 → S1

be given by E10(x) = 10x mod 1.

Exercise 1. Show that there exists a point x such that E10-orbit of x
is neither eventually periodic nor dense.

1.5. Quadratic maps. Let qµ(x) = µx(1 − x). It has fixed points 0
and 1 − 1

µ
. Observe that q−1

µ (0) = {0, 1}, q−1
µ (1 − 1

µ
) = {1 − 1

µ
, 1

µ
}.

Lemma 1. Consider the map f : x → ax2 + bx + c, a 6= 0. Then either
for all x we have xn → ∞ as n → ∞ or f is conjugated to some
qµ, µ > 0.

Proof. By changing coordinates x → −x if necessary we can assume
that a < 0. Then f(x) < x for large |x|. Consider two cases

(1) f(x) < x for all x. Then xn is decreasing so it either has a finite
limit or goes to −∞. Since f has no fixed points the second alternative
holds.

(2) f(x) = x has two (maybe coinciding solutions) x1 and x2. let
x3 be the solution of f(x3) = f(x1) and x4 be the solution of f(x4) =
f(x2). We have

x1 + x2 = −b − 1

a
, x1 + x3 = − b

a
, x2 + x4 = − b

a
.

Hence (x3 −x1)+ (x4 −x2) = −2
a

> 0. So either x3 > x1 or x4 > x2. In
the first case make a change of coordinates y = x−x1

x3−x1
. In this coordintes

f takes the form y → g(y) where g is quadratic with negative leading
term. Also g(0) = 0, g(1) = g(0) = 0. Thus g = qµ for some µ. In the
second case make a change of coordinates y = x−x2

x4−x2
. �

Exercise 2. Let µ = 4. Then I = [0, 1] is invariant. Show that
(a) If x 6∈ I then qn

4 (x) → −∞.
(b) Show that the changes of variables y = 2x−1, y = cos z conjugate

q4|I to a piecewise linear map.
1
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Lemma 2. If 0 < µ < 1 x ∈ R then either
(1) qn

µ(x) → −∞ or
(2) qn

µ(x) → 0 or

(3) qn
µ(x) = 1 − 1

µ
, n ≥ 2.

Proof. There are several cases to consider. (1) x < 1 − 1
µ
, (2) 1 − 1

µ
<

x < 0, (3) 0 < x < 1, (4) 1 < x < 1
µ
, x > 1

µ
. We consider case

(2), others are similar. In this case by induction xn < xn+1 < 0. Let
y = limn→∞ xn. Then qµ(y) = limn→=infty xn+1 = y. So y is fixed. Also
y > x0 > 1 − 1

µ
since we are in case (2). It follows that y = 0. �

Exercise 3. Complete the proof of Lemma 2.

1.6 Gauss map. Let A be 2×2 matrix. Since A(0) = 0 and A moves
lines to lines, it acts on the projective line. Let PA denote this action.
Coordinatizing projective space, by making the coordinate of a line its
intersection with {y = 1} we get

PA(x) =
ax + b

cx + d
, x ∈ R

⋃

{∞} if A =

(

a b
c d

)

.

Note that PAPB = PAB.

Exercise 4. Describe the dynamics of PA. When is PA conjugated to
a rotation?

Let f(x) = {1/x}. Hence x1 = (1/x) − a1 for some a1 ∈ N. Thus

x =
1

a1 + x1
= P0

@

0 1
1 a1

1

A

x1.

Continuing we get

x = P0

@

0 1
1 a1

1

A

x1 = P0

@

0 1
1 a1

1

A

P0

@

0 1
1 a2

1

A

x2 = · · · = PMnxn

where

Mn+1 = Mn

(

0 1
1 an+1

)

.

Denoting the elements of Mn

Mn =

(

An pn

Bn qn

)

we get An = pn−1, Bn = qn−1 and

pn+1 = pn−1 + an+1pn, qn+1 = qn−1 + an+1qn.

