
REGULARITY OF ABSOLUTELY CONTINUOUS INVARIANT
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Abstract. Let f : [0, 1]→ [0, 1] be a piecewise expanding unimodal map of class Ck+1,
with k ≥ 1, and µ = ρdx the (unique) SRB measure associated to it. We study the
regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff
dimension, but is uncountable if the critical orbit of f is dense. This improves on a work
of Szewc (1984). We also obtain results about higher order differentiability of ρ in the
sense of Whitney.
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1. Introduction

An important discovery of the 20th century mathematics is that many deterministic
systems exhibit stochastic behavior. The stochasticity is caused by exponential diver-
gence of nearby trajectories. This instability causes many important objects associated
to dynamical systems, such as attractors and invariant measures, to be fractal.

Piecewise expanding maps of the interval are among the simplest and most studied ex-
amples of chaotic systems. They admit absolutely continuous invariant measures (a.c.i.m)
[10] which enjoy exponential decay of correlations, the Central Limit Theorem for Hölder
observables, and at least one of them is ergodic (see e.g. [1, 19]).
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In this paper, we consider a class of simplest piecewise expanding maps, so called
piecewise expanding unimodal maps (PEUMs)1 of the unit interval. PEUMs are piecewise
expanding maps with only two branches. We study regularity of the density of a.c.i.m
for PEUMs. A classical result of A. Lasota and J. Yorke [10] says that the density, which
we denote by ρ, is of bounded variation. Recall that a bounded variation function is
differentiable almost everywhere (See e.g., [6], Corollary 6.6). Therefore the set of non-
differentiability of ρ is a natural fractal set associated to our PEUM. Let us describe the
previous results about the differentiability. In the smooth case, R. Sacksteder [15] and K.
Krzyzewski [9] proved that when a map f is expanding of class Ck, with k ≥ 1, then ρ is
of class Ck−1. Later, B. Szewc [18] showed that if f is a piecewise expanding continuous
map of class Ck+1 with finitely many critical points (those points where the derivative of
f is not defined), with k ≥ 1, then a density function will belong to the space

{φ ∈ BV [0, 1] : φ ∈ Ck in [0, 1]\B},
where B is the union of the closures of the critical orbits. In this paper, we improve
on k = 1 case of the Szewc’s theorem for PEUMs by showing that the set where ρ is
differentiable is larger. Namely, we need to discard not all points in the closure of the
critical orbit, but only points which are approached by the critical orbits exponentially
fast. We also obtain a partial converse, by showing that if x is approached exponentially
fast by the critical orbit and the exponent is sufficiently large then ρ is not differentiable
at x.

We also show that a similar improvement is possible for k > 1 if we consider smoothness
in the sense of Whitney, that is, we study the points where the density admits a Taylor
expansion of order k. (Of course Szewc’s result is optimal for classical smoothness since
the set where the density is not differentiable is dense in B). This leads to the question
of describing the Taylor coefficients of the density. Here we make use of the recent result
of V. Baladi [2] 2 saying that the density ρ belongs to the set

BV1 = {φ ∈ BV [0, 1] : there exists ψ ∈ BV [0, 1] s.t. φ′ = ψ almost everywhere }.
In other words, the derivative of ρ coincides with a function of bounded variation almost

everywhere. Accordingly, we can differentiate that function almost everywhere and call
the result the second derivative of ρ. We then show that this procedure can be continued
recursively and that the resulting functions indeed provide the Taylor coefficients of ρ.

More precisely, the main results of our paper can be summarized as follows. Let f be
a PEUM such that both branches of f are Ck+1, with k ≥ 1.

Theorem 1.1. There is a sequence of functions ρ0, ρ1, . . . , ρk ∈ BV such that ρ0 = ρ and
for j < k, ρ′j = ρj+1 almost everywhere.

Theorem 1.2. (A) The set of points where ρ is non differentiable has Hausdorff di-
mension zero.

1The precise definition of PEUMs is given at the beginning of Section 2.
2Baladi was motivated by the question of regularity of invariant measure with respect to parameters

raised in the work of D. Ruelle [12, 13, 14]. Applications of Baladi’s result to Ruelle’s question are
described in [2, 3, 4]. Our results also have applications to the regularity question as will be detailed
elsewhere.
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(B) If the critical orbit is dense then the set of points where ρ is non differentiable is
uncountable.

(C) There is a set N such that HD(N ) = 0 and ρ is k differentiable in the sense of
Whitney on [0, 1]−N . That is, if x̄ 6∈ N then

ρ(x)− ρ(x̄) =
k∑

m=1

ρm(x̄)

m!
(x− x̄)m + o

(
(x− x̄)k

)
.

Note that since [0, 1]−N is not closed, ρ in general can not be extended to a smooth
function on [0, 1].

Remark 1.3. The set N is typically much smaller than the set B used in [18]. Indeed, if
ft is a family of PEUMs satisfying a certain transversality condition then B(ft) contains
an interval for almost all t (see e.g. [16, 17]).

The paper is organized as follows:
In Section 2, we give the necessary definitions. In particular, we introduce a special

family of transfer operators used in the proof of Theorem 1.1. We then prove several
auxiliary facts of independent interest.

Section 3 starts with some explicit formulas for the first and second derivatives 3 of ρ
which are proven to belong to BV [0, 1]. Then we extend our analysis to repeated differ-
entiation of arbitrary order proving Theorem 1.1.

Section 4 begins with some results on the regularity of the saltus part of ρ. 4

Then we show that the regular part of ρ is not only continuous but also absolutely
continuous. In the remaining subsections we prove Theorem 1.2. That is we show that ρ
admits a Taylor expansion after we remove an exceptional set of zero Hausdorff dimension.

2. Preliminaries

2.1. Piecewise Expanding Unimodal Maps. We work with mixing piecewise expand-
ing unimodal maps. f : [0, 1]→ [0, 1] is a piecewise expanding unimodal map (PEUM) if
there is a point c called the critical point, a number ε > 0 and a constant λ > 1 such that

(1) f(x) =

{
f1(x) if x ≤ c

f2(x) if x ≥ c

where f1 is a C2 map defined on [0, c + ε] and f2 is a C2 map defined on [c − ε, 1] such
that f1(c) = f2(c) and |Dfj(x)| ≥ λ for all x from the domain of fj.

PEUMs have unique a.c.i.m. [10] which is ergodic (see e.g. [19]). Let us denote by ρ
the density of the a.c.i.m. ρ is a function of bounded variation.

From now on, λ will mean λ := inf
x 6=c
|Df(x)|.

3The derivatives are understood in the sense of Theorem 1.1.
4The density ρ can be written as the sum of two functions, namely, the saltus part which is a sum of

pure jumps and the regular part which is continuous. Details are given in Section 4.
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2.2. Auxiliary facts and Transfer Operators. Denote by ξ(z) = D2f(z)
Df(z)

. In the argu-

ments of this section we will need to represent D(|Dfmy|) as a sum. Namely we have

D(|Dfmy|) =
|Dfmy|
Dfmy

m−1∑
j=0

ξ(f jy)Df jy and D(Dfmy) =
m−1∑
j=0

ξ(f jy)Df jy.

