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Abstract. We analyze the scaling limits of the winding process for horocycles
on non-compact hyperbolic surfaces with finite area. Initial conditions with

pre-compact forward geodesics have scaling limits with gaussian and Cauchy

components. Typical initial conditions have different scaling limits along dif-
ferent subsequences of times, but all such scaling limits can still be described.

Some of our results extend to other unipotent flows.

1. Introduction

We study the winding of horocycle flows on hyperbolic surfaces of finite area,
extending our earlier work [DS17] which treated the compact case. The winding of
the geodesic flow is described in [GLJ90],[LJ92],[ELJ97], [EFLJ01].

Setup. Let M be a complete, connected, orientable, hyperbolic surface with finite
area, ν cusps, and genus g. Equivalently, M is diffeomorphic to a compact connected
Riemannian surface M0 with genus g, minus a finite, possibly zero, number ν of
points p1, . . . , pν which we refer to as the “cusps” of M , or the “punctures” in M0.
Let T 1M := {~v ∈ TxM : x ∈M, ‖~v‖ = 1}, and let π : T 1M →M be the projection
which sends a tangent vector to its base point.

The geodesic flow gt : T 1M → T 1M moves a unit tangent vector ~v at unit speed
along its geodesic, in the direction of ~v. The stable horocycle flow ht : T 1M → T 1M
moves a unit tangent vector ~v at unit speed along its stable horocycle

Hor(~v) := W ss(~v) = {~u ∈ T 1M : dist(gt(~v), gt(~u)) −−−→
t→∞

0}.

The direction of movement is ~w ∈ Tπ(~v)[W
ss(~v)] s.t. the ordered basis 〈~w,~v〉 has

positive orientation in Tπ(~v)M .

Winding. “Winding” is defined in terms of the singular homology of the projec-
tions of finite orbits to M , after closing them to loops.

Formally, we fix once and for all a Borel family of curves γxy ⊂ M (x, y ∈ M)
s.t. γxy is a length minimizing curve from x to y. Let

HT (~v) :=

(
the loop obtained by concatenating the curve
t 7→ (π ◦ ht)(~v) (0 ≤ t ≤ T ) to γπ[hT (~v)],π[~v].

)
The horocyclic winding class of ~v at time T is the homology class [HT (~v)] ∈
H1(M,Z). It depends on the choice of γxy, but our results do not (Cor. 15).

There is a d s.t. H1(M,Z) ∼= Zd. Once we choose a basis for homology, we
can represent the winding classes by vectors in Zd. This allows to analyze their
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behavior as T → ∞. It is useful to work with a basis which separates “winding
around cusps” from “winding around handles.” Here is such a basis.

It is well-known that H1(M0,Z) ∼= Z2g. Choose a basis of loops σ1, . . . , σ2g

for H1(M0,Z). The “canonical” choice, which associates to each handle of M two
loops σi, σi+1 is depicted pictorially in [Hat02], example 2A.2. If, as we may assume
without loss of generality, σi do not pass through p1, . . . , pν then σi are loops in
M , and we obtain homology classes

[σ1], . . . , [σ2g] ∈ H1(M,Z).

Next, let C1, . . . , Cν be disjoint closed embedded discs in M0 such that Ci contains
pi in its interior. Define loops ci := −∂Ci, where the minus indicates that ci is
oriented like ∂(M \ Ci), or equivalently so that “it sees pi on its right.” Then

[c1], . . . , [cν ] ∈ H1(M,Z).

Notice that [ci] are not linearly independent:
∑ν
i=1[ci] = ∂(M \

⋃ν
i=1 Ci) = 0. The

proof of the following standard lemma is reproduced in the appendix:

Lemma 1. If ν = 0, 1, then H1(M,Z) ∼= Z2g and {[σ1], . . . , [σ2g]} is a basis for
H1(M,Z). If ν ≥ 2, then H1(M,Z) ∼= Z2g+ν−1, and {[σ1], . . . , [σ2g], [c1], . . . , [cν−1]}
is a basis for H1(M,Z).

We call this the canonical basis.
The canonical basis induces an isomorphism Frob : H1(M,Z) → Zd, where

d := max{2g, 2g+ ν − 1}. We need the following standard fact (see the appendix):

Lemma 2. There are closed harmonic 1-forms on M σ∗1 , . . . , σ
∗
2g; ζ

∗
1 , . . . , ζ

∗
ν−1 s.t.

(1)
∫
σi
σ∗j = δij ,

∫
ci
ζ∗j = δij ,

∫
σi
ζ∗j = 0 ,

∫
ci
σ∗j = 0 for all i, j;

(2) ‖σ∗i ‖ are bounded on M ;
(3) ‖ζ∗i ‖ are bounded on compact subsets of M , but not on M .

Then Frob([γ]) := (

∫
γ

σ∗1 , . . . ,

∫
γ

σ∗2g︸ ︷︷ ︸
=:Frobcpt([γ])

;

∫
γ

ζ∗1 , . . . ,

∫
γ

ζ∗ν−1︸ ︷︷ ︸
=:Frobcusp([γ])

), with the understanding

that if ν = 0, 1 then Frobcusp([γ]) is the empty vector.
Frobcusp([γ]) ∈ Z2g codes the “compact” windings of γ around the handles, and

Frobcusp([γ]) ∈ Zν−1 codes the “cuspidal” winding around cusps.

Goal. Given ~v ∈ T 1M , we are interested in the behavior of Frob[Ht(~v)] as t→∞.
It turns out that for most vectors ~v, Frob[Ht(~v)] is very oscillatory. Therefore,
instead of looking for a simple asymptotic equivalent for Frob[Ht(~v)], we look for
scaling limits for the distribution of Frob[Ht(~v)] (0 < t < T ), as T →∞.

Formally, given ~v, we seek a centering vector ~AT ∈ Rd, a scaling matrix BT ∈
GL(d,R) , and a random vector ~Y ∈ Rd (the “scaling limit”) s.t.

T−1λ{0 < t < T : B−1
T

(
Frob([Ht(~v)])− ~AT

)
∈ E} −−−−→

T→∞
Pr(~Y ∈ E) (1.1)

for all Borel sets E ⊂ Rd s.t. Pr(~Y ∈ ∂E) = 0. Here λ :=Lebesgue’s measure. In
our case, and thanks to the choice of the canonical basis, the matrices BT will all
be diagonal. We say that the scaling limit is non-degenerate when ‖B−1

T ‖ −−−−→
T→∞

0

and for every ~a 6= ~0, 〈~a, ~Y〉 6=constant random variable.
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In cases when (1.1) holds only on along a subsequence Tk →∞, we’ll speak of a
scaling limit along a subsequence.

(1.1) quantifies the oscillations of Frob([Ht(~v)] for 0 < t < T . It says that for

every E ⊂ Rd s.t. Pr[~Y ∈ E] > 0 and Pr[~Y ∈ ∂E] = 0, there is a positive fraction

of 0 < t < T such that Frob([Ht(~v)] ∈ ~AT +BTE.
It is useful to restate (1.1) in the language of random variables. Recall that a

sequence of Rd-valued random variable ~Xn (possibly defined on different probability

spaces) converges in distribution to an Rd-valued random vector ~Y, if one of the
following (equivalent) conditions holds:

(1) Pr[~Xn ∈ E] −−−−→
n→∞

Pr[~Y ∈ E] for every Borel set E ⊂ Rd s.t. Pr[~Y ∈ ∂E] = 0;

(2) E[G(~Xn)] −−−−→
n→∞

E[G(~Y)] for every bounded continuous G : Rd → R;

(3) E[G(~Xn)] −−−−→
n→∞

E[G(~Y)] for all G ∈ L1 with Fourier transform Ĝ ∈ L1;

(4) E[ei〈~a,
~Xn〉] −−−−→

n→∞
E[ei〈~a,

~Y〉] for every ~a ∈ Rd.

When this happens, we write ~Xn
dist−−−−→
n→∞

~Y. See [Bre68].

Recall that λ denotes the Lebesgue measure. The uniformly distributed random
variable on [0, T ] is the random variable t s.t. Pr[t ∈ E] = 1

T λ(E ∩ [0, T ]) for all

Borel E ⊂ R. We write t ∼ U[0, T ]. Define the Zd-valued random vector

~WT (~v) = Frob([Ht(~v)]), where t ∼ U[0, T ]. (1.2)

Then (1.1) is equivalent to B−1
T

(
~WT (~v)− ~AT

) dist−−−−→
T→∞

Y.

Overview of Main Results. Fix ~v and break ~WT (~v) := ( ~Wcpt
T , ~Wcusp

T ) where

~Wcpt
T = Frobcpt([Ht(~v)]), t ∼ U[0, T ]

~Wcusp
T = Frobcusp([Ht(~v)]), t ∼ U[0, T ].

~Wcpt
T ∈ Z2g encodes the distribution of the compact winding for 0 < t < T , and

~Wcusp
T ∈ Zν−1 encodes distribution of the cuspidal winding for 0 < t < T , with the

undersanding that if ν = 0, 1, then ~Wcusp
T is the empty vector.

Next, recall that gs : T 1M → T 1M denotes the geodesic flow, and define the
(non-random) geodesic winding vector

~GS(~v) := Frob([GS(~v)]) (1.3)

where GS(~v) is the loop obtained by closing s 7→ (π ◦ gs)(~v)(0 ≤ s ≤ S) with the

curve γπ(gS(~v)),π(~v). Decompose ~GS(~v) = ( ~GcptS (~v), ~GcuspS (~v)) ∈ Z2g × Zν−1.

Our first result (Theorem 6) identifies an explicit set of full measure Ω1 ⊂ T 1M
s.t. for every ~v ∈ Ω1,

~Wcpt
T − ~GcptlnT (~v)√

lnT

dist−−−−→
T→∞

~N, (1.4)

where ~N is a non-degenerate 2g-dimensional gaussian distribution which only de-
pends on M . M is compact iff Ω1 = T 1M . The compact case was done in [DS17].
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Next (Theorem 7) we identify an explicit set of zero measure Ω2 ⊂ T 1M , which
contains all vectors ~v whose forward geodesics are pre-compact, s.t. for every ~v ∈ Ω2( ~Wcpt

T − ~GcptlnT (~v)√
lnT

,
~Wcusp
T − ~GcusplnT (~v)

lnT

)
dist−−−−→
T→∞

(~N, ~C). (1.5)

~N ∈ R2g is as above, ~C ∈ Rν−1 is a vector of identically distributed independent

symmetric Cauchy random variables, and ~N, ~C are independent. In the special case
when ~v sits on a closed geodesic σ with length `,( ~Wcpt

T − ~GcptlnT√
lnT

,
~Wcusp
T − ~GcusplnT

lnT

)
dist−−−−→
T→∞

(~N, ~C) (1.6)

where (~Gcpt, ~Gcusp) :=average homology= Frob([σ])/`.
Our next collection of results (Theorems 8–12) describes what happens outside

Ω2. There are good news and bad news.
The bad news is that if there is more than one cusp, then (1.5) fails on a set of

full measure: For a.e. ~v one can find two different sequences Tn, T
′
n → ∞ so that

the distributions of ~Wcusp
Tn

(~v), ~Wcusp
T ′n

(~v) have different scaling limits.

The good news is that there is an explicit set of full measure Ω3 ⊂ T 1M with
the following remarkable property: For every ~v ∈ Ω3,

(a) Every sequence Tn → ∞ has an explicit subsequence Tnk → ∞ with a scaling

limit B−1
Tnk

(
~WTnk

− ~aTnk
) dist−−−−→
k→∞

~Y;

(b) The scaling BTnk , the centering ~aTnk and the limiting distribution ~Y can be

determined explicitly from the vector glnTnk (~v);

(c) The family of all possible ~Y is explicit and small (a finite-parameter family of

explicit distributions). All are equally important: For a.e. ~v, every ~Y appears
along some subsequence Tn →∞ (for the same ~v).

Thus while there is no single scaling limit as T →∞, the asymptotic distributional

behavior of ~WT can still be completely described.
Next we prove a version of (1.4) for unipotent flows. Suppose G is a non-compact,

simple, real-rank one Lie group (see Remark 28), and let Γ ⊂ G be an irreducible
uniform lattice (so G/Γ is compact). Let g denote the Lie algebra of G. Every
Z ∈ g determines a flow ϕtZ : G/Γ→ G/Γ via ϕtZ(xΓ) = exp(tZ)xΓ.

A unipotent flow is a flow ϕtY generated by a non-zero Y ∈ g s.t. the spectrum
of Ad(Y ) equals {0}. As we explain in §7.1, ∃X ∈ g s.t. [X,Y ] = λY with λ > 0,
and the flow ϕtX renormalizes ϕuY similarly to how the geodesic flow renormlizes

the horocycle flow: ϕuY ◦ ϕtX = ϕtX ◦ ϕue
λt

Y . For example, suppose G = PSL(2,R),

Y =
(

0 0
1 0

)
, X =

(
1/2 0
0 −1/2

)
. Then ϕtX is the geodesic flow and ϕuY is the

horocycle flow, see [BM00]. But caution! G/Γ is the unit tangent bundle of a
hyperbolic surface, not the surface itself.

One can define the winding vectors ~WT (xΓ) and ~GS(xΓ) as before, but with ϕtY
replacing ht and ϕsX replacing gs. Let m denote the measure on G/Γ induced from
the Haar measure. Theorem 33 says that for a.e. xΓ ∈ G/Γ,

~WT − ~Glog
eλ
T (x)√

logeλ T

dist−−−−→
T→∞

~N,
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where ~N is a multivariate gaussian distribution on Rd, d = dimH1(G/Γ,R). How-

ever in this case, ~N could have degeneracies, see example 7.4.
Our last result deals with almost sure distributional limit theorems in the sense

of [Bro88, CG07]. These are limit theorems as T → ∞ of the distribution of

B−1
L ( ~WL − ~AL) where BL and ~AL are calculated at the same random time L as
~WL, and L ∼ Log[0, T ] (i.e. L has density dx/(x lnT ) on [1, T ].)

Suppose M is a compact hyperbolic surface. Then it follows from [CG07] that
the coordinates of the winding vector of geodesics satisfy such laws for a.e. initial
condition. We show that this is false for the horocycle orbits of a.e. orbit.

Winding and Ergodic Integrals. We claim that if the horocycle of ~v is not
closed, then Frob[Ht(~v)] is an ergodic integral up to “negligible” error:

Frob[Ht(~v)] =

∫ t

0

~f(hτ (~v))dτ + ~εt(~v). (1.7)

Here ~f := ~ω ◦ R, ~ω := (σ∗1 , . . . , σ
∗
2g; ζ

∗
1 , . . . , ζ

∗
ν−1), R : T 1M → T 1M is the

rotation by −90◦ (needed to rotate ht(~v) to the direction of d
dtπ(ht(~v))), and

~εt(~v) :=
∫
γπ(ht(~v)),π(~v)

~ω. We now explain the sense in which ~εt(~v) is “negligible:”

Lemma 3. Suppose the horocycle of ~v is not closed. If Bn ∈ GL(d,R) satisfy

‖B−1
T ‖ → 0, then B−1

T ~εt(~v)
dist−−−−→
T→∞

~0, as t ∼ U[0, T ].

Proof. Let m denote the normalized volume measure on T 1M and let λ denote
Lebesgue’s measure. We claim that the distribution of ~εt(~v) as t ∼ U[0, T ] is tight:

∀ε∃K s.t. lim sup
T→∞

T−1λ{0 < t < T : ‖~εt(~v)‖ > K} < ε. (1.8)

To see this note that ‖~ω‖ and `(γxy) are bounded on compacts. So for every
compact C ⊂ M , there is K(C) s.t. ‖

∫
γxy

~ω‖ < K(C) for all x, y ∈ C. Choose C

compact s.t. m(∂π−1C) = 0, C 3 π(~v), and m(π−1(C)) > 1−ε. The condition on ~v
implies that the horocycle of ~v is equidistributed [DS84]. So for all T large enough,
T−1λ{0 < t < T : ‖~εt(~v)‖ > K} ≤ T−1λ{0 < t < T : ht(~v) 6∈ π−1(C)} < ε.

Consider the random variable ~εt(~v), t ∼ U[0, T ]. By tightness, for every δ > 0

Pr(‖B−1
T ~εt(~v)‖ > δ) ≤ Pr(‖~εt(~v)‖ > δ/‖B−1

T ‖) −−−−→
T→∞

~0. The lemma follows. �

Discussion and Related Results. By (1.7) and Lemma 3, our results are equiv-
alent to scaling limits for the temporal distribution of the ergodic integrals

It(~v) =

∫ t

0

~f(hτ (~v))dτ, for ~f := ~ω ◦R.

We compare our results to known results on It(~v). Write It(~v) = (Icptt (~v), Icuspt (~v))

where Icptt is the ergodic integral of (f1, . . . , f2g) and Icuspt is the ergodic integral
of (f2g+1, . . . , f2g+ν−1). The following is known:

(1) For 1 ≤ i ≤ 2g, fi = σ∗i ◦ R is a bounded continuous function on T 1M . Since
fi(−~v) = −fi(~v),

∫
fi = 0. Therefore, by the Dani-Smillie Theorem [DS84], for

every ~v whose horocycle is not closed, Icptt (~v) = o(t).