Exercise 5. qn ≥ fn where fn is the n-th Fibonacci number.
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Exercise 6. Find all x such that qn = fn.

Lemma 3. pn−1qn − qn−1pn = (−1)n.

Proof.

det(Mn) =
n

∏

j=1

det

(

0 1
1 aj

)

.

�

Lemma 4. pn

qn
→ x, n → ∞. Moreover

∣

∣

∣

∣

x − pn

qn

∣

∣

∣

∣

≤ 1

q2
n

.

Proof. We have
∣

∣

∣
x − pn

qn

∣

∣

∣
=

∣

∣

∣

pn−1xn+pn

qn−1xn+qn
− pn

qn

∣

∣

∣
= x|pn−1qn−qn−1pn|

qn(qn−1xn+qn)

= x
qn(qn−1xn+qn)

(by Lemma 3)

≤ 1
q2
n

(since 0 ≤ xn ≤ 1).

�

Thus for every number |x−p/q| ≤ 1/q2 has infinitely many solutions.

Lemma 5. Suppose that x is an irrational number satisfying the qua-
dratic equation

F (x) = ax2 + bx + c = 0

with integer coefficients. When there is a constant C such that |x −
p/q| ≥ C

q2 .

Proof. Consider two cases
(1) |x − p/q| > 1. Then |x − p/q| > 1/q2 since q > 1.
(2) |x− p/q| ≤ 1. Decompose F (z) = a(z − x)(z − y) where y is the

second root of F. Then

(1) F

(

p

q

)

=
ap2 + bpq + cq2

q2
≥ 1

q2

since the denominator is a non-zero integer. On the other hand
∣

∣

∣

∣

y − p

q

∣

∣

∣

∣

≤ |y| +
∣

∣

∣

∣

p

q

∣

∣

∣

∣

≤ |y|+ |x| + 1

we have

(2)

∣

∣

∣

∣

F

(

p

q

)
∣

∣

∣

∣

≤ |a|
∣

∣

∣

∣

x − p

q

∣

∣

∣

∣

∣

∣

∣

∣

y − p

q

∣

∣

∣

∣

≤ |a|
∣

∣

∣

∣

x − p

q

∣

∣

∣

∣

(|y|+ |x| + 1)

(1) and (2) imply the result. �
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Exercise 7. Let x be an irational root of an equation F (z) = amzm +
am−1z

m−1 + . . . a1z + a0 = 0. Prove that there exists a constant C such
that |x − p/q| ≥ C/qm.

Lemma 3 implies

pn

qn
− pn+1

qn+1
=

(−1)n+1

qnqn+1

pn+1

qn+1
− pn+2

qn+2
=

(−1)n

qn+1qn+1

so
pn

qn

− pn+1

qn+1

=
(−1)n+1

qn+1

(

1

qn

− 1

qn+2

)

.

Corollary 6. p2k/q2k is increasing, p2k+1/q2k+1 is decreasing. In par-
ticular

p2k

q2k
< x <

p2k+1

q2k+1
.

Observe that f(0) is not defined.

Lemma 7. The orbit of x contains 0 if and only if x is rational.

Proof. If xn = 0 then x = pn/qn. Conversely if x is rational then f(x)
is rational with smaller denominator. �

Theorem 1. x is eventually periodic if and only if it is a quadratic
irrational.

Proof. (1) Observe that if x satisfies a quadratic equation then ax2 +
bx + c then xn satisfies the equation Anx

2
n + Bnxn + Cn = 0 where

An = ap2
n−1 + bpn−1qn−1 + c

Bn = 2apn−1pn + b(pn−1qn + qn−1pn) + 2cqn−1qn

Cn = ap2
n + bpnqn + c

We claim that An, Bn and Cn are uniformly bounded so they must
eventually repeat giving eventual periodicity of x. Indeed using the
notation of Lemma 5 we get

|Cn| = q2
n|F (p/q)| = q2

n|a||x − p/q||y − p/q|
≤ q2

n|a|(|y|+ 1)|x − p/q| (|x| < 1)
≤ |a|(|y|+ 1) (Lemma 5)

Likewise |An| ≤ |a|(|y|+ 1).