Both formulas are easy consequences of the chain rule.
We need to introduce a family of transfer operators acting on the space BV [0, 1] of

functions of bounded variation. BV [0, 1] it is a Banach space with the norm ‖ · ‖BV =
‖ · ‖∞+ var(·), where ‖ · ‖∞ is the usual supremum norm and var(·) is the total variation
(cf. [6], page 116).

The first operator in our family is the Perron-Frobenius operator L(φ)(x) =
∑
f(y)=x

φ(y)

|Df(y)|
.

More generally, we shall use the following transfer operators acting on BV [0, 1].

Definition 2.1. For φ ∈ BV [0, 1], if m ≥ 1, define the operator Lm(φ) by

Lm(φ)(x) =
∑
f(y)=x

φ(y)

(Df(y))m|Df(y)|
,

where m is a nonnegative integer.

Definition 2.2. If i,m ∈ N and h is a real-valued function, define Di
m(h) = Lim(h). Let

k, i1, . . . , ik and m1 > · · · > mk be positive integers. For functions h1, . . . , hk, define
Di1,...,ik
m1,...,mk

at (h1, . . . , hk) inductively by

Di1,...,ik
m1,...,mk

(h1, . . . , hk) = Di1
m1

(h1 ·Di2,...,ik
m2,...,mk

(h2, . . . , hk)).

Lemma 2.3. (see [19, Lemma 3.8]) There exists C1 > 0 and λ̄1 > 1 such that for all
i,m ∈ N

var

(
1

|Df i|m

)
≤ C1λ̄

−im
1 ,

where if (Df i)m is not defined at x, then it is taken to be equal to 1
2
(limy→x+(Df i)m(y) +

limy→x−(Df i)m(y)).

We will use Lasota-Yorke inequlity (see e.g. [19, Proposition 3.9]) saying that there
exist constant C0 > 0 and γ < 1 such that

var(Lnh) ≤ C0 [‖h‖∞ + γnvar(h)] .

Since f is mixing, there is a constant θ < 1 such that

Ln(h) =

[ ∫
h(z)dz

]
ρ(x) +O(θn‖h‖BV ).

(see e.g.[1], Proposition 3.5, item 4). In particular, we have that ‖Ln(1)‖∞ is bounded
above by a constant M , which does not depends on n. Then, we have the following:

Proposition 2.4.



REGULARITY OF MEASURES FOR PIECEWISE EXPANDING MAPS 5

(a) ‖Di1,i2,...,ik
m1,m2,...,mk

(h1, . . . , hk)‖∞ ≤Mk(λ−i1)m1(λ−i2)m2 · · · (λ−ik)mk‖h1‖∞‖h2‖∞ · · · ‖hk‖∞.

(b) There are constants M̄ > 0 and λ̄ > 1 such that if h1, . . . hk ∈ BV then

‖Di1,i2,...,ik
m1,m2,...,mk

(h1, . . . , hk)‖BV ≤ M̄(λ̄−i1)m1(λ̄−i2)m2 · · · (λ̄−ik)mk‖h1‖BV ‖h2‖BV · · · ‖hk‖BV .

Proof. (a) We use induction on k. For k = 1 we have

|Lim(h)(x)| =
∣∣∣∣ ∑
f iy=x

h

(Df i(y))m|Df i(y)|

∣∣∣∣ ≤ ∑
f iy=x

‖h‖∞
|Df i(y)|m|DF i(y)|

≤ ‖h‖∞
λim
‖Li(1)‖∞ ≤

M‖h‖∞
λim

.

Now, let us suppose the result is true for k − 1. Then, we have

|Di,i2,...,ik
m,m2,...,mk

(h1, . . . , hk)(x)| = |Lim(h1 D
i2,...,ik
m2,...,mk

(h2, . . . , hs))(x)|

≤
∣∣∣∣ ∑
f iy=x

h1(y) Di2,...,ik
m2,...,ms

(h2, . . . , hk)(y)

(Df i(y))m|Df i(y)|

∣∣∣∣ ≤ λ−im
∑
f iy=x

‖h1 D
i2,...,ik
m2,...,mk

(h2, . . . , hk)‖∞
|Df i(y)|

≤ λ−im‖h1 D
i2,...,ik
m2,...,mk

(h2, . . . , hk)‖∞‖Li(1)‖∞ ≤ M(λ−i)m‖h‖∞‖Di2,...,ik
m2,...,mk

(h2, . . . , hk)‖∞.

Since we are assuming

‖Di2,...,ik
m2,...,mk

(h2, . . . , hk)‖∞ ≤Mk−1(λ−i2)m2 · · · (λ−ik)mk‖h2‖∞ · · · ‖hk‖∞,

the claim holds for Di,i2,...,ik
m,m2,...,mk

(h1, . . . , hk).
(b) We use induction again on k. Let us prove the statement hold for k = 1. Note that

var(Lim(h)) = var

(
Li
(

h

(Df i)m

))
,

where if (Df i)m is not defined at x, then it is taken to be equal to 1
2
(limy→x+(Df i)m(y) +

limy→x−(Df i)m(y)).

A basic property of var(·) states that if h, h̃ ∈ BV [0, 1], then

(2) var(hh̃) = var(|h|) sup(h̃) + var(h̃) sup(h).

Combining (2), Lasota-Yorke inequality and Lemma 2.3 we obtain that there exist
constants C0, C1 > 0 and 0 < γ < 1 such that

var(Lim(h)) ≤ C0

[
γivar

(
h

(Df i)m

)
+

∥∥∥∥ h

(Df i)m

∥∥∥∥
∞

]
≤ C0

[
γi ‖[(Df i)]−m‖∞var(h) + γivar((|Df i|)−m)‖h‖∞ +

∥∥∥∥ h

(Df i)m

∥∥∥∥
∞

]
≤ C0λ̄

−imvar(h) + C0(C1 + 1)λ̄−im‖h‖∞ ≤ Cλ̄−im‖h‖BV ,(3)
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where C = max{C0, C0(C1 + 1)} and λ̄ = min{λ, λ̄1γ1}. and the last inequlity uses that
var(·) ≤ ‖ · ‖BV and ‖ · ‖∞ ≤ ‖ · ‖BV . (3) along with part (a) implies that

‖Lim(h)‖BV ≤ M̄λ̄−im‖h‖BV ,
where M̄ = max{C,Mk}.

Now, assume the statement holds for k− 1. Then, under our assumption we have that

Di2,...,ikm2,...,mk
(h2, . . . , hk) ≤ M̄1λ̄

−i2m2 · · · λ̄−ikmk‖h2‖BV · · · ‖hk‖BV ,
for some constant M̄1. Let us set D = Di2,...,ikm2,...,mk

(h2, . . . , hk). Hence,

var(Di,i2,...,ikm,m2,...,mk
(h, h2, . . . , hk)) = var(Lim(hD))

≤ Cλ̄−im(var(h1D) + ‖h1D‖∞)

≤ Cλ̄−im(var(h1)‖D‖∞ + ‖h1‖∞var(D) + ‖h1‖∞‖D‖∞)

≤ Cλ̄−im(‖h1‖BV ‖D‖BV + ‖h1‖∞‖D‖BV )

≤ 2Cλ̄−im(‖h1‖BV ‖D‖BV ).