(2) If M is compact, then Icptt (~v) = O(log t) for a.e. ~v [FF03, BF14].1

1[FF03, BF14] provide much sharper asymptotic information on ergodic integrals of smooth
functions which (unlike fi) are not in the kernel of all invariant distributions of the horocycle flow.
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Our results give the following additional information:

(3) There are initial conditions ~v with tk → ∞ s.t. ‖Icpttk
(~v)‖ > const log tk. Any

~v which sits on a closed geodesic with non-zero homology is like that. This is
because of (1.6).

(4) The asymptotic behavior of It(~v) is very sensitive to ~v. This is because of
the exponential sensitivity to initial conditions of the geodesic flow, and the

formula (1.3) for the centering term ~GlnT (~v) in (1.4),(1.5),(1.6).

(5) The behavior of It(~v) is oscillatory. The oscillations of Icptt (~v) for 0 < t < T

are of order
√

lnT . The oscillations of Icuspt (~v) for 0 < t < T are of order lnT .
This is because the scaling limits Y are not degenerate.

(6) For a.e. ~v, the asymptotic shape of the distribution of the oscillations of It(~v)
falls into a finite parameter family of explicit shapes. This is because of the
description of the limiting random variables given in the next section.

The last point should be contrasted with what happens to the geodesic flow on
compact hyperbolic surfaces. There is no limit on the asymptotic shape of the
oscillations of the ergodic integrals in this case, even for a single initial value: For
a.e. ~v, for all 1 ≤ i ≤ 2g, for every random variable Y, there is Tk ↑ ∞ s.t.

1√
Tk

∫ t

0
fi(g

s~v)ds
dist−−−−→
k→∞

Y, as t ∼ U[0, Tk]. See [DS17, §3].

The results of this paper belong to what we called in [DS17] temporal distribu-
tional limit theorems: distributional limits of the form

B−1
T

(∫ t

0

f(hτ (~v))dτ −AT
)

dist−−−−→
T→∞

Y, as t ∼ U[0, T ]. (1.9)

For more on temporal DLT in dynamical systems, see [DS17].
A spatial distributional limit theorem for a flow T t : X → X with respect to a

probability measure µ on X is a scaling limit of the form

B−1
T

(∫ T

0

f(T tx)dt−AT

)
dist−−−−→
T→∞

Y, as x ∼ µ. (1.10)

This means that µ{x ∈ X : B−1
T

(∫ T
0
f(T tx)dt−AT

)
∈ E} −−−−→

T→∞
Pr(Y ∈ E) for

all Borel set E s.t. Pr(Y ∈ ∂E) = 0.
It is interesting to note that although we have temporal DLT for the windings

of the horocycle flow, it is still not known whether there are spatial DLT for such
windings. The work done on compact surfaces in [FF03, BF14] shows that if such
limit theorems exist, then the limiting distributions have compact support. In
particular, they are not gaussian as in the temporal DLT in the compact case.

The situation with the geodesic flow is the exact opposite. Spatial DLT for the
winding of geodesics on compact and finite area hyperbolic surfaces are provided
in [GLJ90, LJ92, LJ94, EFLJ01, ELJ97, LS08]. The limit Y is exactly the (N,C)
appearing in (1.5), although the scaling is different and there is no need to center.
But as we already mentioned, the temporal DLT fails for a.e. orbit, and all possible
random variables appear as scaling limits along some subsequence even for one
single initial condition [DS17, §3].

Open Problem: In [Bec10, Bec11], J. Beck studied It(x) :=
∑[t]−1
k=0 f(T kx) for

the irrational translation T : [0, 1) → [0, 1), T (x) = x + αmod 1 and the function
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Figure 1. Cuspidal excursions: (a) Ascending, (b) Descending.
Ci is lifted to {z : Im(z) > 1

2} so that g∞(~v) = 0. Ci is the

projection of any of the regions above Re(z) = 1
2 and between

Re(z) = n and Re(z) = n + 1 (n ∈ Z). ∂Ci is the horizontal
line Im(z) = 1

2 , and ci is oriented to the left. The curved arrow
indicates the direction of the horocycle flow

f(x) = 1[0,a)({x}) − a. He showed that if α is a quadratic irrational, a ∈ Q and
x = 0, then there are A ∈ R, B > 0 s.t.

It(0)−A log T

B
√

log T

dist−−−−→
T→∞

N, as t ∼ U[0, T ],

where N is the standard gaussian distribution. Is there a limitation on the possible
scaling limits along subsequences for typical α?

2. Precise Statements of Results on Horocycle Flows

2.1. Cuspidal excursions. Recall that M is isometric to M0 \ {p1, . . . , pν} with
the induced hyperbolic metric, where M0 is a compact surface and p1, . . . , pν are
the “cusps.” The collar lemma (see e.g. [Hub06, Prop 3.8.9]) says that pi have a
decreasing system of open neighborhoods Ci(η) (η ≥ 1

2 ) in M0 s.t. ∂Ci(η) is a closed
horocycle of length 1/η, Ci(η)\{pi} is isometric to {z ∈ H : Im(z) > η}/〈z 7→ z+1〉,
and Ci(η) ↓ {pi}. Moreover, Ci := Ci(

1
2 ) are disjoint.

If the geodesic ray of ~v enters Ci and never leaves it, then gs(~v) −−−→
s→∞

pi in the

sense that for every η there is an s0 s.t. gs(~v) ∈ Ci(η) for all s > s0.
In all other cases, the geodesic of ~v must leave every cusp it enters, and the

time it spends in
⋃ν
j=1 Cj is naturally divided into time intervals (ak, bk) such that

gs(~v) ∈ Cik for s ∈ (ak, bk) ; gs(~v) ∈ ∂Cik when s = ak, bk (except perhaps when
s = 0); and gs(~v) 6∈

⋃ν
j=1 Cj when s 6∈

⋃
(ak, bk). We call {gτ (~v) : τ ∈ (ak, bk)}

cuspidal geodesic excursions.
Similarly, if the geodesic ray of ~v does not tend to a cusp, then the stable

horocycle of ~v leaves every collar it enters, and the time it spends in collars can be
naturally divided into cuspidal horocyclic excursions.

A cuspidal horocyclic excursion is called ascending, if for small positive ε hε~v
is further from ∂Ci than ~v and descending, if for small positive ε hε~v is closer to
∂Ci than ~v. Note that if ~v belongs to the ascending excursion then the same is
true for gt~v. Notice that the horocyclic cuspidal excursion containing a vector ~u is
ascending, iff the the geodesic cuspidal excursion of ~u moves in the direction of ci
(the parametrization of −∂Ci which “sees pi on its right”, see Figure 1).

Fix ~v whose geodesic ray does not tend to a cusp. We will see below that
the asymptotic distributional winding of the horocycle of ~v depends on whether
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Figure 2. The parameters of a cuspidal excursion (ascending
case). Ci is lifted to {z : Im(z) > 1

2} so that g∞(~v) = 0 and

g−∞(~v) > 0. ∂Ci is the horizontal line Im(z) = 1
2 , oriented to

the right, and ci is oriented to the left. Ci is the projection of
any of the regions above Re(z) = 1

2 and between Re(z) = n and
Re(z) = n+ 1 (n ∈ Z).

glnT (~v) ∈
⋃t
i=1 Ci, and in case glnT (~v) ∈ Ci, on certain characteristics of the

cuspidal geodesic and horocyclic excursions of glnT (~v) in Ci . These are:

◦ i = i(T ) ∈ {1, . . . , ν}, the index of the cusp containing glnT (~v),
◦ σ = σ(T ) defined to be +1 when the horocyclic cuspidal excursion of glnT (~v) is

ascending, and (−1) when it is descending,
◦ δ = δ(T ) s.t. the geodesic excursion of glnT (~v) begins at time lnT − δ(T ),
◦ s = s(T ) :=maximal distance of the cuspidal geodesic excursion containing

glnT (~v) from ∂Ci, or zero if glnT (~v) 6∈
⋃t
i=1 Ci;

◦ ρ = ρ(T ) :=maximal distance of the cuspidal horocyclic excursion containing
glnT (~v) from ∂Ci.

See Figure 2.

Lemma 4. If glnT (~v) ∈ Ci, then δ(T ) = 2s(T ) − ρ(T ) + ln 4 + O(e−2s(T )). In
particular, ρ(T ) ≤ 2s(T ) +O(1), and O(1) ≤ 2s(T )− ρ(T ) ≤ lnT +O(1).

Proof. Draw the picture as in figure 2. The isometry z 7→ − 1
z maps the horocycle of

glnT (~v) to the line Im(z) = 2e−ρ(T ), the geodesic of ~v to the line Re(z) = −e−s(T ),
and ∂Ci to the circle |z − i| = 1. Re(z) = −e−s(T ) intersects |z − i| = 1 at

z1 := −e−s + i(1 ±
√

1− e−2s) and Im(z) = 2e−ρ at z2 := −e−s + 2e−ρi. Except

possibly for first cuspidal geodesic excursion, z1 = −e−s + i(1 −
√

1− e−2s) and

Im(z1) < Im(z2). So δ = dist(z1, z2) = ln 2e−ρ

1−
√

1−e−2s
= 2s− ρ+ ln 4 +O(e−2s). �

Lemma 5. Assume there are cusps. For a.e. ~v ∈ T 1M , lim sup s(T )
ln lnT = 1. So for

a.e. ~v s(T ) = O(ln lnT ) and lim sup es(T )

(lnT )1−ε =∞ for all ε > 0.

Proof. We use Sullivan’s “Logarithm Law” [Sul82]: If M is a non-compact hyper-

bolic surface of finite area, then for every p0 ∈ M , lim sup dist(π[gτ (~v)],p0)
ln τ = 1 a.e.
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It follows that ∃Tk →∞ s.t. lim dist(π[glnTk (~v)],p0)
ln lnTk

= 1. Suppose p0 6∈
⋃ν
i=1 Ci, then

dist(π(glnTk(~v), p0) ≤ s(Tk) +O(1), so lim inf s(Tk)
ln(lnTk) ≥ 1, and lim sup s(T )

ln lnT ≥ 1.

Next, suppose glnT (~v) ∈
⋃ν
i=1 Ci. Let (τbeg(T ), τend(T )) be the time interval of

the cuspidal geodesic excursion of glnT (~v). Let τ(T ) ∈ (τbeg(T ), τend(T )) be the

time when dist(gτ(T )(~v), ∂Ci) = s(T ). By figure 2 and Lemma 4,

τ(T ) ≤ τend(T ) ≤ lnT + ρ(T ) ≤ lnT + 2s(T ) +O(1).

Fix some p0 6∈
⋃ν
i=1 Ci, then for every ε > 0, for every T large enough,

s(T )

ln(lnT + 2s(T ))
.

dist(π[gτ(T )(~v)], p0)

ln τ(T )
≤ (1 + ε). (2.1)

Necesarily s(T ) = o(lnT ): Otherwise, ∃kn ↑ ∞ s.t.
s(Tkn )
lnTkn

≥ ε for all n, whence by

(2.1),
s(Tkn )

ln(( 1
ε+2)s(Tkn ))

≤ 2, which is impossible because s(Tkn) ≥ εlnTkn → ∞. So

s(T )
lnT −−−−→k→∞

0. Substituting this in (2.1) gives lim sup s(T )
ln lnT ≤ 1. �

2.2. Statements of Main Results. Recall that M is a complete, connected,
orientable, hyperbolic surface with finite area, genus g and ν ≥ 0 cusps. Let m
denote the area measure of M . As always, d := max{2g + ν − 1, 2g}. Define a

d-dimensional random vector ~Z := (~Zcpt, ~Zcusp) as follows:

(1) ~Zcpt = (Zcpt1 , . . . ,Zcpt2g ) has the Gaussian distribution s.t. E(ei〈θ,
~Zcpt〉) = e−‖θ‖

2
cpt ,

(θ ∈ R2g) where ‖θ‖2cpt = 1
m(M)

∫
M
‖
∑2g
i=1 θiσ

∗
i ‖2dm, ‖ · ‖ is measured in T ∗M ,

and σ∗i are given by Lemma 2.

(2) ~Zcusp := (Zcusp1 , . . . ,Zcuspν−1 ) are independent, identically distributed, symmetric,

Cauchy random variables s.t. E(eiθZ
cusp
i ) = e−|θ|/m(M), (θ ∈ R).

(3) ~Zcpt and ~Zcusp are independent.

Given ~v, define s(T ) as in Figure 2 when glnT (~v) is in the collar of some cusp,

and let s(T ) := 0 otherwise. Recall the definitions of ~WT (~v) = ( ~Wcpt
T , ~Wcusp

T ) and
~GS(~v) = (~GcptS , ~GcuspS ) from (1.2) and (1.3). Given ~v, ~WT (~v) is a random whereas
~GS(~v) is deterministic.

Theorem 6. Suppose ~v satisfies s(T ) = O(ln lnT ) (almost every vector is like

that), then
~Wcpt
T −~G

cpt
lnT (~v)√

lnT

dist−−−−→
T→∞

~Zcpt.

Theorem 7. Suppose ~v satisfies es(T ) = o(
√

lnT ) (all vectors with pre-compact

forward geodesics are like that), then
(
~Wcpt
T −~G

cpt
lnT (~v)√

lnT
,
~Wcusp
T −~GcusplnT (~v)

lnT

)
dist−−−−→
T→∞

~Z.

Whereas Theorem 6 applies to a.e. ~v, Theorem 7 does not, because if M is not
compact then es(T ) 6= o(

√
lnT ) for a.e. ~v (Lemma 5).

The following theorems describe the asymptotic distributional behavior of ~WT

under the weaker condition s(T ) = O(ln lnT ) which does hold almost everywhere.
As explained in the introduction, the behavior is complicated, with different scaling
along different subsequences. Our strategy is to identify “good” classes of subse-
quences s.t. (a) every good subsequence has an explicit scaling limit which depends
on the class, and (b) every sequence has a “good” subsequence.
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Fix ~v ∈ T 1M and Tn ↑ ∞. We call {glnTn(~v)} monochromatic if {glnTn(~v)}n≥1

is precompact, or if for some 0 ≤ i ≤ ν, glnTn(~v) −−−−→
n→∞

cusp i, and the horocyclic

cuspidal excursions of glnTn(~v) in Ci are all ascending, or all descending.
Every sequence has a monochromatic subsequence, and every monochromatic

sequence has a subsequence of one of the following types (cf. Figure 2):

Type I: {glnTn(~v) : n ∈ N} is pre-compact in M

Type II: glnTn(~v) −−−−→
n→∞

cusp pi, {glnTn(~v)} is monochromatic, and

ρ(Tn)− s(Tn) −−−−→
n→∞

κ0 ∈ R ,
es(Tn)

lnTn
−−−−→
n→∞

as ∈ [0,∞].

Type III: glnTn(~v) −−−−→
n→∞

cusp pi, {glnTn(~v)} is monochromatic, and

ρ(Tn)− s(Tn) −−−−→
n→∞

∞ ,
eδ(Tn)

2 lnTn
−−−−→
n→∞

aδ ∈ [0,∞].

Type IV: glnTn(~v) −−−−→
n→∞

cusp pi, {glnTn(~v)} is monochromatic, and

ρ(Tn)− s(Tn) −−−−→
n→∞

−∞ ,
eρ(Tn)

2 lnTn
−−−−→
n→∞

aρ ∈ [0,∞].

Theorem 8. Suppose ~v ∈ T 1M . If Tn ↑ ∞ is of type I, then(
~Wcpt
T −~G

cpt
lnT (~v)√

lnT
,
~Wcusp
T −~GcusplnT (~v)

lnT

)
dist−−−−→
T→∞

~Z.

Next we discuss the limiting behavior along monochromatic sequences of types
II–IV. We assume w.l.o.g. that glnTn(~v) →cusp i with 0 ≤ i ≤ ν − 1. The case
i = ν ≥ 2 is complicated to write down in the coordinates of the canonical basis,
and it is better to handle it by relabeling of the cusps.

Suppose 1 ≤ i ≤ ν − 1. For every vector ~x ∈ R2g+ν−1, let ~xi ∈ R denote
the i-th coordinate of ~x, and let ~xcusp\i ∈ Rν−2 denote the vector obtained from
xcusp ∈ Rν−1 by removing its i-th coordinate, or the empty vector if ν = 0, 1.

If X,Y are two random variables, then X⊕Y denotes the independent sum, i.e.
the random variable with characteristic function E(eiθ(X⊕Y)) = E(eitX)E(eitY).

Let lnT#
k (~v) :=beginning time for the cuspidal geodesic excursion of glnTk(~v). Set

ĜlnTk(~v) := Frobcuspi [GlnT#
k

(~v)]− es(Tk)σ(Tk).