Exercise 8. Show (e.g. by induction) that b2 − 4ac = B2
n − 4AnCn.

Hence

|Bn| ≤
√

|b2 − 4ac| + 4a2(|y|+ 1)2

Thus x is eventually periodic.
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(2) If x is periodic then for some n

x =
pn−1x + pn

qn−1x + qn
.

Hence x satisfies the equation

qn−1x
2 + (qn − pn−1)x − pn = 0.

Next if

x =
pm−1y + pm

qm−1y + qm

with y periodic then y satisfies a quadratic equation an a computation
similar to the one done part (1) shows that x satisfies a quadratic
equation as well. �

5.12 Markov partitions.

Exercise 9. Show that any linear hyperbolic automorhism of T2 has a
Markov partition.

Exercise 10. Show that no Markov partition of T2 gives a full shift.

Hint. Compare periodic points.

2.4 Expansive transformations.

Exercise 11. Show that no isometry of infinite compact metric space
is expansive.

2.8 Applications of topological dynamics.

Exercise 12. Let T1, T2 . . . TN be commuting homeomorphisms of a
compact metrix space X. Prove that there exist x ∈ X and a sequence
nk → ∞ such that d(x, T nk

j x) → 0 for all j.

Hint. Let F (x) = infn≥1 maxjd(x, Tjx). Let Aε = {F < ε}. Show
that Aε is open and dense.

3.3 The Perron-Frobenius Theorem. A subset K ⊂ realsd is
called a cone if for any v ∈ K, λ > 0 λv ∈ K. Let K be a convex
closed cone satisfying

(K1) K
⋂

(−K) = {0} and
(K2) Any vector u in Rd can be represented as u = v1 − v2 with

vj ∈ K.

Lemma 8. Any line l containing points inside K intersects the bound-
ary of K.
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Proof. Take two points v, u ∈ K
⋂

K. Then l = {zt = tu + (1 − t)v}.
Rewrite zt = v + t(u − v). Let zt ∈ K for all positive t. Since K is a
cone, (v/t) + u − v ∈ K and since K is closed u − v ∈ K. Likewise if
zt ∈ K for all negative t then v − u ∈ K. By (K2) both inclusions can
not be true. �

Let K̃ be a subset of the RP
d−1 consisting of directions having repre-

sentatives in K. Define a distance on K̃ as follows. If ũ1, ũ2 are rays in
K choose b ∈ ũ1, c ∈ u2 and let l be the line through b and c. Let a and
d be the points where l crosses the boundary of K such that a, b, c, d
is the correct order on this line and let t be an affine parameter on l.
Define

dK(u1, u2) = ln

(

(tc − ta)(td − tb)

(tb − ta)(td − tc)

)

.

To see that this distance correctly defined it is enough to consider
the case of the plane since dK only depends on the section of K be
the plane containing u1 and u2. Now let v1 and v2 are two vectors
on the boundary of the cone and u is a vector on the line joining v1

and v2. Thus u = tv1 + (1 − t)v2. Now if we consider another line say
through v′

1 and v′
2 then this line crosses the ray through u at a point

ū = sv′
1 + (1 − s)v′

2. Denoting by × the vector product we get

(v2 + t(v1 − v2)) × (v′
2 + s(v′

1 − v′
2)) = 0

Thus

s =
v′
2 × (v2 + t(v1 − v2))

(v2 + t(v1 − v2)) × (v′
1 − v′

2)
.

That is, the map between the affine parameters corresponding to dif-
ferent lines is fractional linear. Since fractional linear maps preserve
the cross ratio dK is correctly defined.