Using our inductive hypothesis, we finally obtain

var(Di,i2,...,ikm,m2,...,mk
(h, h2, . . . , hk)) ≤ M̄λ̄−imλ̄i2m2 · · · λ̄ikmk‖h1‖BV ‖h2‖BV · · · ‖hk‖BV ,

with M̄ = 2CM̄1. The above inequality along with part (a) proves part (b). �

If a series consisting of functions in BV [0, 1] converges to a function g, then the series
of the derivatives of each term does not always converge to the derivative of g. However,
assuming that the series of derivatives converges in L1 we have the following result.

Lemma 2.5. If
∑n

k=1 gk → g in BV and
∑n

k=1 g
′
k → h in L1 then g′ = h a.e.

Proof. Let ε > 0. Then, there exists N > 0 such that, for all n ≥ N ,

‖g −
n∑
k=1

gk‖BV ≤ ε

Since ‖f ′‖L1 ≤ ‖f‖BV for any function f ∈ BV , then

‖g′ −
n∑
k=1

g′k‖L1 ≤ ‖g −
n∑
k=1

gk‖BV ≤ ε

Therefore,
n∑
k=1

g′k converges to g′ in L1, hence g′ = h as claimed. �

Another simple but useful fact is the following.

Lemma 2.6. Let g(s, r) be a function from N× (N ∪ {0}) to R. Suppose that the series
∞∑
i=1

i−1∑
j=0

|g(i− j, j)| converges. Then,
∞∑
i=1

i−1∑
j=0

g(i− j, j) =
∞∑
c=1

∞∑
d=0

g(c, d)
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We leave the proof to the reader.

3. Repeated Derivatives of the density function

3.1. Explicit formulas for the first and the second derivatives. Before analyzing
repeated derivatives of ρ of arbitrary order, we will start by giving explicit formulas for
ρ′ and ρ′′.

Let us define

ρ1 = −
∞∑
i=1

Li1(ξ · ρ)

Note that the series converges in BV by Proposition 2.4 since ρ and ξ belong to BV [0, 1].

Lemma 3.1. (a) Let ρ be the density of the invariant measure of f . Then, ρ′ = ρ1 almost
everywhere.

(b) (Ln1)′(x) converges to ρ1(x) uniformly for x which are not on the orbit of c.

Proof. Since ρ is a fixed point of L, then ρ = Ln(ρ) for all n. Because ρ is of bounded vari-
ation so is Ln(ρ), hence both are differentiable almost everywhere. In fact, differentiating
both sides, we get ρ′ = (Lnρ)′ almost everywhere. Next if h ∈ BV then

(Lnh)′(x) =
∑
fny=x

h′(y)

Dfn(y)|Dfn(y)|
−

∑
fn(y)=x

h(y) ·D(|Dfn(y)|)
|Dfn(y)|2

a. e.

Note that ∣∣∣∣∣ ∑
fny=x

h′(y)

Dfn(y)|Dfn(y)|

∣∣∣∣∣ = |Ln1 (h′)| ≤ λ−n (Ln(|h′|)) (x),

converges to 0 in L1 and almost everywhere. Thus we focus on
∑

fn(y)=x

h(y) ·D(|Dfn(y)|)
|Dfn(y)|2

.

Assuming that y /∈ {c, f(c), . . . , fn−1(c)} for each y with fny = x we have

∑
fn(y)=x

h(y) ·D(|Df(y)|)
|Dfn(y)|2

=
∑

fn(y)=x

h(y)

|Dfn(x)|2
D

( n−1∏
a=0

|Df(fay)|
)

=
∑

fn(y)=x

h(y)

|Dfn(y)|2
|Dfn(y)|
Dfn(y)

n−1∑
a=0

ξ(fa(y))Dfa(y) =
∑

fn(y)=x

h(y)

|Dfn(y)|

n−1∑
a=0

ξ(fa(y))

Dfn−a(fa(y))

=
n−1∑
a=0

∑
fn−a(z)=x

ξ(z)

Dfn−a(z)

∑
fa(y)=z

h(y)

|Dfn(y)|
=

n−1∑
a=0

∑
fn−a(z)=x

ξ(z)

Dfn−a(z)|Dfn−a(z)|
∑

fa(y)=z

h(y)

|Dfa(y)|

=
n−1∑
a=0

∑
fn−a(z)=x

ξ(z)

Dfn−a(z)|Dfn−a(z)|
La(h)(z) =

n−1∑
a=0

Ln−a1 (ξLah)(x)
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=
n∑
i=1

Li1(ξLn−ih)(x) =
∞∑
i=1

ai(n)

where ai(n) = (Li1(ξLn−ih))χi≤n. Proposition 2.4.(a) shows that |ai(n)| ≤ M2

λi
×‖ξLn−ih‖∞.

Since the second factor is less or equal than M2‖ξ‖∞‖h‖∞, it follows that |ai(n)| ≤ Kλ−i

where K does not depend on n or i. Hence, applying Lebesgue’s dominated convergence
theorem (to integration with respect to the discrete measure) we can take the limit n→∞
term-by-term. Since

lim
n→∞

(Ln−ih)(x) =

(∫ 1

0

h(z)dz

)
ρ(x)

both parts (a) and (b) follow. �

At this point, we could get ρ2 by differentiating each term in (3.1). This is possible due
to Lemma 2.5.

Proposition 3.2. The function ρ1 is almost everywhere differentiable and

(4) ρ′1 = 3
∞∑
i=1

∞∑
j=1

Li2(ξLj1(ξρ)) + 2
∞∑
i=1

Li2(ξ2ρ)−
∞∑
i=1

Li2(ξ′ρ)

In particular, there exists ρ2 ∈ BV such that ρ′1 = ρ2 almost everywhere.

Proof. By Lemma 3.1 ρ1 = −
∑∞

i=1 Li1(ξρ) almost everywhere. Therefore by Lemma 2.5

ρ′1(x) = −
∞∑
i=1

( ∑
f iy=x

ξ(y)ρ(y)

Df i(y)|Df i(y)|

)′
= −

∞∑
i=1

∑
f iy=x

(
ξ(y)ρ(y)

Df i(y)|Df i(y)|

)′
almost everywhere. Decompose(

ξ(y)ρ(y)

Df i(y)|Df i(y)|

)′
=

(ξ(y)ρ(y))′

Df i(y)|Df i(y)|︸ ︷︷ ︸
(I)

− ξ(y)ρ(y)(Df i(y)|Df i(y)|)′

(Df i(y))2|Df i(y)|2︸ ︷︷ ︸
(II)

.

Let us first work on (I). We have

∞∑
i=1

∑
f iy=x

(I) =
∞∑
i=1

∑
f iy=x

ξ′(y)Dyρ(y) + ξ(y)ρ′(y)Dy

Df i(y)|Df i(y)|

=
∞∑
i=1

∑
f iy=x

(
ξ′(y)ρ(y)

Df i(y)|Df i(y)|
+

ξ(y)ρ′(y)

Df i(y)|Df i(y)|

)

=
∞∑
i=1

Li2(ξ′ρ+ ξρ′)(x)

By Lemma 3.1
∞∑
i=1

Li2(ξρ′) = −
∞∑
i=1

∞∑
j=1

Li2(ξLj1(ξρ)).
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Therefore

(5)
∞∑
i=1

∑
f iy=x

(I) =
∞∑
i=1

Li2(ξ′ρ)−
∞∑
i=1

∞∑
j=1

Li2(ξLj1(ξρ)).