Theorem 9. If Tn ↑ ∞ is of type II and s(Tn) = O(ln lnTn), then there is a real

valued random variable Y, independent of ~Z, s.t.

(1) If as = 0, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ).

(2) If as =∞, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

es(Tn)

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Y).

(3) If 0 < as <∞, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ⊕ asY).
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The random variable Y has probability density function (1/
∫
A
dx
x2 )(dxx2 ) on

A :=


[−1,− 1

1+2e−κ0
] {glnTk(~v)} is descending

[1, 1
1−2e−κ0

] {glnTk(~v)} is ascending, κ0 > ln 2

[1,∞) {glnTk(~v)} is ascending, κ0 = ln 2

(−∞,− 1
2e−κ0−1

] ∪ [1,∞) {glnTk(~v)} is ascending, κ0 < ln 2.

Theorem 10. If Tn ↑ ∞ is of type III and s(Tn) = O(ln lnTn), then:

(1) If aδ = 0, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)−es(Tn)σ(Tn)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ).

(2) If aδ =∞, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)−es(Tn)σ(Tn)

1
2 e
δ(Tn)

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Y), where Y ∼ U[0, 1] is independent of ~Z.

(3) If 0 < aδ <∞,

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)−es(Tn)σ(Tn)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ⊕ aδY), where Y ∼ U[0, 1] is independent of ~Z.

Theorem 11. If Tn ↑ ∞ is of type IV and s(Tn) = O(ln lnTn), then there is a real

valued random variable Y, independent of ~Z, s.t.

(1) If aρ = 0, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ).

(2) If aρ =∞, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

1
2 e
ρ(Tn)

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Y)

(3) If 0 < aρ <∞, then

(
~Wcpt
Tn
−~GcptlnTn

(~v)
√

lnTn
,
~W
cusp\i
Tn

−~Gcusp\ilnTn
(~v)

lnTn
,

Wi
Tn
−ĜilnTn (~v)

lnTn

)
dist−−−−→
n→∞

(~Zcpt, ~Zcusp\i,Zcuspi ⊕ aρY).

Y has probability density function dx
x2 on (−∞,−1].

We see that different scaling limits occur for different types of subsequences. The
question remains, which types occur for typical orbits. As the following theorem
shows, the answer is: “All of them.”

Theorem 12. For a.e. ~v ∈ T 1M , for every α ∈ [0,∞], κ ∈ [−∞,∞], 1 ≤ i ≤ ν,
and σ = ±1

(1) ∃Tn ↑ ∞ of type I;
(2) ∃Tn ↑ ∞ of type II s.t. σ(Tn) = σ, i(Tn) = i, as = α, and ρ(Tn)− s(Tn)→ κ;
(3) ∃Tn ↑ ∞ of type III s.t. σ(Tn) = σ, i(Tn) = i and aδ = α;
(4) ∃Tn ↑ ∞ of type IV s.t. σ(Tn) = σ, i(Tn) = i and aρ = α.

3. Reduction to a problem on the Homology Cover

3.1. Homology cover. Every complete connected orientable hyperbolic surface

M has a regular cover M̃ , called the homology cover, whose group of deck transfor-
mations is isomorphic to H1(M,Z). This cover can be constructed as follows.
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Let H denote the hyperbolic plane: {z ∈ C : Im(z) > 0} with the metric ds =
|dz|/Im(z). It is well-known that the group of orientation preserving isometries
of H equals Möb(H) = {z 7→ az+b

cz+d : a, b, c, d ∈ R, ad − bc = 1}. By the Killing-
Hopf Theorem, the universal cover of M is isometric to H, and there is discrete
subgroup Γ ⊂ Möb(H), without elements of finite order, such that M is isometric to
Γ \D := {Γz : z ∈ D}. Γ is isomorphic the fundamental group π1(M,p0) (p0 ∈M).

Let Γ̃ := 〈ghg−1h−1 : g, h ∈ Γ〉. This is a normal subgroup of Γ. Since H1(M,Z)

is the abelianization of π1(M), H1(M,Z) ∼= Γ/Γ̃. The homology cover of M is

M̃ := Γ̃ \H

with the covering map π̃ : Γ̃ \ H → Γ \ H, π̃(Γ̃z) := Γz. Every coset Γ̃g ∈ Γ/Γ̃

determines a well-defined isometry of DΓ̃g : M̃ → M̃ through DΓ̃g(Γ̃z) = Γ̃g(z).

Let D := {DΓ̃g : g ∈ Γ/Γ̃}, then D ∼= Γ/Γ̃ ∼= H1(M,Z) and M̃/D ∼= M .

3.2. Frobenius elements. Fix a point p0 ∈M and some lift p̃0 ∈ M̃ . Since M is
connected, every class in H1(M,Z) is represented by a loop σ passing through p0.

Lift σ at p̃0 to a path σ̃ in M̃ . There is a unique deck transformation Dσ ∈ D s.t.
the endpoint of σ̃ equals Dσ(p̃0). Dσ is called the Frobenius element of σ.

Since homotopic loops have the same lifts, Dσ is determined by the homotopy
class of σ, and σ 7→ Dσ is a homomorphism from π1(M,p0) to D. Since D is abelian,
this homomorphism vanishes on the commutator group of π1(M,p0). Consequently,
Dσ only depends on the homology class of σ. We obtain a homomorphism

frob : H1(M,Z)→ D , frob[σ] = Dσ.

It is easy to see that frob is onto: every D ∈ D equals frob[σ] for σ :=projection of
the geodesic from p̃0 to D(p̃0). Since H1(M,Z) ∼= D ∼= Zd, frob is an isomorphism.

The Frobenius element does not depend on the choice of p0 and p̃0, because
changing p0 changes σ into a conjugate of σ, and changing p̃0 changes Dσ into a
conjugate of Dσ. Since H1(M,Z) and D are abelian, nothing changes.

By Lemma 1, d = 2g when ν = 0 and d = 2g + ν − 1 when ν ≥ 1. We can use
the Frobenius isomorphism to enumerate D in such a way that

D := {Da : a ∈ Zd} , Da ◦Db = Da+b.

To do this take the basis for H1(M,Z) found in Lemma 1, and set

Da := frob

( 2g∑
i=1

ai[σi] +

ν−1∑
i=1

ai[ζi]

)
.

With this enumeration, we have the identity

frob[σ] = DFrob[σ] (3.1)

with Frob([σ]) := (
∫
σ
σ∗1 , . . . ,

∫
σ
σ∗2g;

∫
σ
ζ∗1 , . . . ,

∫
σ
ζ∗ν−1), the isomorphism we defined

after Lemma 2.

3.3. Zd-coordinates. Since M = Γ \ H has finite area, Γ is a lattice in Möb(H).
Choose a fundamental domain F ⊂ H for Γ such that: F is a geodesically convex
hyperbolic polygon; either all the vertices of F are in ∂H or no vertex of F is in ∂H;
F has finite even number of sides; these sides are identified in pairs by Γ-elements.
Remove “half” of the sides of F to obtain a non-closed non-open hyperbolic polygon
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F0 s.t. H =
⊎
g∈Γ g(F0) = H (pairwise disjoint union). Let F̃0 := {Γ̃z : z ∈ F0},

then M̃ ≡ {Γ̃z : z ∈ H} = {Γ̃g(z) : z ∈ F̃0, g ∈ Γ} =
⊎
D∈DD(F̃0) =

⊎
a∈Zd Da(F̃0).

The Zd–coordinate of p ∈ M̃ is the unique ξ ∈ Zd s.t. Dξ(F̃0) 3 p. The Zd-

coordinate of ~v ∈ T 1M̃ is the Zd-coordinate of the base point of ~v. We get maps

ξ : M̃ → Zd , ξ : T 1M̃ → Zd called the Zd–coordinate maps.

Lemma 13. Fix ~v ∈ T 1M and let ~w ∈ T 1M̃ be a lift of ~v to T 1M̃ . The random
variables XT :=

∥∥[Frob[Ht(~v)]−ξ(ht(~w))
∥∥, when t ∼ U[0, T ], are tight as T →∞.

Proof. In this proof we identify M with the orbit space Γ \ H. Let F0 denote the
fundamental domain for Γ we used to define the Zd–coordinate function ξ. Every
x, y ∈ M equal Γz,Γw for unique z, w ∈ F0. Since F0 is geodesically convex, the
geodesic segment from z to w lies in F0. Let γ̂xy denote the Γ-projection of this
segment to M . (This is not always a length minimizing curve in M .) Let

Ĥt(~v) :=

(
the loop obtained by concatenating the curve
τ 7→ (π ◦ hτ )(~v) (0 ≤ τ ≤ t) to γ̂π[ht(~v)],π[~v].

)
.

We deduce the lemma from the following claims:

(1) ξ(ht(~w)) = ξ(~w) + Frob[Ĥt(~v)] for all t > 0.

(2) ∆T (~v) := ‖Frob[Ht(~v)]−Frob[Ĥt(~v)]‖, where t ∼ U[0, T ], are tight as T →∞.

Proof of (1). Ĥτ (~v) lifts at π[~w] to the concatenation γ̃1 · γ̃2 where γ̃1 is τ 7→
π[hτ (~w)] (0 ≤ τ ≤ t) and γ̃2 is the lift of γ̂π(hτ (~v)),π(~v) at π[hτ (~v)]. Clearly

◦ γ̃1 starts at ~w ∈ Dξ(~w)(F̃0)

◦ γ̃1 ends at π(ht(~w)) ∈ Dξ(ht(~w))(F̃0)

◦ γ̃2 stays inside Dξ(hτ (~w))(F̃0) (because γ̂π(hτ (~v)),π(~v) ⊂ ΓF0).

So γ̃1 · γ̃2 starts in Dξ(~w)(F̃0) and ends in Dξ(ht(~w))−ξ(~w)(F̃0). It follows that

frob[Ĥt(~v)] = Dξ(ht(~w))−ξ(~w). By (3.1), Frob[Ĥt(~v)] = ξ(ht(~w))− ξ(~w).

Proof of (2). By construction, [Ht(~v)]− [Ĥt(~v)] = [γ] where γ is the concatena-

tion γπ[ht(~v)],π[~v] ·γ̂−1
[ht(~v)],[~v], and γ−1 is the time reversal of γ. Define ~F : T 1M → Zd

~F (~u) = Frob([γ(~u)]), where γ(~u) = γπ[~u],π[~v] · γ̂−1
π[~u],π[~v].

Then ∆t(~v) := Frob[Ht(~v)]− Frob[Ĥt(~v)] = ~F (ht(~v)).
Let N := {Γz : z ∈ ∂F0}, a finite union of geodesics. We claim that there is a

function G : T 1M → R+ s.t. ‖F (~u)‖ ≤ G(~u) for all ~u ∈ T 1M and such that G is
continuous outside T 1N . Here is the reason:

F (~u) = (

∫
γ(~u)

σ∗1 , . . . ,

∫
γ(~u)

σ∗2g,

∫
γ(~u)

ζ∗1 , . . . ,

∫
γ(~u)

ζ∗t−1)

where σ∗i , ζ
∗
i are the 1-forms in Lemma 2. Now

(a) The length of γ(~u) is at most L(~u) := distM (π[~v], π[~u]) + ϕ(π[~v], π[~u]), where
distM is the hyperbolic distance on M and ϕ(x, y) := distF0(z, w) where distF0

is the hyperbolic distance on F0 and z, w ∈ F0 satisfy x = Γz, y = Γw.
(b) γ(~u) ⊂ K(~u) := {x ∈M : distM (π[~v], x) ≤ L(~u)}, a compact set.
(c) M(~u) = max{‖σ∗i ‖x, ‖ζ∗j ‖x : x ∈ K(~u), i = 1, . . . , 2g; j = 1, . . . , ν − 1} <∞.
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Thus, ‖F (~u)‖ ≤ G(~u) where G(~u) :=
√
dL(~u)M(~u). G is continuous outside T 1N ,

because L(~u) is continuous outside T 1N := {~u ∈ T 1
xM : x ∈ N}.

According to the Dani-Smillie Theorem [DS84], the horocycle of ~v equidistributes
to a measure µ (equal to 1

τ0

∫ τ0
0
δhτ (~v)dτ if the horocycle of ~v is periodic with period

τ0, or to the normalized volume measure when the horocycle is not periodic).
Fix ε > 0 and open sets U, V s.t. V ⊃ U ⊃ U ⊃ T 1N and µ(V ) < ε/4,

µ(∂V ) = 0. For every a > 0, [G ≥ a] \ U is closed, therefore there is a continuous
function H s.t. 1[G≥a]\V ≤ H ≤ 1Uc and

∫
Hdµ ≤ µ[G ≥ a] + ε

3 . As t ∼ U[0, T ],

Prob[∆T ≥ a] ≡ Prob
[
‖~F (ht(~v))‖ ≥ a

]
≤ Prob

[
G(ht(~v)) ≥ a

]
≤ Prob

(
[G(ht(~v)) ≥ a] ∩ [ht(~v) 6∈ V ]

)
+ Prob[ht(~v) ∈ V ]

= E
[
1[G≥a]\V (ht(~v)) + 1V (ht(~v))

]
≤ E

[
H(ht(~v)) + 1V (ht(~v))

]
=

1

T

∫ T

0

H(hτ (~v)) + 1V (hτ (~v))dτ −−−−→
T→∞

∫
Hdµ+ µ(V ) (∵ µ(∂V ) = 0)

≤ µ[G ≥ a] + ε
3 + ε

4 .

Choosing a s.t. µ[G ≥ a] < ε
3 , we see that Prob

[
∆T ≥ a

]
< ε for all T large

enough, proving the tightness of ∆T . �

Corollary 14. Let ~w ∈ T 1M̃ be a lift of ~v ∈ T 1M . For every ~AT ∈ Rd, BT ∈
GL(d,R) s.t. ‖B−1

T ‖ → 0, and every random variable Z ∈ Rd,

B−1
T (WT (~v)− ~AT )

dist−−−−→
T→∞

Y iff B−1
T (ξ(ht(~w))− ~AT )

dist−−−−→
T→∞

Y, as t ∼ U[0, T ].

Corollary 15. If ‖B−1
T ‖ → 0, then the validity of the scaling limit B−1

T (WT (~v)−
~AT )

dist−−−−→
T→∞

Y is independent of the choice of the closing paths {γxy} used to define

the horocyclic winding classes.

Proof. ξ(ht(~w)) does not depend on {γxy}. �

Corollary 14 reduces the analysis of ~WT (~v) = Frob[Ht(~v)] with t ∼ U[0, T ]
to the study of ξ(ht(~w)) with t ∼ U[0, T ], where ~w is a tangent vector on the

homology cover M̃ s.t. π̃(~w) = ~v.

4. Proof of Scaling limit along sequences of type I

Recall the notation π̃ : M̃ →M for the homology cover M̃ of M . We will use the

same symbol π̃ for the projection T 1M̃ → T 1M , and we will denote the geodesic

and stable horocycle flows on T 1M̃ by g, h : T 1M̃ → M̃ .

Lemma 16. Let K be a compact subset of T 1M , then for every a > 0

sup

{
‖ξ(gs+xhy(~w))− ξ(gs(~w))‖ :

s ≥ 0, |x| < a, |y| < a, and ~w ∈ M̃
s.t. π̃(~w) ∈ K and π̃(gshy(~w)) ∈ K

}
<∞.

Proof. Let F denote the geodesically convex hyperbolic polygon we used to define

the Zd–coordinate, and let F̃0 be its lift to the homology cover M̃ (see page 13).

Lift K to a compact subset K̃ ⊂ M̃ .

Na(K̃) := {z ∈ M̃ : dist(z, K̃) ≤ 3a} is a compact set, and since Γ acts dis-

continuously on H, Na(K̃) intersects at most a finite number of images of F̃0 by
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deck transformations. So Na(K̃) ⊂
⋃N
i=1Dai

(F̃0) for some finite collection of deck
transformations Da1

, . . . , DaN
.

In particular, for any |x|, |y| < a and ~w s.t. π̃(gs(~w)), π̃(gshy(~w)) ∈ K, the

geodesic arc {gs+τhy(~w) : 0 < τ < x} ⊂
⋃N
i=1Dai+ξ(g

shy(~w))(F̃0). So

‖ξ(gs+xhy(~w))− ξ(gshy(~w))‖ ≤ 2 max{‖a1‖, . . . , ‖aN‖}.

It follows that sup{‖ξ(gs+xhy(~w)) − ξ(gshy(~w))‖ : π̃(~w), π̃(gshy(~w)) ∈ K, |x| <
a, |y| < a, s ≥ 0} <∞, and it remains to show that

sup{‖ξ(gshy(~w))− ξ(gs(~w))‖ : π̃(~w), π̃(gshy(~w)) ∈ K, |y| < a, s ≥ 0} <∞.

Let ~σ∗ := (σ̃∗1 , . . . , σ̃
∗
2g, 0, . . . , 0) and ~ζ∗ := (0, . . . , 0, ζ̃∗1 , . . . , ζ̃

∗
ν−1) where σ̃∗i :=

σ∗i ◦ π̃, ζ̃∗j := ζ∗j ◦ π̃ are the lifts of the 1-forms σ∗i , ζ
∗
i in Lemma 2 to M̃ .