Exercise 13. Let K be the cone of vecors with non-negative compo-
nents and

KL = {u ∈ K : max
i

ui ≤ L min
i

ui.}

Show that KL has finite dK-diameter.

Theorem 2. Let A be a matrix with positive entries. Then
(a) A has a positive eigenvalue λ;
(b) The corresponding eigenvector v is positive;
(c) All other eigenvalues have absolute value less than λ;
(d) There are no other positive eigenvectors.
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Lemma 9. Let PA be the projecive transformation defined by A. Then
there exists ṽ ∈ K̃ and θ < 1 such that PA(ṽ) = ṽ and for all ũ ∈ K̃

(3) dist(P n
Aũ, ṽ) ≤ Constθn.

Proof of Theorem 2. Let ṽ be as in Lemma 9 and v be a positive vector
projecting to ṽ. Then PA(ṽ) = (ṽ) means that A(v) = λ(v), so A has
positive eigenvector. Take i such that vi 6= 0. Then λ = (Av)i/vi is
positive. Also it v′ is another positive eigenvector then PA(ṽ′) = (ṽ′)
contradicting Lemma 9, so there are no other positive eigenvectors.

We can assume without the loss of generality that ||v|| = 1. Next we
claim that for for all u ∈ R

d there exist the limit

(4) l(u) = lim
n→∞

||An(u)||
λn

and moreover

(5) ||Anu − l(u)λnv|| ≤ Constλnθn.

Indeed assume first that u ∈ K. denote S(ũ) = ||Au||
||u||

(this definition

is clearly independent of the choice of the vector projecting to ũ. We
have

||Anu|| = ||u||
n−1
∏

j=0

||Aj+1u||
||Aju|| = ||u||

n−1
∏

j=0

S(P j
A(u))

= (||u||λn)
n−1
∏

j=0

S(P j
A(u))

S(v)
= (||u||λn) exp

[

n−1
∑

j=0

(

ln S(P j
A(u)) − ln S(v)

)

]

.

Since S is Lipshitz we have

(6)
∣

∣ln S(P j
A(u)) − ln S(v)

∣

∣ ≤ Constθj

which proves (4) with l(u) = ||u||∏∞
j=0 . Moreover the exponential

convergence of (6) implies ||Anu|| = l(u)λn(1+O(θn)). Now by Lemma
9 we have

Anu

||Anu|| = v + O(θn)

This proofs (5) for positive vectors. Now (5) in general case follows by
(K2). From the properties of limit it follows that l is a linear functional.
Let L = Ker(l). Then L is d − 1 dimensional hypersurface and since
l(A(u)) = λl(u), L is A-invariant. Thus all other eigenvectors lie in L.
It follows from (5) that

||An|L|| ≤ Constλnθn

so all eigenvalues are less than λθ in asbsolute value. �
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Proof of Lemma 9. For any u in K we have

min
ij

Aij max
j

uj ≤ (Au)i ≤ d max
ij

Aij max
j

uj

so A(u) ∈ KL with L = d
maxij Aij

minij Aij
. Now KL is compact in both dist and

dK metrics so it is enough to establish (3) for dK .

Lemma 10. Given D there exists θ < 1 such that for and d for any
linear map A : Rd → Rd, such that A(K) ⊂ K and PA(K̃) has diameter
less than D in K̃ d(PAṽ1, PAṽ2) ≤ θd(ṽ1, ṽ2).

Proof of Lemma 10. Since the definition of dK(ṽ1, ṽ2) deepends only on
the section of K by the plane through v1 and v2 it is enough to establish
the result for linear map from plane to plane. Now on the plane we can
use y/x as a coordinate for the point (x, y). In this case K̃ = [0,∞]
and PA is a fractional linear transformation. Also for z1 < z2

(7) dK(z1, z2) = ln

(

z2 − 0

z1 − 0
lim
z→∞

z1 − z

z2 − z

)

= ln
z2

z1
=

∫ z2

z1

dz

z
.