Now, let us analyze (II).

∞∑
i=1

∑
f iy=x

(II) =
∞∑
i=1

∑
f iy=x

ξ(y)ρ(y)[D(Df iy)|Df iy|+D(|Df iy|)(Df i)(y)]

(Df iy)2|Df iy|2
(Df iy)2|Df iy|2

=
∞∑
i=1

∑
f iy=x

ξ(y)ρ(y)

[
2|Df iy|

∑i−1
j=0 ξ(f

jy)Df jy

]
(Df iy)2|Df iy|2

= 2
∞∑
i=1

i−1∑
j=0

∑
f iy=x

ξ(y)ρ(y)Df jyξ(f jy)

(Df iy)2|Df iy|

Making the change of variable z = f jy, we obtain

∞∑
i=1

∑
f iy=x

(II) = 2
∞∑
i=1

i−1∑
j=0

∑
f iy=x

ξ(y)ρ(y)(Df j)(y)ξ(z)

(Df iy)2|Df iy|

= 2
∞∑
i=1

i−1∑
j=0

∑
f iy=x

ξ(y)ρ(y)(Df j)(y)ξ(z)

(Df i−jz)2(Df jy)2|Df i−jz||Df jy|
= 2

∞∑
i=1

i−1∑
j=0

∑
f iy=x

ξ(y)ρ(y)ξ(z)

(Df i−jz)2Df jy|Df i−jz||Df jy|

= 2
∞∑
i=1

i−1∑
j=0

∑
f i−jz=x

ξ(z)

(Df i−jz)2|Df i−jz|
∑
f iy=z

ξ(y)ρ(y)

Df jy|Df jy|
= 2

∞∑
i=1

i−1∑
j=0

Li−j2 (ξLj1(ξρ)).

By Lemma 2.6

∞∑
i=1

i−1∑
j=0

Li−j2 (ξLj1(ξρ)) =
∞∑
i=1

∞∑
j=0

Li−j2 (ξLj1(ξρ)).

Therefore

(6)
∞∑
i=1

∑
f iy=x

(II) =
∞∑
i=1

∞∑
j=0

Li−j2 (ξLj1(ξρ)).

Combining (5) and (6), we finally obtain

ρ′1 = −
∞∑
i=1

Li2(ξ′ρ) +
∞∑
i=1

∞∑
j=1

Li2(ξLj1(ξρ)) +
∞∑
i=1

∞∑
j=0

Lj2(ξLj1(ξρ))

= 3
∞∑
i=1

∞∑
j=1

Li2(ξLj1(ξρ)) + 2
∞∑
i=1

Li2(ξ2ρ))−
∞∑
i=1

Li2(ξ′ρ)

almost everywhere as claimed. �
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3.2. Higher order derivatives. Lemma 3.1 shows that ρ′ is in BV . Then we saw in
Proposition 3.2 that ρ′1 = ρ2 ∈ BV. Here we show that these results can be extended to
repeated differentiation of arbitrary order. We start with the following general result.

Proposition 3.3. Let k, i1, . . . , ik and m1 > · · · > mk be positive integers with i1, . . . , ik ≥
1. Let h1, . . . , hk be BV functions whose derivatives are in L∞.

(a) The sum
∑

k≤i1+···+ik≤n

Di1,...,ik
m,m2,...,mk

(h1, . . . , hk) belongs to BV [0, 1] and if n ≥ 1, its

derivative is a finite sum of functions of the type5
∑

k̃≤ĩ1+···+ĩ
k̃
≤n

D
ĩ1...,̃ik̃
m+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃),

where k ≤ k̃ ≤ k + 1 ,̃i1, . . . , ĩk̃ ≥ 1, m̃1 > · · · > m̃k̃ are positive integers and h̃1, . . . , h̃k̃ ∈
{h1, . . . , hk, h

′
1, . . . , h

′
k, ξ, ξ

′}.
(b) The multiseries

∞∑
i1=1

· · ·
∞∑
ik=1

Di1,...,ik
m,m2,...,mk

(h1, . . . , hk)

converges in BV and its derivative equals almost everywhere to a finite sum of functions

of the type
∑
ĩ1

· · ·
∑
ĩ
k̃

D
ĩ1...,̃ik̃
m+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃), where k ≤ k̃ ≤ k + 1, ĩ1, . . . , ĩk̃ ≥ 1,

m̃1 > · · · > m̃k̃ are positive integers and

h̃1, . . . , h̃k̃ ∈ {h1, . . . , hk, h
′
1, . . . , h

′
k, ξ, ξ

′}.

Proof. The sum
∑

k≤i1+···+ik≤n

Di1,...,ik
m,m2,...,mk

(h1, . . . , hk) is of bounded variation by Proposition

2.4. To prove the rest of part (a), we use induction on m. For m = 1, we need to compute
n∑
i=1

D

(
Li1(h)

)
, so let us work on D

(
Li1(h)

)
. Then

D

(
Li1(h)

)
(x) =

∑
f i(y)=x

D

(
h(y)

Df iy|Df iy|

)
=

∑
f i(y)=x

[
h′(y)

Df iy|Df iy|
− h(y)D(Df iy|Df iy|)

(Df iy)2|Df iy|2

]

=
∑

f i(y)=x

[
h′(y)Dy

Df iy|Df iy|
− h(y)(D(Df iy)|Df iy|+Df iyD(|Df iy|))

(Df iy)2|Df iy|2

]

=
∑

f i(y)=x

[
h′(y)

(Df iy)2|Df iy|
−
h(y)(2|Df iy|

∑i−1
j=0 ξ(f

j(x))Df j(x))

(Df iy)2|Df iy|2

]

= Li2(h′)(x)− 2
i−1∑
j=0

∑
f i(y)=x

h(y)ξ(f j(y))Df j(y))

(Df iy)2|Df iy|
.

5That is, the sums coincide at the points where both of them are defined.
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Let z = f j(y). Then

D

(
Li1(h)

)
(x) = Li2(h′)(x)− 2

i−1∑
j=0

∑
f i(y)=x

h(y)ξ(f j(y))Df j(y))

(Df iy)2|Df iy|

= Li2(h′)(x)− 2
i−1∑
j=0

∑
f i(y)=x

h(y)ξ(z)

(Df i−jz)2|Df i−jz|(Df jy)|Df jy|

= Li2(h′)(x)− 2
i−1∑
j=0

∑
f i−jz=x

ξ(z)

(Df i−jz)2|Df i−jz|
∑
fjy=z

h(y)

(Df jy)|Df jy|

= Li2(h′)(x)− 2
i−1∑
j=0

Li−j2 (ξLj1(h)).