Claim: There is a constant C which only depends on K such that for every ~w ∈ M̃
s.t. π̃(~w) ∈ K, |y| < a, and s > 0 s.t. π̃(gshy(~w)) ∈ K,

‖ξ(gshy(~w))− ξ(gs ~w)‖ ≤
∫ s

0

‖~σ∗(gτhy(~w))− ~σ∗(gτ ~w)‖dτ

+

∥∥∥∥∫ s

0

~ζ∗(gτhy(~w))− ~ζ∗(gτ ~w)dτ

∥∥∥∥+ C.

Proof. Let ~v := π̃(~w) and let γ be the loop γ = γ1 · γ2 ⊂ M where γ1 =
{π[gτhy(~v)]}0<τ<s and γ2 =shortest geodesic from π[gshy(~v)] to π[hy(~v)].

Lift γ1 to a path γ̃1 ⊂ M̃ starting at hy(~w). Lift γ2 to a path γ̃2 ⊂ M̃ starting
at the endpoint of γ̃1, gshy(~w). Since γ̃2 is the shortest possible path between

π̃(~w), π̃(gshy ~w) ∈ K, and |s| < a, the curve γ̃2 is contained in Na(K̃). So

‖ξ[end(γ̃2)]− ξ[beginning(γ̃2)]‖ ≤ max{‖a1‖, . . . , ‖aN‖}.

By (3.1), Frob[γ] = ξ(end(γ̃2)) − ξ(hy(~w)) = [ξ(end(γ̃2)) − ξ(beginning(γ̃2))] +
[ξ(gshy ~w)− ξ(hy(~w))] = ξ(gshy ~w)− ξ(hy(~w)) +O(1). It follows that

ξ(gshy ~w)− ξ(hy(~w)) = Frob[γ] +O(1) =

∫
γ̃1

(~σ∗ + ~ζ∗) +O(1),

where ‖O(1)‖ ≤ C1 := max{‖a1‖, . . . , ‖aN‖}+diam(K) maxNa(K̃)(‖~σ
∗‖+‖~ζ∗‖). So

ξ(gshy(~w))− ξ(hy(~w)) =
∫ s

0
~σ∗(gτhy(~w))dτ +

∫ s
0
~ζ∗(gτhy(~w))dτ +O(1). Similarly,

ξ(gs(~w))− ξ(~w) =

∫ s

0

~σ∗(gτ (~w))dτ +

∫ s

0

~ζ∗(gτ (~w))dτ +O(1)

ξ(hy(~w))− ξ(~w) = O(1)

with similar bounds for O(1) terms. The claim follows by taking a suitable linear
combination of these inequalities, and rearranging terms.

The claim reduces the Lemma to uniform bounds for
∫ s

0
‖~σ∗(gτhy(~w))−~σ∗(gτ ~w)‖dτ

(“first integral”) and ‖
∫ s

0
~ζ∗(gτhy(~w))− ~ζ∗(gτ ~w)dτ‖ (“second integral”).

The first integral is easy to bound, as follows. The 1-forms σ∗1 , . . . , σ
∗
2g extend

smoothly to M0 := M ∪ {cusps}, therefore σ̃∗1 , . . . , σ̃
∗
2g are Lipschitz on T 1M̃ .
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Let L denote the Lipschitz constant of ~σ∗. Since hy is the stable horocycle flow,
dist(gτhy(~w), gτ (~w)) ≤ |y|e−τ . So∫ ∞

0

‖~σ∗(gτhy(~w))− ~σ∗(gτ ~w)‖dτ ≤
∫ ∞

0

Lae−τdτ = La = O(1).

The second integral is more complicated because ζ∗i explode at the cusps. Still,
ζ∗1 , . . . , ζ

∗
ν−1 are Lipschitz away from the cusps of M . Recall the definition of the

η-collars Ci(η), and fix η so large that Na(K) ∩ T 1Ci(η) = ∅ for all cusps.
Let {gt(π̃ ~w) : t ∈ (ak, bk)}, k = 1, . . . , N , be the cuspidal geodesic excursions of

{gt(π̃ ~w) : 0 < t < s} in the η-collars of cusps of M , ordered so that a1 < b1 < a2 <
b2 < · · · . Since π̃(~w), π̃(gshy(w)) ∈ K all cuspidal excursions to η-collars begin and
end on ∂Ci(η).

The contribution to the second integral from (0, s)\
⋃N
k=1(ak, bk) can be bounded

above as before by La, where L is the Lipschitz constant of ζ∗i outside
⋃t
i=1 Ci(η).

To bound the contribution of the cuspidal excursions (ak, bk) we argue as follows.
First observe that bi+1 − ai > 2 ln 2η, because at the moment that we leave Ci(η)
we need to travel distance ≥ ln 2η to leave Ci(

1
2 ), and then another ln 2η to re-enter

another η-collar (there is no way to backtrack inside a collar once you are on your
way out). Thus bk > ak ≥ c(k − 1), with c = 2 ln 2η. It follows that for all |y| < a,

dist(gakhy(~w), gak(~w)) ≤ aθk−1

dist(gbkhy(~w), gbk(~w)) ≤ aθk−1.
, where θ := e−c (4.1)

Consider the closed loop γ = γ1 · γ2 · γ3 · γ4 where γ1(τ) = gτhy(~w) (ak < τ < bk),
γ3(τ) = gbk−τ (~w) (0 < τ < bk − ak), and where γ2, γ4 are curves connecting
gbkhy(~w) to gbk(~w) and gak(~w) to gakhy(~w). By (4.1), γ2, γ4 can be chosen to be
exponentially short, and exponentially close to ∂Ci(η).

◦ Since γ is a closed loop in the homology cover of M , frob[π̃ ◦ γ] = 0, whence

Frob([π̃ ◦ γ]) = ~0, whence
∫
γ
~ζ∗ =

∫
π̃(γ)

(0, . . . , 0; ζ∗1 , . . . , ζ
∗
t−1) = ~0.

◦ Since γ = γ1 · γ2 · γ3 · γ4, and γ2, γ4 are exponentially short curves lying in a

region where ~ζ∗ is uniformly bounded,
∥∥∥∫ bkak ~ζ∗(gτhy(~w))dτ −

∫ bk
ak
~ζ∗(gτ (~w))dτ

∥∥∥ =∥∥∥∫γ1 ~ζ∗ +
∫
γ3
~ζ∗
∥∥∥ =

∥∥∥− ∫γ2 ~ζ∗ − ∫γ4 ~ζ∗∥∥∥ = O(θk).

Summing over all cuspidal geodesic excursions, and recalling that the contribution
of the time intervals outside cusps is bounded, we find that∥∥∥∥∫ s

0

~ζ∗(gτhy(~w))− ~ζ∗(gτ ~w)dτ

∥∥∥∥ ≤ La+

N∑
k=1

O(θk) = O(1)

uniformly in ~w, y s.t. π̃(~w) ∈ K, π̃(gshy(~w)) ∈ K and |y| ≤ a. �

Given S > 0, ~w ∈ T 1M̃ , let ξ
S

(~w) :=
(
ξ1(~w)√
S
, . . . ,

ξ2g(~w)√
S

;
ξ2g+1(~w)

S , . . . ,
ξ2g+ν−1(~w)

S

)
where ξ is the Zd–coordinate on the homology cover. Let m̃ denote the volume

measure on T 1M̃ , normalized so that m̃({~w ∈ T 1M̃ : ξ(~w) = 0}) = 1. Recall the

definition of ~Z from §2.2.
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Theorem 17. For every 0 ≤ ϕ ∈ L∞(T 1M̃) with compact support s.t.
∫
ϕdm̃ = 1

and G ∈ L1(Rd) with Fourier transform Ĝ ∈ L1(Rd),

lim
s→∞

∫
G(ξ

s
◦ gs)ϕdm̃ = E[G(~Z)].

As stated, this is Prop. 2 in [LS08], but the roots of this result go much further back.

The theorem implies that ξ
S

(gS ~w)
dist−−−−→
S→∞

~Z as ~w is chosen randomly uniformly from

F̃0. That 1√
S
ξcpt◦gS → ~Zcpt and 1

S ξ
cusp◦gS → ~Zcusp is due to Le Jan [LJ92],[LJ94],

see also [ELJ97, EFLJ01]. The distributional convergence ξ
S
◦ gS → ~Z for the

modular surface is due to Guivarc’h & Le Jan [GLJ90].

Lemma 18. Suppose [A,B] ⊂ (0,∞), K ⊂ T 1M is compact, and G ∈ L1(Rd) has

Fourier transform Ĝ ∈ L1(Rd). For every ε > 0, there is an S0 > 0 s.t. for every

~v ∈ K, a ∈ [A,B], and s > S0 such that gs(~v) ∈ K, if ~u is a lift of gs(~v) to M̃ with
zero Zd-coordinate, then∣∣∣∣1a

∫ a

0

G
(
ξs(g

−shτ (~u))
)
dτ − E[G(~Z)]

∣∣∣∣ < ε.

Remark: Here it is important that h is the stable horocycle flow.

Proof. If gs(~v) −−−→
s→∞

cusp, then the statement is empty, because gs(~v) 6∈ K for all

s large enough. From now on, assume that gs(~v) does not tend to a cusp.
Fix some δ > 0 small and Kδ ⊂ T 1M compact s.t. Kδ ⊃ K, −Kδ = Kδ,

m0(Kδ) > 1− δ and m0(∂Kδ) = 0 where

m0 := normalized volume measure on T 1M .

By the Dani-Smillie Theorem [DS84], the horocycle of ~v is equidistributed. So

there is T0 s.t. for all T > T0, 1
T

∫ T
0

1Kc
δ
(hτ~v)dτ < 2δ. If s > ln(T0/A), then∣∣ 1

a

a∫
0

1Kc
δ
(g−shτgs~v)G

(
ξ
s
(g−shτ (~u))

)
dτ
∣∣ =

∣∣ 1
esa

esa∫
0

1Kc
δ
(hτ~v)G

(
ξ
s
(hτg−s(~u))

)
dτ
∣∣ ≤

2δ‖G‖∞. (G is bounded because its Fourier transform is in L1.) Using the identity
(g−shτgs)(~v) = π̃(g−shτ (~u)), we deduce that

1

a

∫ a

0

G
(
ξ
s
(g−shτ (~u))

)
dτ =

1

a

∫ a

0

1Kδ
(
π̃(g−shτ (~u))

)
G
(
ξ
s
(g−shτ (~u))

)
dτ±2δ‖G‖∞.

Let h = hs, hu be the stable and unstable horocycle flows. Using the identities
g−s(~u) = −gs(−~u), hτu(~u) = −h−τs (−~u), ξ(−~u) = ξ(~u), we find that,

‖ξ
s
(g−shτ (~u))− ξ

s
(g−s+xhyuh

τ (~u))‖ = ‖ξ
s
(gs(~w))− ξ

s
(gs−xh−ys (~w))‖,

where ~w := −hτ (~u). Thus, by Lemma 16, there is a constant C which only de-
pends on Kδ and [A,B] s.t. for every 0 < τ < a, |x|, |y| < a, s ≥ 0, and ~u s.t.
π̃(−hτ~u), π̃(gs(−hτ~u)) ∈ Kδ,

‖ξ
s
(g−shτ (~u))− ξ

s
(g−s+xhyuh

τ (~u))‖ ≤ C√
s
.

The condition π̃(−hτ~u) ∈ Kδ can be replaced by the condition π̃(−~u) ∈ Kδ at the
price of increasing Kδ. Notice that π̃(−~u) ∈ Kδ iff π̃(~u) ∈ Kδ iff gs(~v) ∈ Kδ.
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G is uniformly continuous, so ∃S1 > 0 s.t. for all s > S1, ‖x − y‖ < C√
s

=⇒
|G(x)−G(y)| < δ‖G‖∞. If s > max{S1, ln(T0

A )}, gs(~v) ∈ Kδ, then

1

a

∫ a

0

G
(
ξ
s
(g−shτ (~u))

)
dτ =

1

a

∫ a

0

1Kδ
(
π̃(g−shτ~u)

)
G
(
ξ
s
(g−shτ (~u))

)
dτ ± 2δ‖G‖∞

=
1

a3

∫ a

0

∫ a

0

∫ a

0

1Kδ
(
π̃(g−shτ~u)

)
G
(
ξ
s
(g−s+xhyuh

τ (~u))
)
dxdydτ ± 3δ‖G‖∞

=
1

a3

∫ a

0

∫ a

0

∫ a

0

G
(
ξ
s
(g−s+xhyuh

τ (~u))
)
dxdydτ ± 5δ‖G‖∞.

For every ~w ∈ Kδ, the map ϑ~w : (x, y, z) 7→ (gxhyuh
z)(~w) is a finite-to-one

smooth map. Let f~u,a =
dm~u,a

dm̃ , where m~u,a := 1
a3 Lebesgue|[0,a]3 ◦ ϑ−1

~u . Then for

every s > max{S1, ln(T0

A )} s.t. gs(~v) ∈ Kδ,

1

a

∫ a

0

G
(
ξ
s
(g−shτ (~u))

)
dτ =

∫
G(ξ

s
(g−s ~w))f~u,a(~w)dm̃(~w)± 5δ‖G‖∞.

F := {f~u,a : π̃(~u) ∈ Kδ, ξ(u) = 0, a ∈ [A,B]} is pre-compact in L1(m̃), because Kδ

is compact in T 1M and [A,B] is compact in (0,∞). So there is a finite collection
of non-negative bounded measurable functions ϕ1, . . . , ϕN with integral one s.t. for
every f ∈ F , ∃j ∈ {1, . . . , N} s.t. ‖f − ϕj‖1 < δ‖G‖∞. In particular, for every s

there is a j(s) ∈ {1, . . . , N} s.t. for every s > max{S1, ln(T0

A )} s.t. gs(~v) ∈ Kδ

1

a

∫ a

0

G
(
ξ
s
(g−shτ (~u))

)
dτ =

∫
G(ξ

s
(g−s ~w))f~u,a(~w)dm̃(~w)± 5δ‖G‖∞

=

∫
G(ξ

s
(g−s ~w))ϕj(s)(~w)dm̃(~w)± 6δ‖G‖∞.

By Lemma 17, ∃S2 s.t. for all s > S2, j ∈ {1, . . . , N},
∫
G(ξ

s
◦ g−s)ϕjdm̃ −−−→

s→∞
E(G(~Z)). The lemma follows with S0 := max{S1, S2, ln

T0

A } and δ := ε
6‖G‖∞ . �

Proof of Theorem 8. Let ~v be a vector and Tk ↑ ∞ be a sequence s.t. for some
compact set K, glnTk(~v) ∈ K for all k. Fix G ∈ L1(Rd) with Fourier transform

Ĝ ∈ L1(Rd), and let ~w be a lift of ~v to the homology cover.

1

Tk

∫ Tk

0

G[ξ
lnTk

(hτ ~w)− ξ
lnTk

(glnTk ~w)]dτ =

=
1

Tk

∫ Tk

0

G[ξ
lnTk

(g− lnTkhτ/TkglnTk ~w)− ξ
lnTk

(glnTk ~w)]dτ

=

∫ 1

0

G[ξ
lnTk

(g− lnTkhτ~uk)]dτ, where ~uk := lift of glnTk(~v) to M̃ s.t. ξ(~uk) = 0.

−−−−→
k→∞

E[G(~Z)], by Lemma 18 with a = 1.

It follows that if t ∼ U[0, Tk], then ξ
lnTk

(ht ~w)−ξ
lnTk

(glnTk ~w)
dist−−−−→
k→∞

~Z. By Lemma

13, B−1
Tk

( ~WTk(~v)− ξ(glnTk ~w))
dist−−−−→
k→∞

~Z for B−1
T (x) = ( 1√

lnT
xcpt, 1

lnT x
cusp).

It remains to observe that ξ(glnTk(~w)) = Frob[GlnTk(~v)] +O(1). To see this lift

the loop GlnTk(~v) to M̃ at ~w and notice that since glnTk(~v) ∈ K, the effect of the
closing path γπ[glnTk (~v)],π[~v] on the Zd-coordinate of the endpoint is bounded. �
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5. Proof of scaling limits along sequences of types II, III and IV

5.1. The Master Decomposition. Throughout this section, we fix ~v be a unit
tangent vector such that gs(~v) 6−−−→

s→∞
cusp, and let

AT := {hτ (~v) : 0 ≤ τ ≤ T}.
Suppose Tk ↑ ∞ is a monochromatic subsequence such that glnTk(~v) −−−−→

k→∞
cusp pi.