So we have to prove that any fractional linear transformation s from
[0,∞] to itself such that s(∞)/s(0) < eD contracts distance (7) by a
factor which depoends only on D. Since dilations preserve (7) we can
assume that s(∞) = 1 thus we have

w := s(z) =
z + a

z + b

with a/b > e−K . We have

dw

dz
=

b − a

(z + b)2

so that
dw

w
=

z(b − a)

(z + a)(z + b)

dz

z
But

z(b − a)

(z + a)(z + b)
≤ b − a

b
< 1 − e−D.

It follows that

dK(s(z1), s(z2)) =

∫ w2

w1

dw

w
=

∫ z2

z1

z

w

dw

dz

dz

z

< (1 − e−D)

∫ z2

z1

dz

z
< (1 − e−D)d(z1, z2).

�

(3) follows from Lemma 10 and contraction mapping principle. �
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Theorem 3. Let A be the matrix with non-negative entries such that
for all i, j there exists n such that An

ij > 0. Then there exist lambda > 0
and c such that

(a) λe2πir/c are eigenvalues of A.
(b) Ac has c linearly independent positive eigenvectors with eigenval-

ues λc.
(c) All other eigenvalues have absolute value less than λ
(d) There are no other positive eigenvectors.

Proof. Let Zij = {n : An
ij > 0. Observe that Zij + Zjk ⊂ Zik in partic-

ular Zii are semigroups.

Lemma 11. If a, b ∈ Zii let q = gcd(a, b). Then for large N Nq ∈ Zii.

Proof. We have q = ma − nb for some m, n ∈ N. Write N = Lb + k
then Nq = (Lq − n)b + mka. �

Corollary 12. Let ci be the greatest common divisor of all numbers in
Zii. Then Zii = ciN−finitely many numbers.

Proof. Let c
(1)
i be any number in Zii. Then c

(1)
i N is in Zii and if there are

no other numbers in Zii then we are done. Otherwise if b
(1)
i ∈ Zii−c

(1)
i N

then let c
(2)
i = gcd(c

(1)
i , b

(1)
i ). Then c

(2)
i N− a finite set is in Zii and

if there are no other numbers in Zii then we are done. Otherwise if
b
(1)
2 ∈ Zii−c

(2)
i N then let c

(3)
i = gcd(c

(2)
i , b

(2)
i ) etc. Since c

(k)
i is decreasing

it must stabilize. �

Lemma 13. (a) Any two numbers in Zij are comparable mod ci.
(b) Any two numbers in Zji are comparable mod ci.
(c) ci = c do not depend on i.

Proof. (a) Let n′, n′′ ∈ Zij , n ∈ Zji, m ∈ Zjj then n + n′ = n + n′′ =
n + n′ + m mod ci. This prove (a) and (c). (b) is similar to (a). �

Let Vm = {i : Z1i = m mod c}, Lm = span(ei, i ∈ Vm}. Then There
exists N such that AN

ij > 0 if and only if i and j belong to the same

Vm. Thus by Theorem 2 AN has uniques eigenvector v1 on L1 with
positive eigenvalue ν. Let vi = Ai−1v1. Since A commutes with AN

vi are eigenvectors of AN and since A has non-negative entries vi are
non-negative. Also vi ∈ Li mod c. In particular by uniqueness of the
positve eigenvector Acv1 = ν̄v1. Let λ = ν̄1/c. Then Ac(vi) = λc(vi).

Let wr =
∑c

j=1
e−2πijr/c

λj vj. Then Awr = e2πjr/cwr. Finally by Theorem

2 all other eigenvalues of AN are less than ν = λN in absolute value.
Theorem 3 is proven. �
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4.10 Weak Mixing.

Let U be a unitary operator and φ be a unit vector. Let

Rn =< Unφ, φ > .