Hence

n∑
i=1

D

(
Li1(h)

)
=

n∑
i=1

Li2(h′)(x)− 2
n∑
i=1

i−1∑
j=0

Li−j2 (ξLj1(h))

=
n∑
i=1

Li2(h′)(x)− 2
n∑
i=1

Li2(ξh)− 2
n∑
i=1

i−1∑
j=1

Li−j2 (ξLj1(h))

=
n∑
1

Li2(h′)(x)− 2
n∑
i=1

Li2(ξh)− 2
∑

2≤i+j≤n
1≤i,1≤j

Li2(ξLj1(h))

Therefore, the derivative is a finite sum of terms as described in the statement.
Assume the statement is true for l < m. Let us prove that it also holds for m. We are

interested in the derivative of

(7)
∑

k+1≤i+i1+···+ik≤n

Di,i2,...,ik
m,m1,...,mk

(h, h1, . . . , hk)

with i ≥ 1, i1 ≥ 1, . . . , ik ≥ 1. For this, note that

∑
k+1≤i+i1···ik≤n

Di,i1,...,ik
m,m1,...,mk

(h, h1, . . . , hk) =
n−k∑
i=1

Lim(h
∑

k≤i1+···+ik≤n−i

Di1,...,ik
m1,...,mk

(h1, . . . , hk))

Thus, if we are interested in the derivative of (7), we need to analyze

n−k∑
i=1

D

[
Lim(h

∑
k≤i1+···+ik≤n−i

Di1,...,ik
m1,...,mk

(h1, . . . , hk))

]
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=
n−k∑
i=1

∑
f iy=x

D

[
h(y)

∑
k≤i1+···+ik≤n−iD

i1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

(Df iy)m|Df iy|

]
=

n−k∑
i=1

∑
f iy=x

(I)− (II)

where

(I) =

D

[
h(y)

∑̂
Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

]
(Df iy)m|Df iy|

,

(II) =

h(y)
∑̂

Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)D

[
(Df iy)2m|Df iy|2

]
(Df iy)2m|Df iy|2

and
∑̂

means
∑

k≤i1+···+ik≤n−i .
Let us first work on (II). Note that

D

[
(Df iy)m|Df iy|

]
= m(Df iy)m−1D(Df iy)|Df iy|+ (Df iy)mD(|Df iy|)

= m(Df iy)m−1|Df iy|
i−1∑
j=0

ξ(f jy)Df jy + (Df iy)m
|Df iy|
(Df iy)

i−1∑
j=0

ξ(f jy)Df jy

= m(Df iy)m−1|Df iy|
i−1∑
j=0

ξ(f jy)Df jy + (Df iy)m−1|Df iy|
i−1∑
j=0

ξ(f jy)Df jy

= (m+ 1)(Df iy)m−1|Df iy|
i−1∑
j=0

ξ(f jy)Df jy.

Then
n−k∑
i=1

∑̂ ∑
f iy=x

(II) equals

n−k∑
i=1

∑̂ ∑
f iy=x

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)(Df iy)m−1|Df iy|
∑i−1

j=0 ξ(f
jy)Df jy

(Df iy)2m|Df iy|2

=
n−k∑
i=1

i−1∑
j=0

∑̂ ∑
f iy=x

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)ξ(f jy)Df jy

(Df iy)m+1|Df iy|
.

Let z = f jy. Then
n−k∑
i=1

∑̂ ∑
f iy=x

(II) equals
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=
n−k∑
i=1

i−1∑
j=0

∑̂ ∑
f iy=x

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)ξ(f jy)Df jy

(Df iy)m+1|Df iy|

=
n−k∑
i=1

i−1∑
j=0

∑̂ ∑
f iy=x

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)ξ(z)Df jy

(Df i−jz)m+1|Df i−jz|(Df jy)m+1|Df jy|

=
n−k∑
i=1

i−1∑
j=0

∑̂ ∑
f iy=x

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)ξ(z)

(Df i−jz)m+1|Df i−jz|(Df jy)m|Df jy|

=
n−k∑
i=1

i−1∑
j=0

∑̂ ∑
f i−jz=x

ξ(z)

(Df i−jz)m+1|Df i−jz|
∑
fjy=z

(m+ 1)h(y) Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

(Df jy)m|Df jy|

= (m+ 1)
n−k∑
i=1

i−1∑
j=0

∑̂
Li−jm+1(ξ Ljm(h Di1,...,ik

m1,...,mk
(h1, . . . , hk)))(x)

= (m+ 1)
n−k∑
i=1

∑̂
Lim+1(ξ (h Di1,...,ik

m1,...,mk
(h1, . . . , hk)))(x) +

(m+ 1)
∑

1≤i+j≤n−k
1≤i,1≤j

∑̂
Li−jm+1(ξ Ljm(h Di1,...,ik

m1,...,mk
(h1, . . . , hk)))(x) = A+B.

The last two terms can be rewritten as

A = (m+ 1)
∑

1≤i+i1+···+ik≤n

Lim+1(ξ (h Di1,...,ik
m1,...,mk

(h1, . . . , hk)))(x),

B = (m+ 1)
∑

k+2≤i+j+i1+···+ik≤n

Lim+1(ξ Ljm(h Di1,...,ik
m1,...,mk

(h1, . . . , hk)))(x).

Therefore
∑n−k

i=1

∑
f iy=x(II) is a sum of terms described in the statement.

Now, let us analyze (I). Note that
∑n−k

i=1

∑
f iy=x(I) equals to

n−k∑
i=1

∑
f iy=x

h′(y)Dy
∑̂

Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

(Df iy)m|Df iy|
−
h(y)D

[∑̂
Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

]
(Df iy)m|Df iy|

=
n−k∑
i=1

∑
f iy=x

h′(y)
∑̂

Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

(Df iy)m+1|Df iy|
−
h(y)D

[∑̂
Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

]
(Df iy)m|Df iy|
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=
n−k∑
i=1

Lim+1

(
h′
∑̂

Di1,...,ik
m1,...,mk

(h1, . . . , hk)

)
(y)−

n−k∑
i=1

∑
f iy=x

h(y)
∑̂
D

[
Di1,...,ik
m1,...,mk

(h1, . . . , hk)(y)

]
(Df iy)m|Df iy|

.

Using our inductive hypothesis, the derivative of
∑̂

Di1,...,ik
m1,...,mk

(h1, . . . , hk) is the finite

sum of terms of the type
∑

k̃≤ĩ1+···+ĩ
k̃
≤n−iD

ĩ1 ,̃i2,...,̃ik̃
m1+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃). Hence, let us take

one of these terms and analyze the expression

n−k∑
i=1

∑
k̃≤ĩ1+···+ĩ

k̃
≤n−i

∑
f iy=x

h(y)D
i1+1,̃i2,...,̃ik̃
m1+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃)(y) ·Dy
(Df iy)m|Df iy|

=
n−k∑
i=1

∑
k̃≤ĩ1+···+ĩ

k̃
≤n−i

∑
f iy=x

h(y)D
i1+1,̃i2,...,̃ik̃
m1+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃)(y)

(Df iy)m+1|Df iy|

=
n−k∑
i=1

∑
k̃≤ĩ1+···+ĩ

k̃
≤n−i

Lim+1(h D
i1+1,̃i2,...,̃ik̃
m1+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃))

=
∑

k̃+1≤1+ĩ1+···+ĩ
k̃
≤n

Lim+1(h D
i1+1,̃i2,...,̃ik̃
m1+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃)).