Since glnTk(ATk) has length one, glnTk(ATk) ⊂ Ci =collar of pi for all k large.
Lift glnTk(~v) to the upper half plane as in Figure 2. Suppose the geodesic cuspidal

excursion of glnTk(~v) in Ci begins at α1 + 1
2 i, and the geodesic cuspidal excursion

of glnTk(hTk(~v)) begins at α2 + 1
2 i, and let

ξ = ξ(k) :=

{
α1 σ(Tk) = 1

α2 σ(Tk) = −1
and ξ∗ = ξ∗(k) :=

{
α2 σ(Tk) = 1

α1 σ(Tk) = −1.

(Recall that σ(Tk) = ±1 signifies whether the cuspidal horocylic excursion of
glnTk(~v) is ascending (+1) or descending (-1).)

Divide glnTk(ATk) into sub-arcs Aj = Aj(k) as in Figure 3, by intersecting the
part of glnTk(ATk) to the right of the y-axis by the geodesics γj which are forward
asymptotic to γ := {gs(~v) : s > 0} and which intersect ∂Ci = {z : Im(z) = 1

2} at

j + 1
2 i, j ∈ ξ + Z+, and by intersecting the part of glnTk(ATk) to the left of the

y-axis by the geodesics γ∗j which are forward asymptotic to γ, and intersect ∂Ci at

j + 1
2 i, j ∈ ξ

∗ − Z+ (Figure 3).
Let Jk denote the collection of all j’s which participate in this decomposition.

Since |glnTk(ATk)| = 1, ∑
j∈Jk

|Aj(k)| = 1 for all k.

More information on Jk and Aj(k) is given in the following lemma:

Lemma 19. For every δ > 0, for all k large enough, |Aj(k)| = e±δ · e
ρ(Tk)

2j2 for all

but one j ∈ Jk. The possibilities for Jk are as follows (s = s(Tk), ρ = ρ(Tk)):

(i) if the cuspidal horocyclic excursion of glnTk(~v) is descending, then

Jk = − es

1+2es−ρ − {0, . . . , b
2e2s−ρ

1+2es−ρ c}
(ii) if the cuspidal horocyclic excursion of glnTk(~v) is ascending and 2es−ρ < 1,

then Jk = es + {0, . . . , b 2e2s−ρ

1−2es−ρ c}
(iii) if the cuspidal horocyclic excursion of glnTk(~v) is ascending and 2es−ρ = 1,

then Jk = es + {0, 1, 2, . . .}
(iv) if the cuspidal horocyclic excursion of glnTk(~v) is ascending and 2es−ρ > 1,

then Jk =
(
− es

2es−ρ−1 + {0,−1,−2, . . .}
)
∪ (es + {0, 1, 2, . . .}).

Proof. Throughout this proof, we let s = s(Tk), ρ = ρ(Tk), σ = σ(Tk).
Suppose first σ(Tk) = +1, and lift the picture to the upper half plane as in

Figure 2(a). Ci lifts to {z : Im(z) > 1
2}, the geodesic of ~v lifts to the upper half of

the circle |z − 1
2e
s| = 1

2e
s, and the horocycle of glnTk(~v) lifts to |z − 1

4e
ρi| = 1

4e
ρ.

The geodesic of hTk(~v) lifts to a half-circle |z − 1
2a| =

1
2a for some a > 0 which

we will now determine.
Call the geodesics of ~v and hTk(~v), γ and γ∗ respectively. The hyperbolic isome-

try z 7→ − 1
z maps γ, γ∗ to the vertical lines Re(z) = −e−s and Re(z) = −a−1, and

the horocycle of glnTk(~v) to the horizontal line Im(z) = 2e−ρ.
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Figure 3. The division of glnTk(ATk) in the ascending case (top)
and descending case (bottom). The top picture is misldeading:
glnTk(ATk) extends beyond the the y-axis iff glnTk(~v) is above the
center of the horocycle.

Thus glnTk(ATk) is mapped to the horizontal segment [−e−s + 2e−ρi,−a−1 +
2e−ρi]. Since |glnTk(ATk)| = 1 and z 7→ − 1

z is an isometry, |e−s− a−1|/(2e−ρ) = 1,

whence |e−s − a−1| = 2e−ρ, and a = es(1 ± 2es−ρ)−1. Since σ(Tk) = +1, the
horocycle of glnTk(~v) is ascending, and either a > es, or a < 0. It follows that

a = es(1 − 2es−ρ)−1, whence a − es = 2es−ρ

1−2es−ρ . Cases (ii),(iii),(iv) are when the
denominator is positive, zero, or negative.

The case σ(Tk) = −1 is similar. Lift the picture to the upper half plane as in
Figures 1(b) or 3(bottom). Now the geodesic of ~v lifts to the half-circle |z+ 1

2e
s| =

1
2e
s, and the geodesic of hTk(~v) lifts to the half-circle |z+ 1

2a| =
1
2a for some a > 0.

As before |e−s − a−1| = 2e−ρ, which leads to a = es(1 ± 2es−ρ)−1, but now the
horocycle of glnTk(~v) is descending, so 0 < a < es, whence a = es(1 + 2es−ρ)−1,
and the geodesics between γ, γ∗ begin at points in [−es,−a] . This is case (i).

We estimate of |Aj(k)|. Let zj = xj + iyj be the intersection point of γj with
glnTk(ATk), and let j′ denote the euclidean diameter of the half-circle γj . The
hyperbolic isometry z 7→ − 1

z maps γj to the vertical lines Re(z) = − 1
j′ . So for

all but one j ∈ Jk (equal to minJk in case (i) and max Jk in case (ii)), Aj(k) is
mapped to the horizontal segment with endpoints − 1

j′ + 2e−ρi,− 1
j′+1 + 2e−ρi. For

such j, |Aj(k)| = 1
2e
ρ( 1
j′ −

1
j′+1 ).

By the first part of the proof, min{|j| : j ∈ Jk} ≥ min {es, |a|} . Using the

estimates C
A+B ≥ min

{
C
2A ,

C
2B

}
,
∣∣∣ C
A−B

∣∣∣ ≥ min
{
C
A ,

C
B

}
valid for positive A,B,



ASYMPTOTIC WINDINGS OF HOROCYCLES 21

and C we obtain that |a| ≥ min
{
es(Tk)

2 , e
ρ(Tk)

4

}
and hence min{|j| : j ∈ Jk} ≥

min
{
es(Tk)

2 , e
ρ(Tk)

4

}
. Since glnTk(~v) −−−−→

k→∞
cusp, s(Tk), ρ(Tk) → ∞, so min{|j| :

j ∈ Jk} −−−−→
k→∞

∞. From figure 3, we see that supj>0 |j′ − j| −−−−→
k→∞

0, whence

|Aj(k)| =
1
2 e
ρ

(j+o(1))(j+1+o(1)) ∼
eρ

2j2 uniformly as k →∞, for all but one j ∈ Jk. �

Write Aj(k) = {hτ (glnTk(~v)) : τj ≤ τ ≤ τj+1}, and define θj = θj(k) by the
equation g−θj [hτj (glnTk(~v))] = j+ 1

2 i. Equivalently, g−θj [hτj (glnTk(~v))] is the point

of entry of γj into Ci. Let Bj = Bj(k) := g−θj(k)[Aj(k)] (Figure 3).

Lemma 20. For every δ > 0, the following holds for all k large enough,

(B1) For all but at most one j ∈ Jk, |Bj(k)| ∈ [2e−δ, 2eδ];
(B2) For every j ∈ Jk, dist(Bj(k), ∂Ci) < 2;

(B3) Lift ~v to a vector ~w in the homology cover. Let ~ci := Frob[ci]. Let B̃j(k)

denote the lift of Bj(k) to M̃ induced by lifting ~v to ~w. Then

sup
k

sup
j∈Jk

sup
~u∈B̃j(k)

∥∥∥ξ(~u)− (~βk + j · ~ci)
∥∥∥ <∞,

where ~βk :=

{
ξ(glnTk−θξ(k)(k)(~w))− ξ(k) · ~ci ascending

ξ(glnTk−θξ∗(k)(k)(hTk ~w))− ξ∗(k) · ~ci descending;

(B4) For all but at most one j ∈ Jk, eθj(k) = e±δ · 4e−ρ(Tk)j2.

Proof. Since glnTk(~v) −−−−→
k→∞

cusp pi, s(Tk) (defined in figure 2) −−−−→
k→∞

∞. The

radius of the half-circles representing γj in figure 3 is at least 1
2e
s(Tk), and therefore

tends to infinity uniformly in j. So if L := {z : Im(z) = 1
2}, then ](γj , L) −−−−→

k→∞
π
2 uniformly in j. Since Bj ⊥ γj , Bj is nearly tangent to L at zj := (ξ + j) + 1

2 i.

The convergence glnTk(~v) −−−−→
k→∞

cusp pi also implies that ρ(Tk) −−−−→
k→∞

∞ (figure

2). Since Bj is an arc of a euclidean circle with radius bigger than 1
4 exp ρ(Tk) (the

radius of gTk(ATk)), the euclidean curvature of Bj is less than 4e−ρ(Tk) and tends
to zero uniformly in j. Thus the second derivative of the function whose graph
represents Bj tends uniformly to zero as k →∞.

It follows that for all but at most one j ∈ Jk, Bj(k) converges uniformly in C2

as k → ∞ to the horizontal segment {τ + 1
2 i : j ≤ τ ≤ j + 1}. This segment has

hyperbolic length 2. (B1) and (B2) immediately follow. (B3) is immediate from
figure 3. (B4) follows from the identity |Bj(k)| = |gθj (Aj(k))| = eθj(k)|Aj(k)| and

the uniform asymptotics |Bj | → 2, |Aj | · 2e−ρ(Tk)j2 → 1. �

5.2. Two random variables. Let Θk be the random variable which takes the
value θj(k) with probability pj(k) := |Aj(k)| (j ∈ Jk) (these probabilities sum up
to one because |gTk(ATk)| = 1).

Lemma 21. Suppose s(Tk) = O(ln lnTk), then Θk

lnTk

dist−−−−→
k→∞

0.

Proof. By (B4), for all but at most one j ∈ Jk, θj(k) = 2 ln j−ρ(Tk)+ln 4+o(1) =

[2s(Tk) − ρ(Tk)] + 2 ln(je−s(Tk)) + ln 4 + o(1), where o(1) −−−−→
k→∞

0 uniformly. So
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θj(k)
lnTk

= 2s(Tk)−ρ(Tk)
lnTk

+O( ln(e−s(Tk)j)
lnTk

)+o(1) uniformly in j ∈ Jk, as k →∞. By Lem-

mas 4 and 5 and the assumption s(Tk) = O(ln lnTk), 2s(Tk)−ρ(Tk)
lnTk

−−−−→
k→∞

0. It is thus

enough to prove that for every ε > 0, Pk(ε) :=
∑
j:ln(e−s(Tk)j)>ε lnTk

pj(k) −−−−→
k→∞

0.

By Lemma 19, pj(k) ≡ |Aj(k)| ∼ eρ(Tk)/(2j2) uniformly in j as k → ∞. So

Pk(ε) =
∑
j>es(Tk)T εk

pj(k) ≤ const
∑
j>es(Tk)T εk

eρ(Tk)

2j2 = O( eρ(Tk)

es(Tk)T εk
). By Lemma 4,

ρ(Tk) ≤ 2s(Tk) +O(1), so Pk(ε) = O( e
s(Tk)

T εk
) = O( e

O(ln lnTk)

T εk
) −−−−→
k→∞

0. �

Let Yk be the integer valued random variable which takes the value j with
probability pj(k) (j ∈ Jk).

Lemma 22. Suppose glnTk(~v) −−−−→
k→∞

cusp pi and {glnTk(~v)} is monochromatic (as-

cending or descending), then

(1) Type II: If ρ(Tk)− s(Tk) −−−−→
k→∞

κ0 ∈ R, then e−s(Tk)Yk
dist−−−−→
k→∞

Y where Y is

distributed with probability density function const(dxx2 ) on the set
[−1,− 1

1+2e−κ0
] the horocyclic excursion of glnTk(~v) is descending

[1, 1
1−2e−κ0

] ascending, κ0 > ln 2

[1,∞) ascending, κ0 = ln 2

(−∞,− 1
2e−κ0−1

] ∪ [1,∞) ascending, κ0 < ln 2.

(2) Type III: If ρ(Tk)−s(Tk) −−−−→
k→∞

∞, then 2e−δ(Tk)(Yk−es(Tk)σ(Tk))
dist−−−−→
k→∞

Y,

where Y is uniformly distributed on [0, 1].

(3) Type IV: Suppose ρ(Tk)− s(Tk) −−−−→
k→∞

−∞, then 2e−ρ(Tk)Yk
dist−−−−→
k→∞

Y where

Y has probability density function dx
x2 on (−∞,−1].

Proof. We divide the proof into the cases (i)–(iv) listed in Lemma 19.

Case (i): Jk = − es

1+2es−ρ − {0, . . . , b
2e2s−ρ

1+2es−ρ c}, descending.

(1) If ρ − s −−−−→
k→∞

κ0, then e−s(Tk)Yk ∈ e−sJk ⊂ [−1 + o(1),− 1
1+2e−κ0

+ o(1)],

and for all (a, b) ⊂ [−1,− 1
1+2e−κ0

], Prob[a < e−sYk < b] ∼
∫ esb
esa

eρ

2y2 dy =∫ b
a
eρ−s

2x2 dx ∼
∫ b
a
eκ0

2x2 dx, proving that e−s(Tk)Yk
dist−−−−→
k→∞

([−1,− 1
1+2e−κ0

], e
κ0

2x2 dx).

(2) If ρ− s −−−−→
k→∞

∞, then Yk+es

2e2s−ρ ∈
Jk+es

2e2s−ρ ⊂ [0, 1] + o(1). Since glnTk(~v) tends to

a cusp, 2s(Tk) − ρ(Tk) → ∞, (Figure 2). So ∀[a, b] ⊂ [0, 1] Prob[a < Yk+es

2e2s−ρ <

b] ∼
∫ 2e2s−ρb+es

2e2s−ρa+es
eρ

2y2 dy =
∫ b
a

eρ·2e2s−ρdx
2(2e2s−ρx+es)2 =

∫ b
a

dx
(2es−ρx+1)2 −−−−→k→∞

∫ b
a
dx, and

Yk+es

2e2s−ρ
dist−−−−→
k→∞

U[0, 1]. By Lemma 4, 2e2s−ρ ∼ 1
2e
δ(Tk).

(3) ρ−s −−−−→
k→∞

−∞, then (2e−ρ(Tk))Yk ∈ (−∞,−1+o(1)], and ∀[a, b] ⊂ (−∞,−1],

Prob[a < 2e−ρYk < b] ∼
∫ 1

2 e
ρb

1
2 e
ρa

eρdy
2y2 =

∫ b
a
dx
x2 , so 2Yk

eρ(Tk)

dist−−−−→
k→∞

(−(1,∞), dxx2 ).

Case (ii): Jk = es + {0, . . . , b 2e2s−ρ

1−2es−ρ c}, ascending, and 2es−ρ < 1.
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(1) If ρ − s −−−−→
k→∞

κ0, then κ0 ≥ ln 2 and e−sYk ∈ [1, 1
1−2e−κ0

+ o(1)] when

κ0 > ln 2 and e−sYk ∈ [1,∞) when κ0 = ln 2. For every [a, b] in this do-

main, Prob[a < e−sYk < b] ∼
∫ esb
esa

eρdy
2y2 =

∫ b
a
eρ−sdx

2x2 −−−−→
k→∞

∫ b
a
eκ0dx
2x2 . So

e−sYk −−−−→
k→∞

(A, c(dxx2 )) with A = [1, 1
1−2e−κ0

] (κ0 > ln 2) or [1,∞) (κ0 = ln 2).

(2) If ρ− s −−−−→
k→∞

∞, Yk−es
2e2s−ρ

dist−−−−→
k→∞

U[0, 1] as in case (i)(2).

(3) ρ− s −−−−→
k→∞

−∞ cannot happen, because 2es−ρ < 1.

Case (iii): Jk = es + {0, 1, 2, . . .}, ascending, and 2es−ρ = 1 (so ρ− s→ ln 2).

e−sYk ∈ e−sJk ⊂ [1,∞). For all [a, b] ⊂ [1,∞), Prob[a < e−sYk < b] ∼∫ bes
aes

eρdy
2y2 =

∫ b
a
eρ+sdx
2e2sx2 =

∫ b
a
eρ−sdx

2x2 =
∫ b
a
dx
x2 , so e−sYk

dist−−−−→
k→∞

([1,∞), dxx2 ).

Case (iv): Jk = ( es

1−2es−ρ−{0, 1, 2, . . .})∪(es+{0, 1, 2, . . . , }), ascending, 2es−ρ > 1.

(1) If ρ− s −−−−→
k→∞

κ0, then necessarily κ0 ≤ ln 2. Suppose first that κ0 = ln 2, then

Prob(Yk < 0) ≤ const
∫ es/(1−2es−ρ)

−∞
eρdy
2y2 = O(eρ/( 2es

1−2es−ρ )) → 1−2e−κ0

2e−κ0
= 0.