Lemma 14. There is a probability measure σφ on [0, 1] such that

Rn =

∫

e2πiudσ(u).

Proof. For 0 < ρ < 1 let

f(u, ρ) =

∞
∑

m=0

∞
∑

n=0

Rn−me2πi(m−n)ρn+m.

Since Rn−m =< Unφ, Umφ > it follows that

f(u, ρ) = ||
∑

n

ρne−2πiuUnφ||2

is a real positive number. Estimateing terms in () by their absolute
values we get |f | ≤ (1 − ρ)−2. Thus f ∈ L∞(du) ⊂ L2(du). Let us
examine its Fourier series. We have

f =
∑

k

Rke
−2πiu

∑

m

ρk+2m =
∑

k

e−2πkRkρ
k(1 − ρ2)−1.

Consider measures

dσρ = (1 − ρ2)f(u, ρ)du.

We have
∫

e2πiudσρ(u) = Rkρ
k.

Hence as ρ → 1
∫

e2πiudσρ(u) → Rk.

Since linear combinattions of e2πiu are dense in C(S1) it follows that
for any continuous function A

∫

A(u)dσρ(u) → σ(A).

�

Exercise 14. Consider a full two shift with Bernoulli measure (that is
the measure of each cylinder of size n is (1/2)n) and let

φ(x) =
√

2 (Ix0=1,x1=1 − Ix0=0,x1=0) .

Find the spectral measure of φ with respect to U(φ) = φ(σx).
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Exercise 15. Let Φn(u) = 1
n2

∑n
j,k=1 e2πi(j−k)u. Show that Φn(u) → 0,

if u 6= 0 (and Φn(0) = 1).

5.1 Expanding endomorphisms.

Let f : S1 → S1 be a map such that |f ′| ≥ θ−1 for some θ < 1. We call
such map expanding. Given any diffeomorphism of S1 let ḡ : R → R

be its lift, that is π ◦ ḡ = g ◦ π, where π : R → S1 is the natural
projection. Define deg(g) = ḡ(x + 1)− ḡ(x) (this number is easily seen
to be independent of x and the lift ḡ). Let L be the space of maps
τ̄ : R1 → R1 which are lifts of degree 1 maps. That is τ̄ −x is periodic.
We endow L with the distance

d(τ̄1, τ̄2) = sup
x∈R

|τ̄1(x) − τ̄2(x)| = max
x∈[0,1]

|τ̄1(x) − τ̄2(x)|.

Lemma 15. Let f be an expanding map and g be a map of the same
degree. Then given any two lifts f̄ and ḡ there is unique τ̄ ∈ L such
that f̄ ◦ τ̄ = τ̄ ◦ ḡ.

Proof. τ̄ must satisfy τ̄(x) = f̄−1(τ̄(ḡ(x))). Define K : L → L by
K(τ̄)(x) = f̄−1(τ̄(ḡ(x))). Since f is expanding it follows from the Inter-
midiate Value Theorem that |f̄−1(x1) − f̄−1(x2)| ≤ θ|x1 − x2|. Hence
d(K(τ̄1),K(τ̄1)) ≤ θd(τ̄1, τ̄2). Now the result follows from the contrac-
tion mapping principle. �

Theorem 4. Any two expanding maps of the same degree are topolog-
ically conjugated.

Proof. Let f̄1 andf̄2 be lifts of two expanding maps. By Lemma 15
there are maps τ̄1, τ̄2 such that τ̄1 ◦ f̄1 = f̄2 ◦ τ̄1 and τ̄2 ◦ f̄2 = f̄1 ◦ τ̄2.
Let τ̄ = τ̄2 ◦ τ̄1. Then τ̄ ◦ f̄1 = f̄1 ◦ τ̄ . By uniquesness part of Lemma 15
τ̄2 ◦ τ̄1 = id. Likewise τ̄1 ◦ τ̄2 = id. �

Exercise 16. Show that this conjugacy is typically NOT C1.