Since we have a finite sums of terms as above, we obtained that our proposition also
holds for m. Therefore, part (a) is established by induction.

(b) Proposition 2.4 allows us to take the limit n → ∞. Then the condition k̃ ≤ ĩ1 +

· · ·+ ĩk̃ ≤ n becomes k̃ ≤ ĩ1 + · · ·+ ĩk̃ ≤ ∞ and using the condition ĩ1 ≥ 1, . . . , ĩk̃ ≥ 1 the
sum ∑

ĩ1≥1,...,̃ik̃≥1, k̃≤ĩ1+···+ĩ
k̃
≤n

D
ĩ1...,̃ik̃
m+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃)

converges to
∞∑
ĩ1=1

· · ·
∞∑
ĩk̃=1

D
ĩ1...,̃ik̃
m+1,m̃2,...,m̃k̃

(h̃1, . . . , h̃k̃)

in L∞. Likewise the sum ∑
i1≥1,...,ik≥1, k≤i1+···+ik≤n

Di1...,ik
m+1,m2,...,mk

(h1, . . . , hk)

converges to
∞∑
i1=1

· · ·
∞∑
ik=1

Di1...,ik
m+1,m2,...,mk

(h1, . . . , hk)

in BV. Therefore part (b) follows from part (a) and Lemma 2.5. �

Proposition 3.3(b) allows us to derive Theorem 1.1.
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Proof of Theorem 1.1. Let Bp be the space of functions which are are Cp away from c.
We proceed by induction. Cases j = 1 and j = 2 were already handled in Lemma 3.1

and Proposition 3.2 respectively. Assume the claim holds for j − 1 and moreover that
ρj−1 is of the form

(8) ρj−1 =
∑
finite

∑
i1,...,is≥1

Di1,...,is
j−1,m2,...,ms

(h1, . . . , hs−1, hs),

where s ≥ 1, j > m2 > · · · > ms, hr = ĥρ and h1, . . . , hs−1, ĥ are in Bk−j+2. Let us prove
the same for j.

By Proposition 3.3(b), ρj has the form

ρj =
∑
finite

∑
ĩ1,...,̃ir≥1

Dĩ1,...,̃is
j,m̃2,...,m̃r

(h̃1, . . . , h̃r−1, h̃r),

where s ≤ r ≤ s + 1 and for each 1 ≤ l ≤ r, h̃l ∈ B = {h1, . . . , hs, h
′
1, . . . , h

′
s, ξ, ξ

′}. Next

for the terms which contain h′r = (ĥ′)ρ+ ĥρ1 we can use Lemma 3.1 to express ρ1 in terms
of ρ the same way as we did in the proof of Proposition 3.2. It follows that ρj is of the
form (8). Theorem 1.1 is thus proven by induction.

�

4. Differentiability set for the density.

4.1. Saltus part. Any function of bounded variation φ can be decomposed as

φ = φr + φs

where φr is a continuous function, called the regular part, and φs is constant except at
discontinuities of φ. φs is called the saltus part, it is discontinuous on a countable set (see
[11], page 14)

In fact, in the case of ρ, ρs can be explicitly written as ([2])

ρs =
∑
j≥1

αjHcj

where cj = f j(c), αj = lim
x↑cj

ρ(x)− lim
x↓cj

ρ(x) and Hcj is defined as

(9) Hcj(x) =


1 if x < cj
1
2

if x = cj
0 if x > cj

Lemma 4.1. If c is not periodic then

αj = ±ρ(c)

[
1

|Df j+(c)|
+

1

|Df j−(c)|

]
,

where the expression takes the sign + (resp. the sign −) if f has a maximum (resp.
minimum) at c.
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Proof. We have
αj = lim

x↑cj
ρ(x)− lim

x↓cj
ρ(x).

Using the fact that ρ is a fixed point of L and Ljρ(x) =
∑
fjy=x

ρ(y)

Df j(y)
, we can see

that ρ has a discontinuity at x = cj. In fact, among all the y′s in the set {f−jcj}, the
discontinuity comes from y = c, therefore

αj = lim
y↑c

ρ(y)

Df j(y)
− lim

y↓c

ρ(y)

Df j(y)
. �

Proposition 4.2. For k ≥ 0, the element ρk of the sequence from Theorem 1.1 can be de-
composed as (ρk)r+(ρk)s, where (ρk)r is a continuous function and (ρk)s =

∑
m≥1 αk,jHcj ,

with Hcj defined in (9) and αk,j = lim
x↑cj

ρk(x)− lim
x↓cj

ρk(x). Moreover there exists θ < 1 such

that |αk,j| ≤ Kθj

Proof. The existence of decomposition follows from the fact that, due to Theorem 1.1,
ρk ∈ BV -function. We need to show that all discontinuities of ρk lie on the critical orbit
and bound the size of discontinuity.

Let z be a discontinuity point of ρk which is different from ci for i = 1 . . . j. Let
ρ̄ = Lj(1). In the proof of Proposition 1.1 we saw that

ρk =
∑
finite

∑
i,i2,...,is≥1

Di,i2...,is
k,m2,...,mk

(h1, . . . , hs−1, ρ)

=
∑
finite

∑
i,i2,...,is≥1

Di,i2...,is
k,m2,...,mk

(h1, . . . , hs−1, ρ̄) +
∑
finite

∑
i,i2,...,is≥1

Di,i2...,is
k,m2,...,mk

(h1, . . . , hs−1, ρ− ρ̄).

Denote ∆(h) = limx↑z h(x)− limx↓z h(x). Then

∆

(∑
finite

∑
i,i2,...,is≥1

Di,i2...,is
k,m2,...,mk

(h1, . . . , hs−1, ρ− ρ̄)

)
= O(θj)

in view of Proposition 2.4 and the fact that ρ− ρ̄ = O(θj).

Note that if i, i2, . . . , is < j then

(
k

L1

)i
and

(
mr

L1

)ir
are continuous at z for

r = 2, . . . , s, so

∑
finite

∆

( ∑
i,i2,...,ik<j

Di,i2...,is
k,m2,...,ms

(h1, . . . , hs−1, ρ̄)

)
= 0.

Applying Proposition 2.4 again we see that∑
finite

∑
max(i,i2,...,is)>j

Di,i2...,is
k,m2,...,ms

(h1, . . . , hs−1, ρ̄) = O

 ∑
max(i,i2,...,is)>j

λ−(i+i2+...is)


and since the expression in the right side is O (jsλ−j), we have
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∆

∑
finite

∑
max(i,i2,...,is)>j

Di,i2...,is
k,m2,...,ms

(h1, . . . , hs−1, ρ̄)

 ≤ O
(
jsλ−j

)
.

In particular if z is not on the critical orbit then ∆ρk = 0 and if z = cj then ∆ρk is
exponentially small in j as claimed. �

4.2. Absolute continuity. As we mentioned before, the regular part of ρ is continuous.
In fact, it is absolutely continuous.

Theorem 4.3. The regular part of ρ is absolutely continuous. That is

ρr(x2)− ρr(x1) =

∫ x2

x1

ρ′(x)dx.