So Yk ∈ es+{0, 1, 2, . . .} with probability tending to one. The same calculation

we did in case (iii) shows that e−sYk
dist−−−−→
k→∞

([1,∞), dxx2 ). If κ0 < ln 2, these

calculations give e−sYk
dist−−−−→
k→∞

((−∞,− 1
2e−κ0−1

) ∪ [1,∞), e
κ0dx
2x2 ).

(2) ρ− s −−−−→
k→∞

∞ cannot happen, because 2es−ρ > 1.

(3) If ρ − s −−−−→
k→∞

−∞, then Prob(Yk > 0) = O(
∫∞
es

eρdy
2y2 ) = O(eρ−s) → 0,

so 2e−ρYk ∈ (−∞,−1) with probability→ 1. For every [a, b] ⊂ (−∞,−1],

Prob(a < 2Yk

eρ < b) ∼
∫ 1

2 e
ρb

1
2 e
ρa

eρdy
2y2 =

∫ b
a
dx
x2 , so 2e−ρYk

dist−−−−→
k→∞

((−∞,−1), dxx2 ). �

5.3. The Master Equation. We assume throughout that ν = 0, 1, or ν ≥ 2
and 0 ≤ i ≤ ν − 1. Given x ∈ R2g+ν−1, let x = (xcpt, xcusp) ∈ R2g × Rν−1

and xcusp\i := xcusp with the i-th coordinated removed (a vector in Rν−2), with
the agreement that these vectors are empty when not defined. Given Tk, αk ↑ ∞,
1 ≤ i ≤ t− 1, define Λ−1

Tk,αk,i
: R2g × Rν−1 → R2g × Rν−1 by

Λ−1
Tk,αk,i

(xcpt, xcusp) =
(

1√
lnTk

xcpt, 1
lnTk

xcusp\i, 1
αk
xcuspi

)
.

Suppose {glnTk(~v)} is a monochromatic sequence s.t. glnTk(~v)→cusp pi. Fix a

lift ~w of ~v to the homology cover M̃ . Let G : R2g+ν−1 → R be a function in L1

with Fourier transform in L1. Let ~ci := Frob[ci] = ei, and recall the definition of
~βk from (B3). Given a sequence (dk)k≥1, let

Ik = I(G;Tk, αk, dk, i) :=
1

Tk

∫ Tk

0

G(Λ−1
Tk,αk,i

(ξ(hτ ~w)− ~βk − dk~ci))dτ. (5.1)

Corollary 14 reduces scaling limits for WT (~v) to a scaling limits for ξ(ht(~w)) as
t ∼ U[0, T ], or equivalently to finding αk ↑ ∞, (dk)k≥1, and a non-degenerate

random variable ~L (all independent of G) s.t. Ik → E[G(~L)] for all G as above.
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In what follows, a tilde signifies the lift to the homology cover such that ~v lifts

to ~w. For example, ÃTk = {hτ (~w) : 0 ≤ τ ≤ Tk}. Decompose

ÃTk = g− lnTk

( ⊎
j∈Jk

Ãj(k)

)
=
⊎
j∈Jk

gθj(k)−lnTk B̃j(k)=:
⊎
j∈Jk

gθj(k)−lnTkD~βk+j~ci
B̃0
j (k)

where B̃0
j (k) := D−1

~βk+j~ci
(B̃j(k)). By (B3), supk supj∈Jk sup~u∈B̃0

j (k) ‖ξ(~u)‖ < ∞,

therefore
⋃
k>0

⋃
j∈Jk B̃

0
j (k) is pre-compact.

This leads to the following identity for I(G;Tk, αk, dk, i) (here pj(k) := |Aj(k)|,
Λ−1
k = Λ−1

Tk,αk,i
, ` =hyperbolic length measure):

I(G;Tk, αk, dk, i) :=
1

Tk

∫ Tk

0

G(Λ−1
k (ξ(hτ ~w)− ~βk − dk~ci))dτ

=
1

|ÃTk |

∫
ÃTk

G(Λ−1
k (ξ − ~βk − dkei))d` (∵ ~ci = Frob[ci] = ei for 1 ≤ i ≤ ν − 1)

=

∫
glnTk (ÃTk )

G(Λ−1
k (ξ ◦ g− lnTk − ~βk − dkei))d`, because ` ◦ glnTk = T−1

k ` (5.2)

=
∑
j∈Jk

∫
Ãj(k)

G(Λ−1
k (ξ ◦ g− lnTk − ~βk − dkei))d`

=
∑
j∈Jk

|Ãj(k)| · 1

|Ãj(k)|

∫
Ãj(k)

G(Λ−1
k (ξ ◦ g− lnTk − ~βk − dkei))d`

=
∑
j∈Jk

|Ãj(k)| · 1

|B̃j(k)|

∫
B̃j(k)

G(Λ−1
k (ξ ◦ gθj(k)−lnTk − ~βk − dkei))d`,∵ Ãj = gθj (B̃j)

=
∑
j∈Jk

pj(k) · 1

|B̃0
j (k)|

∫
B̃0
j (k)

G(Λ−1
k (ξ ◦ gθj(k)−lnTk) + (j − dk)Λ−1

k ei)d`,

=
∑
j∈Jk

pj(k) · 1

|B̃0
j (k)|

∫
B̃0
j (k)

G[Λ−1
k (ξ ◦ gθj(k)−lnTk) + ( j−dkαk

)eν−1]d`. (5.3)

We call (5.3) the master equation.

Lemma 23. Suppose 1 ≤ i ≤ ν − 1 and {glnTk} is a monochromatic sequence s.t.
glnTk(~v)→cusp pi and s(Tk) = O(ln lnTk). Suppose there are γk →∞, {dk}, and

a non-atomic random variable Y s.t. (Yk − dk)/γk
dist−−−−→
k→∞

Y. Fix G : Rd → R s.t.

G, Ĝ ∈ L1(R2g+ν−1), and let Ik := I(G;Tk, αk, dk, i) with αk defined below.

(a) If γk
lnTk

−−−−→
k→∞

0, then Ik −−−−→
k→∞

E[G(~Zcpt, ~Zcusp\i,Zcuspi )], with αk = lnTk.

(b) If γk
lnTk

−−−−→
k→∞

∞, then Ik −−−−→
k→∞

E[G(~Zcpt, ~Zcusp\i,Y)] where αk = γk and Y

is independent of ~Z.

(c) If γk
lnTk

−−−−→
k→∞

a ∈ (0,∞), then Ik −−−−→
k→∞

E[G(~Zcpt, ~Zcusp\i,Zcuspi ⊕ aY)] where

αk = lnTk, Y is independent of ~Z and ⊕ = independent sum.

Proof. Fix ε > 0. Since Ĝ ∈ L1, G is Lipschitz. Fix δ > 0 s.t. ‖x − y‖ < δ ⇒
|G(x)−G(y)| < ε.
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Case (a). In this case (Yk − dk)/ lnTk
dist−−−−→
k→∞

0, so there is K0 s.t. for all k > K0,∑
|j−dk|>δ lnTk

j∈Jk

pj(k) < ε/‖G‖∞. If αk = lnTk, then we have by (5.3)

Ik =
∑

|j−dk|≤δ lnTk
j∈Jk

pj(k)

|B̃0
j (k)|

∫
B̃0
j (k)

G[Λ−1
k (ξ ◦ gθj(k)−lnTk) + ( j−dklnTk

)eν−1]d`± ε

=
∑

|j−dk|≤δ lnTk
j∈Jk

pj(k) · 1

|B̃0
j (k)|

∫
B̃0
j (k)

G[Λ−1
k (ξ ◦ gθj(k)−lnTk)]d`± 2ε. (5.4)

We wish to replace the normalization Λ−1
k (xcpt, xcusp) = ( xcpt√

lnTk
, x

cusp\i

lnTk
, (xcusp)i

lnTk
)

by Λ−1
k,j(x

cpt, xcusp) = ( xcpt√
lnTk−θj(k)

, xcusp\i

lnTk−θj(k) ,
(xcusp)i

lnTk−θj(k) ). This will allow us to

apply Lemma 18 to the integrals in (5.4).

Here is how to do this. Fix R > 0 so large that Prob(‖~Z‖ > R) < ε/‖G‖∞.
Choose δ′ so small that for all k

|θj(k)| ≤ δ′ lnTk
x ∈ R2g+ν−1, ‖Λ−1

k,j(x)‖ ≤ R

}
=⇒ ‖(Λ−1

j,k − Λ−1
k )(x)‖ < δ.

The existence of such δ′ is obvious from the definition of Λ−1
k ,Λ−1

k,j .

By Lemma 21, Θk/ lnTk
dist−−−−→
k→∞

0. Choose S(δ′) so large that for all k > S(δ′),∑
j:θj(k)>δ′ lnTk

pj(k) = Pr[Θk > δ′ lnTk] < ε/‖G‖∞. For such k,

Ik =
∑

|j−dk|≤δ lnTk
j∈Jk,θj(k)≤δ′ lnTk

pj(k) · 1

|B̃0
j (k)|

∫
B̃0
j (k)

G[Λ−1
k (ξ ◦ gθj(k)−lnTk)]d`± 3ε. (5.5)

Next choose H ∈ L1(Rd) s.t. Ĥ ∈ L1, 0 ≤ H ≤ 1, and H(x) = 1 on {x ∈ Rd :
‖x‖ < R}. We apply Lemma 18 to H, ε/‖G‖∞, and

A := inf{|Bj(k)| : j ∈ Jk, k ∈ N} (positive by (B1))

B := sup{|Bj(k)| : j ∈ Jk, k ∈ N} (finite by (B1))

K := {beginning points of Bj(k), j ∈ Jk, k ∈ N} (compact by (B2))

s := lnTk − θj(k) −−−−→
k→∞

∞ uniformly in j (because glnTk(~v)→cusp).

The result is S0 s.t. for all k > S0, for all j ∈ Jk,∣∣∣∣∣ 1

|B̃0
j (k)|

∫
B̃0
j (k)

H(Λ−1
k,j(ξ ◦ g

θj(k)−lnTk))d`− 1

∣∣∣∣∣ < 2ε

‖G‖∞
(∵ |E(H(~Z))−1| < ε

‖G‖∞ ).

It follows that 1

|B̃0
j (k)|

`{~u ∈ B̃0
j (k) : ‖Λ−1

k,j(ξ ◦ gθj(k)−lnTk)‖ > R} < 3ε/‖G‖∞.

This allows us to replace the integrals over B̃0
j (k) in (5.5) by integrals over

B̃0
j (k) ∩ [‖Λ−1

k,j(ξ ◦ gθj(k)−lnTk)‖ ≤ R] with total error at most 3ε. By our choice of

δ, δ′, on this domain of integration the operator Λ−1
k can be changed to Λ−1

k,j with
total error less than ε. Then we “pay” additional 3ε to return to integrals over all
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of B̃0
j , and then additional 2ε to increase the range of the outer sum to all of Jk.

The result is that for all k > max{S0, S(δ′)}

Ik =
∑
j∈Jk

pj(k) · 1

|B̃0
j (k)|

∫
B̃0
j (k)

G(Λ−1
k,j(ξ ◦ g

θj(k)−lnTk))d`+O(ε)

uniformly in k.
We now apply Lemma 18 to the averages 1

|B̃0
j (k)|

∫
B̃0
j (k)

and the function G′(x) =

G(xcpt, xcusp\i, xcuspi ) to find that for all k large enough, Ik =
∑
j∈Jk pj(k)E[G′(~Z)]+

O(ε) = E[G(~Zcpt, ~Zcusp\i,Zcuspi )] +O(ε). Since ε is arbitrary, this proves case (a).

Case (b). Let ε, δ be as before. Define [t]δ := δbt/δc, then [t]δ ∈ δZ, |t− [t]δ| ≤ δ.
By the master equation and the choice of δ

Ik =
∑
j∈Jk

pj(k) · 1

|B̃0
j |

∫
B̃0
j

G

(
Λ−1
k (ξ ◦ gθj(k)−lnTk) + [ j−dkγk

]δ · eν−1

)
d`± ε.

Fix M ∈ δZ s.t. Prob(|Y| > M) < ε/(2‖G‖∞). Since (Yk − dk)/γk
dist−−−−→
k→∞

Y, for

all k large enough,
∑
j∈Jk

|j−dk|/γk>M
pj(k) < ε/‖G‖∞, so

Ik =

M/δ∑
m=−M/δ

∑
j∈Jk,[

j−dk
γk

]δ=mδ

pj(k)

|B̃0
j |

∫
B̃0
j

Gm,δ
(
Λ−1
k (ξ ◦ gθj(k)−lnTk)

)
d`± ε (5.6)

where Gm,δ(x) := G(x+ δm · eν−1). Notice that the range of m is finite, and does
not change as k →∞.

Let Λ−1
k,j(x

cpt, xcusp) = ( xcpt√
lnTk−θj(k)

, xcusp\i

lnTk−θj(k) ,
xcuspi

γk
). We wish to replace Λ−1

k

in (5.6) by Λ−1
k,j . Then we will apply Lemma 18 to the integrals in (5.6).

Fix m. Choose R > 0 and δ′ as in case (a). Applying Lemma 18 to Gm,δ, we
see that for for all k large enough, for all j s.t. θj(k) ≤ δ′ lnTk,

1

|B̃0
j |
`{~u ∈ B̃0

j : Λ−1
k,j(ξ ◦ g

θj−lnTk) ∈ {x ∈ Rd : ‖x‖ < R, |xd| < δ′}} > 1− ε
‖G‖∞ .

Here d = 2g+ν−1, and the control of |xd| = |(xcusp)ν−1| is because Λ−1
k,j normalizes

(xcusp)i by γk � lnTk − θj(k) and moves it to position d.
This, and the choice of δ, δ′ allows us to argue as in case (a) and obtain the

following estimate for all k large enough:

Ik =

M/δ∑
m=−M/δ

∑
j∈Jk,[

j−dk
γk

]δ=mδ

pj(k)

|B̃0
j |

∫
B̃0
j

G∗m,δ
(
Λ−1
k,j(ξ ◦ g

θj(k)−lnTk)
)
d`+O(ε),

where G∗m,δ(x) = Gm,δ(x1, . . . , xd−1, 0).
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Working with L1 approximations of G∗m,δ with absolutely integrable Fourier
transforms we see by Lemma 18 that for all k large enough

Ik =

M/δ∑
m=−M/δ

∑
j∈Jk,[

j−dk
γk

]δ=mδ

pj(k)E[G∗m,δ(
~Zcpt, ~Zcusp\i, 0)] +O(ε)

=

M/δ∑
m=−M/δ

Prob
(

Yk−dk
γk

∈ [mδ, (m+ 1)δ)
)
E[G(~Zcpt, ~Zcusp\i,mδ)] +O(ε)

=

M/δ∑
m=−M/δ

Prob
(
Y ∈ [mδ, (m+ 1)δ)

)
E[G(~Zcpt, ~Zcusp\i,mδ)] +O(ε) + o(1)

Here we used the non-atomicity of Y and (Yk − dk)/γk
dist−−−−→
k→∞

Y. Thus

Ik =
∑
m∈Z

Prob
(
Y ∈ [mδ, (m+ 1)δ)

)
E[G(~Zcpt, ~Zcusp\i,mδ)] +O(ε) + o(1)

= E[G(~Zcpt, ~Zcusp\i,Y)] +O(ε) + o(1).

Here Y is independent of ~Z and o(1) means here and below that the corresponding
quantity can be made arbitrary small provided δ is sufficiently small and k ≥ k(δ).
Since ε is arbitrary, this proves case (b).

Case (c). Let ε, δ, [·]δ be as before. Set Λ−1
k (xcpt, xcusp) := ( xcpt√

lnTk
, x

cusp\i

lnTk
, (xcusp)i

lnTk
).

Choose M so large that Prob(Y > aM) < ε/(2‖G‖∞). In case (c), (Yk −
dk)/ lnTk −−−−→

k→∞
1
aY, so for all k large

∑
j∈Jk,|j−dk|>M lnTk

pj(k) < ε/‖G‖∞.
As in case (b), we can use the master equation and the choice of δ,M to write

Ik =

M/δ∑
m=−M/δ

∑
j∈Jk,[

j−dk
lnTk

]δ=mδ

pj(k)

|B̃0
j |

∫
B̃0
j

Gm,δ
(
Λ−1
k (ξ ◦ gθj(k)−lnTk)

)
d`± ε

where Gm,δ(x) := G(x+ δmeν−1).