Proof. Let n ≥ 1 and let x2, x1 ∈ [0, 1]. Then

(10) (Ln(1))(x2)− (Ln(1))(x1)

=

∫ x2

x1

(Ln(1))′(x)dx+
∑
j≤n

cj∈[x1,x2]

4j(Ln(1)),

where 4j(Ln(1)) = limx↑cj Ln(1)(x)− limx↓cj Ln(1)(x).
As n → ∞, (Ln(1))(x) → ρ(x). Hence, 4j(Ln(1)) → 4jρ. By Lemma 3.1 (Ln(1))′ →

ρ1 as n→∞. Thus letting n→∞ in (10) we get

ρ(x2)− ρ(x1) =

∫ x2

x1

ρ1(x)dx+
∑

cj∈[x1,x2]

4jρ

=

∫ x2

x1

ρ1(x)dx+ ρs(x2)− ρs(x1)

Therefore ρr(x2)− ρr(x1) =
∫ x2
x1
ρ1(x)dx. �

Proposition 4.4. There exist constants K ≥ 1, D ≥ 1 and ς < 1 such that if x̄ satisfies

(11) d(cj, x̄) > ε,

for j ≤ n and d(x, x̄) < ε, then

|ρ(x)− ρ(x̄)| ≤ Kε+Dςn.

Proof. Decompose

(12) ρ(x)− ρ(x̄) = (ρr(x)− ρr(x̄)) + (ρ(x)s − ρs(x̄)).

Combining Theorem 4.3 with the fact that ρ′ = ρ1 ∈ BV [0, 1], we get

(13) |ρr(x)− ρr(x̄)| ≤ Kε.

Also, (11) implies
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(14) ρs(x)− ρs(x̄) =
∑
j≥n

αj[Hcj(x)−Hcj(x̄)].

By Lemma 4.1 |αj| ≤
2‖ρ‖∞
λj

. Hence, we can bound (14) as

|ρs(x)− ρs(x̄)| ≤
∑
j≥n

|αj|
∣∣∣∣Hcj(x)−Hcj(x̄)

∣∣∣∣ ≤ 2‖ρ‖∞
∑
j≥n

1

λj

= 2‖ρ‖∞
1

λn

∑
j≥1

1

λj
= 2‖ρ‖∞

(
λ

λ− 1

)
1

λn

Taking D = 2‖ρ‖∞
(

λ
λ−1

)
, ς = 1

λ
, we have

(15) |ρs(x)− ρs(x̄)| ≤ Dςn.

Combining (12), (13) and (15) we obtain the result. �

4.3. Differentiability points. Recall that since f is mixing, then there exists a constant
θ < 1 such that

Lnh =

[∫
h(z)dz

]
ρ(x) +O (θn||h||BV ) .

Theorem 4.5. If 1 > β > max(θ, 1/λ) and if x̄ is a point such that d(x̄, cj) ≥ βj for all
j ≥ j0 then ρk is differentiable at x̄.

Proof. Let ε > 0 and let x such that d(x, x̄) = ε.
Let n be the maximal number such that

(16) cj /∈ [x; x̄] for all j ≤ n.

Then ε ≥ βn, hence ελn ≥ βnλn and ε
θn
≥ βn

θn
.

By definition of β, βλ > 1 and β
θ
> 1. Hence, βnλn → ∞ and βn

θn
→ ∞ as n →

∞. Therefore,

ελn →∞
and

ε

θn
→∞.

as n→∞.
By Theorem 1.1

ρk(x) =
∑
finite

∞∑
i1,...,ik=1

Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ).

Let ρ̄ = Ln(1). Since ρ = ρ̄ + O(θn), Proposition 2.4 implies that we can write the
above expression as
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ρk(x) =
∑
finite

∑
k≤i1,...,ik<n
1≤i1,...,1≤ik

Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄) +O
(
λ−n + θn

)
.

Therefore

(17) ρk(x)− ρk(x̄) =∑
k≤i1,...,ik<n
1≤i1,...,1≤ik

Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)(x)−Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)(x̄) +O
(
λ−n + θn

)
.

Note that Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄) is differentiable in [x; x̄] since h1 . . . hk are C1 away
from c and (16) ensures that f−n[x, x̄] does not contain c.

Thus

Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)(x)−Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)(x̄)

(18) =

∫ x

x̄

(
Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)

)′
(s)ds

By Proposition 3.3

( ∑
k≤i1,...,ik<n
1≤i1,...,1≤ik

Di1,...,ik
m1,...,mk

(h1, . . . , hk, ρ̄)

)′
=
∑
finite

∑
ĩ1,...,̃ik

Dĩ1,...,̃ik
m1+1,...,m̃

k̃
(h̃1, . . . , h̃n,kΥn),

where h̃1, . . . , h̃k ∈ {h1, h2, . . . , hk, h
′
1, . . . , h

′
k, ξ, ξ

′} and Υn ∈ {ρ̄, ρ̄′}. Hence

(18) =

∫ x

x̄

∑
finite

∑
ĩ1,...,̃ik

Dĩ1,...,̃ik
m1+1,...,m̃

k̃
(h̃1, . . . , h̃n,kΥn)(s)ds

Decompose the last integral as∫ x

x̄

∑
finite

∑
ĩ1,...,̃ik

Dĩ1,...,̃ik
m1+1,...,m̃

k̃
(h̃1, . . . , h̃kΥn)(s)ds =

∑
finite

∑
ĩ1,...,̃ik

D(h̃1, . . . , h̃kΥn)(x̄)(x− x̄)+

+

∫ x

x̄

[
Dĩ1,...,̃ik
m1+1,...,m̃

k̃
(h̃1, . . . , h̃kΥn)(s) − Dĩ1,...,̃ik

m1+1,...,m̃
k̃
(h̃1, . . . , h̃kΥn)(x̄)

]
ds

We now invoke Proposition 3.3 again which together with (16) implies that Dĩ1,...,̃ik
m1+1,...,mk

(h̃1, . . . , h̃k,Υn)
is differentiable on [x; x̄]. Moreover, by Proposition 2.4 its derivative is bounded by a con-
stant M . Hence the last integrand in the above formula is O(ε) and so the integral is
O(ε2). Accordingly

(18) = (x− x̄)
∑
finite

∑
ĩ1,...,̃ik

D(h̃1, . . . , h̃kΥn)(x̄) +O(ε2).
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Hence

lim
x→x̄

ρk(x)− ρk(x̄)

x− x̄
= lim

x→x̄

∑
finite

∑
1≤i1,...,ik<n

∑
finite

∑
ĩ1,...,̃ik

D(h̃1, . . . , h̃kΥn)(x̄)+O

(
ε+

λ−n + θn

ε

)
.

As x approaches x̄, n goes to ∞, hence Υn converges to ρ or ρ1. Thus,

lim
x→x̄

ρk(x)− ρk(x̄)

x− x̄
=
∑
finite

∞∑
i1,...,ik=1

∑
finite

∑
ĩ1,...,̃ik

D(h̃1, . . . , h̃k, ρ̃)(x̄) = ρk+1(x̄). �

In particular, we have the following result which also follows from [18].

Corollary 4.6. If c is periodic of period p, then ρ differentiable except for a finite set of
points.

Proof. If x̄ does not belong to the orbit of c (which is a finite set) then we can pick any
β > max(θ, 1/λ) and pick j0 ≥ 1 large enough so that d(x̄, c̄) ≥ βj for all j ≥ j0, where
c̄ = max{c1, c2, . . . , cp}. �

4.4. Nondifferentiability set. As we saw in Proposition 4.5, if the critical orbit does
not approach a point x exponentially fast, then the density function ρ is differentiable at
x. In this subsection, we obtain a partial converse to this statement that is, if the critical
point does approach exponentially fast with sufficiently high exponent then we cannot
have differentiability.

Definition 4.7. For β < 1, define

Nβ = {x̄ : d(cn, x̄) ≤ βn for infinitely many n′s}.
Proposition 4.8. HD(Nβ) = 0 where HD denotes the Hausdorff dimension.

Proof. Define Un as the ball centered at cn of radius βn. Given ε > 0 let n0 ≥ 1 such that
βn0 ≤ ε. Then, {Un}n≥n0 is an ε−cover of Nβ.

Note that |Un| = 2βn. Hence, for any s ≥ 0 we have that

Hs
ε(Nβ) ≤

∑
n≥n0

|Un|s ≤
∑
n≥n0

|Un|s =
2βn0s

1− βs
<∞.

Therefore HD(Nβ) = 0. �

Proposition 4.9. If {cn} is dense in some interval I ⊂ [0, 1] then Nβ is uncountable for
all β < 1.

We have already mentioned in Remark 1.3 the closure of {cn} contains an interval for
a typical PEUM.

Proof. Define Ln = [cn − βn, cn + βn].
Since {cn} is dense, there exists cn1 such that Ln1 is strictly contained in I. Set

M1 = Ln1 .
Now, again using the density of {cn}, there exist cn(1,1)

∈ (cn1 − βn1 , cn1) and cn(1,2)
∈

(cn1 , cn1 + βn1) such that Ln(1,1)
and Ln(1,2)

are strictly contained in (cn1 − βn1 , cn1) and

(cn1 − βn1 , cn1) respectively. Set M2 = Ln(1,1)
∪ Ln(1,2)

.
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Continuing this procedure we inductively define Mn and set M =
⋂
n≥1

Mn. M is a Cantor

set which is contained in Nβ. Since M is uncountable, so is Nβ. �

Lemma 4.10. If

(19) β(max
x
|f ′(x)|) < 1

and x̄ ∈ Nβ then ρ is non-differentiable at x̄

Proof. Suppose ρ is differentiable at x̄. Since x̄ ∈ Nβ, there exists a sequence nj d(x̄, cnj
) ≤

βnj . Without loss of generality, assume x̄ < cnj
.

Let y1 and y2 be two arbitrary points such that

x̄ < y1 < cnj
< y2 < cnj

+ βnj .

Since ρ is assumed to be differentiable at x̄, we have that |ρ(yi) − ρ(x̄)| ≤ Mβnj for
i = 1, 2 and hence

|ρ(y1)− ρ(y2)| ≤ 2Mβnj .

Accordingly

ρc

(max |f ′|)nj
≤ |αnj

| = lim
y1↑cnj ,y2↓cnj

|ρ(y2)− ρ(y1)| ≤ 2Mβnj

where the first inequality follows from Lemma 4.1. For large j this inequality in incom-
patible with (19). Hence ρ can not be differentiable at x̄. �

4.5. Whitney smoothness.

Proof of Theorem 1.2, part (C). The case k = 1 follows from Theorem 3.3.
Let k ≥ 2 and pick 1 > β > max{λ−n

k , θ
n
k }. Let x̄ /∈ Nβ, let ε > 0 be very small.

Once again, let n be the maximal number such that cj /∈ [x; x̄] for all j ≤ n.
Then, similar to the proof of Theorem 4.5,

(20) εk > λ−n and εk > θn

Since ρ = Ln(1) +O(θn), for 0 ≤ s ≤ k − 1, Proposition 3.3 implies

ρs =
∑
finite

∑
k≤i1,...,ik<n
i1≥1,...,ik≥1

Di1,...,ijm1,...,mj
(h1,s, . . . , hj−1,s,Ln(1)) +O(λ−n + θn).

To simplify the notation, let

ρs,n =
∑
finite

∑
k≤i1,...,ik<n
i1≥1,...,ik≥1

Di1,...,ijm1,...,mj
(h1,s, . . . , hj−1,s,Ln(1)).
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By definition of n and since f ∈ Ck+2, ρk−1,n is C2 in B(x̄, ε) = {y : |y−x̄| < ε}. Hence,
if x ∈ B(x̄, ε),

ρk−1(x)− ρk−1(x̄) = ρk−1,n(x)− ρk−1,n(x̄) +O(λ−n + θn)

=

∫ x

x̄

ρ′k−1,n(y) dy +O(λ−n + θn)

=

∫ x

x̄

ρ′k−1,n(y)− ρ′k−1,n(x̄)dy + ρk−1,n(x̄)(x− x̄) +O(λ−n + θn)

= O(ε2) + ρ′k−1,n(x̄)(x− x̄) +O(λ−n + θn).

By Proposition 3.3, ρ′k−1,n(x̄) = ρk(x̄) +O(λ−n + θn). Thus

ρk−1(x)− ρk−1(x̄) = ρk(x̄)(x− x̄) +O(ε(λ−n + θn)) +O(λ−n + θn) +O(ε2).

Inequalities (20) imply that

(21) ρk−1(x)−ρk−1(x̄) = ρk(x̄)(x− x̄) +O(εk+1) +O(εk) +O(ε2) = ρk(x̄)(x− x̄) +O(ε2).

Now, note that if x ∈ B(x̄, ε), then

(22) ρk−2(x)− ρk−2(x̄) = ρk−2,n(x)− ρk−2,n(x̄) +O(λ−n + θn)

=

∫ x

x̄

ρ′k−2,n(y) dy +O(λ−n + θn).

By Proposition 3.3, ρ′k−2,n(y) = ρk−1(y) +O(λ−n + θn). Combining (22) with (21) and

using that εk+1 < εk < ε3 we get

ρk−2(x)− ρk−2(x̄) =

∫ x

x̄

ρk−1(y) dy +O(ε(λ−n + θn)) +O(λ−n + θn)

=

∫ x

x̄

ρk−1(x̄) + ρk(x̄)(y − x̄) dy +O(ε3) +O(ε(λ−n + θn)) +O(λ−n + θn)

= ρk−1(x̄)(x− x̄) + ρk(x̄)
(x− x̄)2

2
+O(ε3).

Continuing this recursive argument we get

ρs(x)− ρs(x̄) =

( k−s−1∑
j=0

ρk−j(x̄)
(x− x̄)k−s−j

(k − s− j)!

)
+O(εk−s+1)

for all s = 0, . . . , k − 1. In particular, when s = 0, we have the desired result. �

Parts (A) and (B) of Theorem 1.2 follows from Theorem 4.5, Proposition 4.9 and Lemma
4.10. Since part (C) was just proven, the proof of Theorem 1.2 is complete.
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