Again, we can replace Λ−1
k (xcpt, xcusp) := ( xcpt√

lnTk
, x

cusp\i

lnTk
, (xcusp)i
a lnTk

)) by the nor-

malization Λ−1
k,j(x

cpt, xcusp) := ( xcpt√
lnTk−θj(k)

, xcusp\i

lnTk−θj(k) ,
(xcusp)i

a(lnTk−θj(k)) ), by applying
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the argument of case (a) to each m. The result is that for all k large enough

Ik =

M/δ∑
m=−M/δ

∑
[
j−dk
lnTk

]δ=mδ

pj(k)

|B̃0
j |

∫
B̃0
j

Gm,δ
(
Λ−1
k,j(ξ ◦ g

θj(k)−lnTk)
)
d`+O(ε)

=

M/δ∑
m=−M/δ

∑
[
j−dk
lnTk

]δ=mδ

pj(k)E[Gm,δ(~Z
cpt, ~Zcusp\i,Zcuspi )] +O(ε), by Lemma 18

=

M/δ∑
m=−M/δ

Prob
(

Yk−dk
lnTk

∈ [mδ, (m+ 1)δ)
)
E[G(~Zcpt, ~Zcusp\i,Zcuspi +mδ)] +O(ε)

=
∑
m∈Z

Prob
(
aY ∈ [mδ, (m+ 1)δ)

)
E[G(~Zcpt, ~Zcusp\i,Zcuspi +mδ)] +O(ε) + o(1)

= E[G(~Zcpt, ~Zcusp\i,Zcuspi ⊕ aY)] +O(ε) + o(1), where Y is independent of ~Z.

Since ε was arbitrary, this proves case (c). �

5.4. Proofs of Theorems 9,10 and 11. Suppose {glnTk(~v)} is a monochromatic

sequence of one of the types II, III, IV. Fix a lift ~w of ~v to M̃ .

Let ~ΞTk(~v) denote the random variable ξ(ht(~w)), t ∼ U[0, Tk]. Lemma 22 and

Lemma 23 together imply the existence of ~β ∈ R2g+ν−1, dk ∈ R, αk → ∞ and a

random variable ~L ∈ R2g+ν−1 such that( ~Ξcpt(~v)− ~βcptk√
lnTk

,
~Ξcusp\i(~v)− ~β

cusp\i
k

lnTk
,
~Ξcusp
i (~v)− (~βcuspk )i − dk

αk

)
dist−−−−→
k→∞

~L.

◦ The centering constant ~βk is defined in Lemma 20 and dk is es(Tk)σ(Tk) (type
III) or 0 (all other cases)

◦ The scaling constant αk equals es(Tk) (type II, as = ∞), or 1
2e
δ(Tk) (type III,

aδ =∞), or 1
2e
ρ(Tk) (type IV, aρ =∞), or lnTk (all other cases).

◦ The limiting distribution ~L is precisely what Theorems 8–11 predict.

By Corollary 14,
( ~Wcpt(~v)−~βcptk√

lnTk
,
~Wcusp\i(~v)−~βcusp\ik

lnTk
,
~Wcusp
i (~v)−(~βcuspk )i−dk

αk

) dist−−−→
k→∞

~L.

This is the assertion we wanted to prove, except for the centering terms: Theo-

rems 8–11 use ~GcptlnTk
(~v), ~G

cusp\i
lnTk

, ĜilnTk(~v)+dk, instead of ~βcptk , ~β
cusp\i
k , (~βcuspk )i+dk.

We show that ~βcptk = ~GcptlnTk
(~v)+O(1), ~β

cusp\i
k = ~G

cusp\i
lnTk

(~v)+O(1), ~βik = ĜilnTk(~v)+

O(1). Since αk → ∞ whenever glnTk(~v) →cusp, this will allow us to change the
centering terms to those specified in theorems 8–11.

Ascending case: By definition, ~βk = ξ(glnT#
k (~w))−ξ(k)~ci, where lnT#

k = lnTk−
θξ(k)(k) is the time the cuspidal geodesic excursion of glnTk(~v) begins. Since ~w is

fixed (a lift of ~v to M̃) and {glnT#
k (~v) : k ∈ N} is precompact (a subset of ∂Ci),

~βk = [ξ(glnT#
k (~w))− ξ(~w)]− ξ(k)~ci + ξ(~w) = Frob[GlnT#

k
(~v)]− ξ(k)~ci +O(1),

because the closing curve γ
π[glnT

#
k (~v)],π[~v]

(a geodesic from ~v to a pre-compact set)

can only have a bounded effect on the Zd-coordinate.
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So ~βcptk = Frobcpt([GlnT#
k

(~v)]) + O(1), ~β
cusp\i
k = Frobcusp\i([GlnT#

k
(~v)]) + O(1).

It is not difficult to see that

[GlnTk(~v)]− [GlnT#
k

(~v)] = [γbdd] + [γcusp]

where γbdd ⊂M \
⋃ν
j=1 int(Cj) has bounded length, and [γcusp] ⊂ Ci. Like all loops

in Ci, [γcusp] = n[∂Ci] for some n ∈ Z. So (~βcptk , ~β
cusp\i
k ) = (Frobcpt([GlnTk(~v)]) +

O(1),Frobcusp\i[GlnTk(~v)]) +O(1)) = ( ~GcptlnTk
(~v) +O(1), ~G

cusp\i
lnTk

(~v)) +O(1)).

Next, (~βcuspk )i = Frobcuspi [GlnT#
k

(~v)] − es(Tk)σ(Tk) + O(1) ≡ ĜilnTk(~v), because

in the ascending case ξ(k) = es(Tk)σ(Tk) by Lemma 19 (ii)–(iv), and Figure 3.

Descending case: Now ~βk = ξ(glnT∗k (hTk ~w)) − ξ∗(k)~ci, where lnT ∗k = lnTk −
θξ∗(k)(k) is the time the cuspidal geodesic excursion of glnTk(hTk~v) begins. So

~βk = [ξ(glnT#
k (~w))− ξ(~w)] + [ξ(glnT∗k (hTk ~w))− ξ(glnT#

k (~w))]− ξ∗(k)~ci + ξ(~w)

= Frob[GlnT#
k

(~v)] + `~ci − ξ∗(k)~ci +O(1), for some ` ∈ Z.

This is because the base points of glnT∗k (hTk ~w), glnT#
k (~w) can be connected by a

lift of a path in Ci, with endpoints in ∂Ci, so ξ(glnT∗k (hTk ~w)) − ξ(glnT#
k (~w)) =

`~ci + O(1). The first summand is the same we had in the ascending case, which

leads to (~βcptk , ~β
cusp\i
k ) = ( ~GcptlnTk

(~v) +O(1), ~G
cusp\i
lnTk

(~v) +O(1)).

Let us look more carefully into `. The base points of glnT∗k (hTk ~w), glnT#
k (~w)

mark the beginnings of the geodesic cuspidal excursions of glnTk(~v), hTk(glnTk(~v).
Looking at Figure 3, we see that the path connecting them along ∂Ci can be
extended by a bounded amount to a loop whose length is the diameter of the set
Jk appearing in Lemma 19. By case (i) in that lemma,

` =
2e2s(Tk)−ρ(Tk)

1 + 2es(Tk)−ρ(Tk)
+O(1) and ξ∗(k) = − es(Tk)

1 + 2es(Tk)−ρ(Tk)
+O(1),

whence `−ξ∗(k) = es(Tk) +O(1). So (~βcuspk )i = Frobcuspi [GlnT#
k

(~v)]−es(Tk)σ(Tk)+

O(1) ≡ ĜilnTk(~v) +O(1). �

Proof of Theorem 6. If M is compact, then every vector ~v satisfies s(T ) = 0 =
O(ln lnT ), and every sequence is of type I, so the theorem follows from Theorem 8.

For M of finite area, we argue by contradiction: If (Wcpt
T (~v)− ~GcptlnT )/

√
lnT 6→ Zcpt

then there is a Borel set E s.t. Pr[Zcpt ∈ ∂E] = 0 and there is a sequence Tn →∞
s.t. Pr[

Wcpt
T (~v)−~GcptlnT√

lnT
∈ E] 6→ Pr[Zcpt ∈ E]. Every Tn ↑ ∞ has a monochro-

matic subsequence Tnk ↑ ∞ of one of the types I–IV. But for such sequences

Pr[
Wcpt
Tnk

(~v)−~GcptlnTnk√
lnTnk

∈ E]→ Pr[Zcpt ∈ E] by Theorems 8–11, a contradiction. �

Proof of Theorem 7. If es(T ) = o(
√

lnT ) then eρ(T ) = o(lnT ) and eδ(T ) = o(lnT )
(lemma 4). So as = aρ = aδ = 0 and the theorem follows from Theorems 8–11. �
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6. Proof of Theorem 12 on the Monochromatic Subsequences which
Appear for Lebesgue a.e. ~v

For κ ∈ [−∞,+∞], α ∈ [0,∞], σ ∈ {ascending, descending} and 1 ≤ i ≤ ν we
say that ~v ∈ L(κ, α, σ, i) if there is a monochromatic sequence Tn → ∞ such that
glnTn~v → cusp i, glnTn~v is ascending or descending according to σ, and

ρ(Tn)− s(Tn)→ κ (6.1)

|κ| <∞ and
es(Tn)

lnTn
→ α

or κ = +∞ and
eδ(Tn)

lnTn
→ α

or κ = −∞ and
eρ(Tn)

lnTn
→ α.


(6.2)

Theorem 12 is says that a.e. ~v ∈M belongs to every L(κ, α, σ, i).

Proof. The proposition follows from the analysis of [Sul82] as we will now show.
We consider the ascending case, the descending one being similar. We note that

it suffices to show that almost every ~v belongs to every L(κ, α, ascending,i) with

|κ| < ∞. Indeed if (6.1) and (6.2) hold then eρ(Tn)

lnTn
→ αeκ and, by Lemma 4,

eδ(Tn)

lnTn
→ 4αe−κ. Thus taking cuspidal excursions approximating κk = k, αk =

ᾱ
4 e
κk sufficiently well we obtain that ~v ∈ L(+∞, ᾱ, ascending,i) while taking ex-

cursions approximating κk = −k, αk = ᾱe−κk sufficiently well we obtain that
~v ∈ L(−∞, ᾱ, ascending,i). Likewise we can and will assume that 0 < α <∞.

Next consider a sequence of excursions starting at times tn, ending at times t̄n
and reaching maximal height sn. One can check as in Lemma 4 that tn − tn =

2sn +O(1). If esn

tn
→ α then tn − tn = O(sn)� tn and so esn

tn
→ α for any choice

of tn ∈ [tn, t̄n].
On the other hand, by Lemma 4, ρ(tn)− sn = sn − δ(tn) + ln 4 + o(1) so when

δ(tn) changes from 0 to tn − tn = 2sn + O(1) the expression ρ(tn) − sn changes
from sn +O(1) to −sn +O(1). Thus to prove the theorem it suffices to show that
for almost every ~v, for every 1 ≤ i ≤ ν, for every α there is a sequence of ascending
geodesic cuspidal excursions at cusp i with esn

tn
→ α.

It suffices to show that for every interval [a, b] there is a sequence of ascending
geodesic cuspidal excursions at cusp i which enter Ci at time tn and whose maximal
distance from ∂Ci is sn s.t.

all limit points of
esn

tn
belong to [a, b]. (6.3)

Since the set of ~v where (6.3) holds is invariant with respect to the geodesic flow,
it suffices to show that this set has positive measure.

Let (Ω,F ,Pr) be a probability space. A sequence of events An ∈ F is called
quasi-independent if there is a constant c such that for all n,m

Pr(An ∩Am) ≤ cPr(An) Pr(Am).

Lemma 24. [Sul82, Sect. 2] If {An} are quasi-independent measurable events with
positive measure s.t.

∑
P(Ai) =∞, then there is positive probability that infinitely

many of them occur: P (
⋂∞
m=1

⋃∞
n=mAm) > 0.
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Fix constants a, b, 1 ≤ i ≤ ν, and δ. Let An(a, δ, i) be the set of ~v such that
there is a cuspidal geodesic excursion at cusp i starting at time t ∈ [nδ, (n + 1)δ)
and reaching the maximal height s with es > at. Let An(a, b, δ, i) be the subset of
An(a, δ, i) consisting of those ~v satisfying the additional requirement that that es <
bt and Aan(a, b, δ, i) be the subset of An(a, b, δ, i) consisting of ascending excursions.

Lemma 25. [Sul82, Sect. 8 and 9] For each a, δ, i the events An(a, δ, i) are quasi-
independent with positive measure with respect to the normalized volume measure
on T 1M .

We will show below that

lim
n→∞

Prob(Aan(a, b, δ, i))

Prob(An(a, δ, i))
=
b− a

2b
. (6.4)

Thus by Lemma 25 {Aan(a, b, δ, i)} are quasi-independent and hence by Lemma 24
the set where (6.3) occurs infinitely many times has a positive measure as needed.

We obtain (6.4) from the inequalities (6.5) and (6.6) below:

lim
n→∞

Prob(An(a, b, δ, i))

Prob(An(a, δ, i))
=
b− a
b

. (6.5)

lim
n→∞

Prob(Aan(a, b, δ, i))

Prob(An(a, b, δ, i))
=

1

2
. (6.6)

To prove (6.5) consider a geodesic which enters ∂Ci at some time t ∈ [nδ, (n+ 1)δ)
pointing inside. Denote the entrance point by x+ i

2 and θ be the angle this geodesic
makes with the vertical axis at time t. Recall that hyperbolic geodesics are euclidean
circles centered at the real axis. The radius R of the circle is related to the maximal
height of the excursion by R = es. Elementary geometric considerations show that
sin θ = 1

2R . So conditioned on having a cuspidal excursion with starting time t and
entrance point p ∈ ∂Ci, the probability that at < es < bt equals

2

π

(
arcsin( 1

2at )− arcsin( 1
2bt )
)

=
1

πt

(
1

a
− 1

b

)
(1 +O(t−2)), as t→∞.

Similarly, the conditional probability that es > at is 1
πat (1 + O(t−2)), as t → ∞.

Together, this proves (6.5). (6.6) holds since half of the excursions are ascending
and half are descending. �

7. Unipotent flows

7.1. Setup. Suppose M = G/Γ where G is a simple non compact Lie group of real
rank 1 (see Remark 28). Let Γ ⊂ G be an irreducible uniform lattice in G (so G/Γ
is compact). Let µ denote the unique probability measure on G/Γ which lifts to a
Haar measure on G. Let g denote the Lie algebra of G.

Every Z ∈ g determines a flow ϕtZ on M , via ϕtZ(xΓ) = exp(tZ)xΓ. Y ∈ g is
called unipotent, if the spectrum of Ad(Y ) equals {0}. A unipotent flow is a flow
generated by a non-zero unipotent Y ∈ g.

In this case by the Jacobson-Morozov Theorem there exists X ∈ g s.t. [X,Y ] =
λY for some λ > 0. This implies exp(tX) exp(uY ) = exp(ueλtY ) exp(tX).2 If

2Fix t. Et(u) := exp(tX) exp(uY ) exp(−tX) is a one-parameter subgroup, so ∃Zt s.t. Et(u) =

exp(uZt). Necessarily Z0 = Y and Zt = d
du
|u=0Gt(u) = Ad(exp(tX))(Y ), so Żt = ad(X)(Zt) =

[X,Zt]. The ODE Żt = [X,Zt], Z0 = Y has a unique solution. Since eλtY is a solution, Zt = eλtY .
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ht = ϕtY and gt = ϕtX is the flow generated by X, then

hu ◦ gt = gt ◦ hue
λt

. (7.1)

We will analyze the winding of unipotent flows on G/Γ.

7.2. Winding. Choose a basis [σ1], . . . , [σd] for H1(G/Γ,Z), and a dual basis of
closed 1-forms ω1, . . . , ωd ∈ H1(G/Γ,R) such that

∫
σi
ωj = δij . Choose a measur-

able family of length minimizing paths γxy connecting x to y (x, y ∈ G/Γ). Since
G/Γ is compact, the lengths of γx,y are uniformly bounded, and their choice will
not affect our asymptotic results.

Fix Z ∈ g. For every x ∈M , let γT (x, Z) denote the loop obtained by concate-

nating the orbits {ϕuZ(x)}0≤u≤T and γϕTZ(x),x. Let [γT (x, Z)] ∈ H1(G/Γ,Z) denote

the homology class of this loop, and decompose [γT (x, Z)] =
∑d
i=1 ai(t, x)[σi]. The

winding vector of x at time t is (a1(t, x), . . . , ad(t, x)).
It is convenient to replace this vector by a vector of ergodic integrals, which

equals it up to a bounded error. Let Z denote the vector field of the flow ϕtZ .
Equivalently, Z is the projection to G/Γ of the unique right-invariant vector field
on G which equals Z at e ∈ G. For every 1-form ω, let

AZω (x) := ω(Z(x)) , Wt(ω,Z, x) :=

∫ t

0

ω(ϕ̇sZ(x))ds ≡
∫ t

0

AZω (ϕsZ(x))ds. (7.2)

Note that if ω̃ is another form in the same cohomology class, that is ω̃ = ω + dE
for some continuously differentiable function E : G/Γ → R, then Wt(ω̃, Z, x) =
Wt(ω̃, Z, x)+E(ϕtZ(x))−E(x) = Wt(ω̃, Z, x)+O(1), so Wt(ω,Z,X) and Wt(ω̃, Z, x)
have the same rate of growth. G/Γ is compact, γxy have bounded length and AZωi
are uniformly bounded, so ai(t, x) =

∫ t
0
AZωi(ϕ

s
Z(x))ds+O(1). Thus

~Wt(Z, x) :=
(∫ t

0

AZω1
(ϕsZ(x))ds, . . . ,

∫ t

0

AZωd(ϕsZ(x))ds
)

(7.3)

equals the winding vector up to uniformly bounded error.

7.3. The result. Let Y be a non-zero unipotent element of g, and let X be a Lie
algebra element s.t. [X,Y ] = λY where λ > 0.

Set gt := ϕtX and ht := ϕtZ and let ~Gt(x) := ~Wt(−X,x), ~Wt(x) := ~Wt(Y, x)
obtained by substituting Z = −X or Z = Y in (7.3). Define a d× d matrix Σ2 by

Σ2
ij =

∫ ∞
−∞

∫
M

AXωi(x)AXωj (g
s(x))dµ(x)ds.

We will see below that the integrals converge and that Σ2 is positive semi-definite.

Let ~N be the d-dimensional Gaussian random variable with mean zero and covari-
ance matrix Σ2. Let ~WT (Y, x) denote the random vector ~Wt(Y, x), t ∼ U[0, 1].

Theorem 26. For a.e. x,
~WT (Y,x)−~Gλ−1 lnT (x)√

λ−1 lnT

dist−−−−→
T→∞

~N.

7.4. Example: The horocycle flow can be presented as the unipotent flow on
SL(2,R)/Γ generated by Y =

(
0 1
0 0

)
∈ sl(2,R), see [BM00].

But in this presentation G/Γ is the unit tangent bundle of the hyperbolic surface,
not the surface itself, so (7.2) measures winding in T 1M , not M . Let ω = dθ where θ

is given locally by the NAK decomposition g =
(

1 β
0 1

)(
α 0

0 α−1

)(
cos θ − sin θ
sin θ cos θ

)
Γ
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of gΓ ∈ G/Γ. The definition is proper because Γ acts conformally on the upper half
plane. Clearly, ω is closed, but it is not exact because

∫
σ
ω 6= 0 for the closed curve

σ : [0, 2π] → T 1(G/Γ), σ(θ) =
(

cos θ − sin θ
sin θ cos θ

)
Γ which rotates the unit tangent

vector Γ a full circle around its base point.
Clearly Wt(ω, Y, x) = 0 for all t, so there is no homological growth in direction

ω = dθ, Σ2 is not strictly positive definite and ~N has degeneracies.

8. Proof of Theorem 26 on Unipotent Flows

The proof relies on several statements of independent interest, which we now
discuss. We assume throughout that G is a semi-simple Lie group without compact
factors, Γ is a uniform lattice in G, and µ is the probability measure on G/Γ which
lifts to a Haar measure on G.

8.1. A spatial DLT. Recall the definition of a spatial DLT from (1.10). The
following is a special case of [Dol04, Corollary 4] or [LB02, Theorem A].

Theorem 27. Suppose Z ∈ g, and the spectrum of Ad(Z) is not contained in the
imaginary axis. For every C1 closed 1-form ω there is a constant σ ≥ 0 such that

WT (ω,X,x)√
T

dist−−−−→
T→∞

N(0, σ2), as x ∼ µ.

The asymptotic variance σ2 is given by the Green-Kubo formula

σ2 =

∫ ∞
−∞

∫
M

AZω (x)AZω (ϕtZ(x))dµ(x)dt.

Proof. First we show that
∫
AZωdµ = 0. This is because of the following fact:

Claim: Suppose ω is a closed 1-form on G/Γ, and Z ∈ g. Let Z denote the vector
field of the flow ϕtZ on G/Γ, then

∫
ω(Z)dµ = 0.

Proof of the claim: Fix Z1, Z2 ∈ g, and let ϕtZi and Zi be the flows and vector
fields they define on G/Γ. The identity i[Z1,Z2]ω = LZ1

iZ2
ω − iZ2

LZ1
ω and the

assumption that ω is closed imply that for every x ∈ G/Γ,

d

dt

∣∣∣
t=0

[
ω
(
Z2(ϕtZ1

(x))
)
− ω

(
Z1(ϕtZ2

(x))
)]

= ω([Z1,Z2](x)).

Since ϕtZi preserve µ, the left hand side has zero average with respect to µ. Hence
µ(ω([Z1,Z2])) = 0. In other words µ(ω(Z)) = 0 whenever Z ∈ [g, g].

Since G is a semi-simple Lie group, g is a finite direct sum of simple Lie algebras
gi. By simplicity, [gi, gi] = gi for every i, proving that every Z ∈ g is a finite sum
of commutators. So µ(ω(Z)) = 0 for every Z ∈ g.

With the claim proved, the theorem follows from [Dol04, Corollary 4] or [LB02,
Theorem A]. Namely, to apply the above results one needs to verify the integrability
of the correlation function. In the present case [KM99, Theorem 3.4] shows that
the correlation function decays as c1 exp(−c2 dist(exp(tZ), id)) while the assump-
tion that spec[Ad(Z)] 6⊂ iR gurantees that || exp(tZ)|| grows exponentially and so
dist(exp(tZ), id) grows linearly. �

Remark 28. Using the mixing bounds of [KM99] the results of [Dol04] and [LB02]
imply the Central Limit Theorem for ergodic integrals of smooth observables for
partially hyperbolic flows on a more general class of semisimple Lie groups with-
out compact factors. However in the higher rank case Margulis Normal Subgroup
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Theorem ([Mar91, page 4]) shows that G/Γ does not admit any abelian covers, so
windings are only interesting in rank 1 case.

8.2. An almost sure central limit theorem. The following result is proved in
[DFV17, Theorem 8]. Let g(t) = exp(tX), h(u) = exp(uY ).

Theorem 29. Let B : G/Γ → R b a smooth bounded function with zero mean,
then for a.e. x ∈ G/Γ, for every L > 0,

1√
N

N−1∑
n=0

B(g(n)h(t)x)
dist−−−−→
N→∞

N(0, σ2), as t ∼ U[0, L],

where σ2 =
∑∞
n=−∞

∫
M
B(x)B(g(n)x)dµ(x). Moreover if t ∼ U[0, L], and N ∼

N(0, σ2), then for each ε, r there is a constant C such that

µ

(
x : sup

z∈R

∣∣∣∣∣P
(∑N−1

n=0 B(g(n)h(t)x)√
N

≤ z

)
− P(N ≤ z)

∣∣∣∣∣ > ε

)
≤ C

Nr
.

Also C can be chosen uniformly when L varies over compact subsets of (0,∞).

8.3. A temporal DLT for 1-forms. Given a smooth 1-form ω on G/Γ and x ∈
G/Γ, define Wt(ω, Y, x) and Wt(ω,−X,x) by setting Z = Y,−X in (7.2). We start
with the following general estimate

Lemma 30. There is a constant C such that for every closed 1-form ω and for
every x, t, |Wt(ω, Y, x)| ≤ C lnT.

Proof. By (7.1), and since ω is closed, we have

Wt(ω, Y, x) = Wλ−1 ln t(ω,−X,x) +W1(ω, Y, y) +Wλ−1 ln t(ω,X, h(1)y),

where y = g(− ln t)x. Since for each τ, Z, z we have |Wτ (ω,Z, z)| ≤ τ‖ω‖‖Z‖ the
result follows. �

Corollary 31. Let Γ̃ be the subgroup of Γ such that Γ/Γ̃ ≈ Zd. Then the flow

x→ h(u)x on G/Γ̃ is conservative.

This result is an immediate consequence of Lemma 30 and the following fact.

Lemma 32. [CC09, Lemma 1.1] Let (Ω,F , ν) be a probability space and f : Ω→ Ω

a probability preserving map. Let f̃(x, z) = (fx, z + τ(x)), a map on Ω × Zd. If
there are a strictly increasing sequence kn ∈ N and a sequence δn = o

(
n1/d

)
s.t.

lim
n→∞

ν

{
x : ‖

kn−1∑
j=0

τ(fnx)‖ ≥ δn
}

= 0

then f̃ is conservative with respect to ν×counting measure.

To derive Corollary 31, take f and f̃ to be the translations by exp(Y ) on G/Γ

and G/Γ̃ respectively and τ being the corresponding Frobenius function.

Conjecture 8.3.1. The flow of Corollary 31 is ergodic.

By [BL98] Conjecture 8.3.1 is true for G = SL2(R) (see also [Kai00, Pol00,
Sol01]). See [LS08], [SS08] for more information on the behavior of ergodic averages
in that case and [Cou03, Sch05] for other infinite area hyperbolic surfaces. Much
less is known in higher dimensions. See [MO15] for some results in dimension 3.
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Theorem 33. Let a = expλ. If ω is closed, then for almost every x ∈ G/Γ,

Wt(ω, Y, x)−Gloga T (ω, x)√
loga T

dist−−−−→
T→∞

N(0, σ(ω)2), as t ∼ U[0, T ],

where Gt(ω, x) := Wt(−X,ω, x) and σ2(ω) :=
∫∞
−∞

∫
M
AXω (x)AXω (g(t)x)dµ(x)dt.

Proof. Given T > 0, let tT denote the random variable which is uniformly dis-

tributed in [0, T ]. Let Tk = eλ
√
k. Since Tk+1/Tk −−−−→

k→∞
1, for every Tk ≤ T ≤ Tk+1,

sup
E⊂R Borel

∣∣∣Pr (WtT(ω, Y, x) ∈ E)− Pr
(
WtTk

(ω, Y, x) ∈ E
)∣∣∣ −−−−→

k→∞
0.

So it suffices to show that
Wt(ω,Y,x)−W√k(ω,−X,x)√

k

dist−−−−→
k→∞

N(0, σ(ω)2), as t ∼ U[0, Tk].

Denote h(u) = exp(uY ), g(t) = exp(tX), nk = [
√
k], y = g(−nk)x, and

consider the loop γ(t, nk) obtained by concatenating {g−s(x)}nks=0, {hs(y)}e−λkts=0 ,
{gs(h(e−λkt)y}nks=0, and the reversal of the path {hs(x)}ts=0. This loop closes be-
cause of (7.1), and it is contractible (send (t, nk) → (0, 0)). Since ω is closed, we
have for every t

Wt(ω, Y, x) = Wnk(ω,−X,x) +We−λnk t(ω, Y, y) +Wnk(ω,X, h(e−λnkt)y).

Let Lk = Tk
exp(λnk) and Vk =

tTk
exp(λnk) , and note that Vk is uniformly distributed

on [0, Lk]. Randomizing t ∼ U[0, Tk], we find that

WtTk
(ω, Y, x)−Wnk(ω,−X,x) = Wnk(ω,X, h(Vk)y) +O(1).

Note thatWnk(ω,X, h(Vk)y) =
∑nk−1
j=0 B(g(j)h(Vk)y) whereB(·) = W1(ω,X, ·).

Hence Theorem 29 implies that for each ε > 0

µ

{
x :

∣∣∣∣Pr

(
Wnk(ω,X, h(Vk)y)

√
nk

≤ z
)
− Pr(N ≤ z)

∣∣∣∣ > ε

}
decays faster than any power of k, with N ∼ N(0, σ(ω)2).

Theorem 33 now follows by Borel-Cantelli Lemma. �

8.4. A temporal DLT for winding vectors (Proof of Theorem 26). Re-

call that ~Wt(Y, x) := (Wt(ω1, Y, x), . . . ,Wt(ωd, Y, x)), where [ωi] are a basis for

H1(G/Γ,Z). Let ~WT (x) := ~Wt(Y, x), where t ∼ U[0, T ]. Let ~Gt(x) := ~Wt(−X,x).

By Theorem 33, for a.e. x every coordinate of the random vector
~WT (x)−~Gloga T

(x)√
loga T

is asymptotically normal, whence tight. Applying Theorem 33 again, and using
Fubini, we conclude that for almost every x the following statement holds: For
almost every vector ~a = (a1, . . . , ad)〈
~a,

~WT (x)− ~Gloga T (x)√
loga T

〉
=
Wt(

∑
aiωi, Y, x)−Wloga T (

∑
aiωi,−X,x)√

loga T

dist−−−−→
T→∞

N(0, σ(
∑

aiωi)
2) = N(0, 〈~a,Σ2~a〉), by the formula for σ(ω).

Since the set of ~a for which this convergence takes place is closed (see e.g. [CAFR07,
Corollary 2.2]), this convergence holds for all ~a ∈ Rd. Theorem 26 now follows from
the Cramér-Wold Theorem. �
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9. No almost sure DLT for unipotent windings.

Theorem 34. Wt(ω, Y, x) does not satisfy an almost sure DLT. In fact, for almost
every x the following holds. For every random variable Y there is a sequence Tn
such that

Wt(ω, Y, x)√
ln t

dist−−−−→
n→∞

Y⊕N(0, σ2(ω)) where t ∼ Log[1, T ]

Proof. The result follows from Theorem 33, [DS17, Theorem 5.11] and the fact that
Gt(ω, x) satisfies an almost sure invarinace principle due to [Dol04, Theorem 3]. �

Appendix A. Proof of Lemmas 1 and 2

Proof of Lemma 1. If ν = 0, there is nothing to prove, so suppose ν > 0. Fix
some complex structure on M0, turning it into a compact Riemann surface of genus
g. A classical result on Riemann surfaces states that for every w1, . . . , wν ∈ C s.t.
w1 + · · · + wν = 0 there exists a meromorophic differentials with simple poles
p1, . . . , pν with residues w1, . . . , wν , and no other poles [Sch14, Thm 6.28].

Let ω∗k (1 ≤ k ≤ ν − 1) be a meromorphic differential with exactly two singular-
ities: a pole at pk with residue 2πi, and a pole at pν with residue −2πi. Since ω∗k
is holomorphic on M0 \ {p1, . . . , pν}, ω∗k restricts to a closed (complex) 1-form on
M . By construction

∫
cj
ω∗k = δjk. So [c1], . . . , [cν−1] are independent over Z.

In fact the entire family [σ1], . . . , [σ2g], [c1], . . . , [cν−1] is independent over Z,
because if

∑
niσi +

∑
mjcj is the boundary of a 2-cycle in M , then it is the

boundary of a 2-cycle in M0 whence
∑
ni[σi]

′+
∑
mj [cj ]

′ = 0 in H1(M0,Z), where

[·]′ denotes the homology class in M0. But [cj ]
′ = −[∂Cj ]

′ = 0, so
∑
ni[σi]

′ = 0.
Since, by construction, σ1, . . . , σ2g determine a basis for H1(M0,Z), ni = 0 for all
i. It now follows from the independence of [cj ] that mj are also all zero.

It remains to show that [σ1], . . . , [σ2g], [c1], . . . , [cν−1] span H1(M,Z) over Z. We
use the following part of the Mayer-Vietoris exact sequence for the decomposition
M0 = M ∪ (

⋃
Ci):

H1(M ∩
⋃
Ci,Z)

α−→ H1(M,Z)⊕H1(
⋃
Ci,Z)

β−→ H1(M0,Z)

where α = (i∗,−j∗) and β = k∗+`∗ where i : M∩
⋃
Ci ↪→M , j : M∩

⋃
Ci ↪→

⋃
Ci,

k : M ↪→ M0, and ` :
⋃
Ci ↪→ M0 are the natural embeddings induced by viewing

M0 = M ∪ {p1, . . . , pν}. Since Ci are disks, this simplifies into

SpanZ{[c1], . . . , [cν ]} i∗−→ H1(M,Z)
k∗−→ SpanZ{[σ1]′, . . . , [σ2g]

′} is exact.

Fix an arbitrary 1-cycle σ inM , then ∃ni ∈ Z s.t. k∗([σ]) =
∑
ni[σi]

′ = k∗(
∑
ni[σi]).

So [σ] −
∑
ni[σi] ∈ Ker(k∗) = Im(i∗) = SpanZ{[σ1], . . . , [σ2g], [c1], . . . , [cν ]}. Since∑

[ci] = 0, [σ] ∈ SpanZ{[σ1], . . . , [σ2g], [c1], . . . , [cν−1]}. �

Proof of Lemma 2. By construction, σ1, . . . , σ2g generate a basis for H1(M0,Z),
where M0 = M ∪ {punctures}. M0 is a compact smooth surface. By De Rham’s
Theorem, there are closed 1-forms σ∗1 , . . . , σ

∗
2g on M0 s.t.

∫
σi
σ∗j = δij . These forms

are bounded on M0, whence on M . Since ci = ∂Di and σ∗j are closed,
∫
ci
σ∗i = 0.

There are also closed 1-forms ω∗1 , . . . , ω
∗
ν−1 on M s.t.

∫
ci
ω∗j = δij for all i, j, see

the proof of Lemma 1. Suitable linear combinations with σ∗i give 1-forms c∗i s.t.∫
ci
c∗j = δij and

∫
σi
c∗j = 0 for all i, j. Since ω∗i are holomorphic on M0\{p1, . . . , pν},

‖c∗i ‖ are bounded on compact subsets of M . �
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