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Abstract. In this note we study dynamical random walks (DRW) with internal
states. We consider a particle which performs a dynamical random walk on Z and
whose local dynamics is given by expanding maps. We provide sufficient conditions
for the position of the particle zn to satisfy the Central Limit Theorem.
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1. Introduction

1.1. Motivation. Understanding transport in an inhomogeneous media is one of the
classical problems in mathematical physics. The motion in homogeneous media is
well understood and is described by the heat equation whose fundamental solution
is given by the transition density of the Brownian Motion. The situation in the
inhomogenuous case is more complicated.

One of the simplest models of inhomogenuous transport is given by random walks
in random environment. In this model the particle moves on the lattice Zd so that if
the particle is in position z it moves to z + v for v in a finite set Λ with probability
p(z, v) where the vectors {p(z, ·)}z∈Zd are iid. This model is completely understood
in dimension 1 while in higher dimensions only partial results are available. In the
one dimensional setting the recurrent motion leads to Sinai behavior [39], where
the particle at time t is typically at the distance O

(
ln2 t

)
from the origin. In the

transient case a wide range of behaviors is possible [25]. In particular the transient
walk can have either positive or zero speed ([40]). In the case of positive speed the
fluctuations around the linear motion could be either Gaussian or described by stable
laws of index 1 ≤ s < 2. In the case of zero speed the limit distributions are Mittag–
Leffler (the results of [25, 39, 40] pertain to the nearest neighbor walks, we refer the
readers to [7, 8, 15, 16, 21] for the extensions to the walks with bounded jumps). In
contrast if the dimension is greater than 1, then the walk is expected to satisfy the
Central Limit Theorem (at least, if the dimension is high enough). However, so far
it has been proven only for systems satisfying some additional assumptions such as
reversibility ([38, 5]), a sufficiently strong drift (see [43, 44, 4] and references wherein)
or a perturbative regime ([45]).

The progress in understanding of random walks in random environment naturally
leads to a question about extending the results proven for that model to a more real-
istic systems. One particularly interesting question is to understand a deterministic
motion in random environment. In particular, a number of papers concern Lorentz
gas in random environment–a system, where a particle moves freely on a plane col-
liding elastically with a random array of convex scatterers ([1, 13, 14, 33]). While the
works above establish recurrence and the Law of Large Numbers for different models
of random Lorentz gas, the limit theorems are currently unknown. In order to obtain
a more tractable model of deterministic motion in random environment, in [1] the
authors proposed a model of Deterministic Walks in Random Environment (DWRE).
By this one means a map F defined on M × Zd where M is the internal state of the
walker. Namely, suppose that for each n ∈ Zd we have a map Tn : M → M and a

partition M =
⋃
v

Wv,n (gate partition) where v ∈ {0,±e1, · · · ± ed}. Let

(1.1) F (x, n) =
(
Tnx, n+

∑
v

1Wv,nv
)
.

Thus if the particle is at site n then its internal state changes according to Tn, while
the change of the location is prescribed by the gates.

One is then interested in statistical properties of zn(x) = πZd(F
n(x, 0)). The ran-

domness in the system comes from the random choice of the initial internal state
x0 ∈M .
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In [1] the authors provide conditions under which zn satisfies the law of large
numbers. They show that their conditions are satisfied for a dynamical random walk
whose local dynamics is given by a sufficiently expanding interval map, such as β
transformations with large β.

[1] show that the random Lorenz gas fits into the framework of DWRE. Moroeover
the class of DWRE contains several classical examples of random motion. As an
example, consider the following system: let d = 1, M = T1, Tn(x) = 2x (mod 1)
and Wn,−1 = [0, 1

2
), Wn,1 = [1

2
, 1) for all n ∈ Z. One can see that if we choose the

initial internal state uniformly on T then the DWRE defined this way is equivalent
to the simple symmetric random walk on Z. More generally it shown in [1] that
DWRE with linear expanding local dynamics and Markov gates can model random
walks in random environment (RWRE). In particular, all types of behavior observed
in RWRE, appear also in DWRE, so the particle can be transient with zero speed
([40]) or it can exhibit Sinai behavior ([39]) where after n steps the particle is located
at the distance of order ln2 n from the origin. However, Markov condition on the gates
is pretty restrictive and so it is of interest to develop tools to handle non Markovian
dynamics.

The goal of the present article is to develop a robust method for proving CLT
for one dimensional systems with strong drift (note that some assumptions on the
system are necessary to get the CLT due to the non-Gaussian examples of [1]). Our
approach has two types of ingredients: probabilistic and dynamical. The dynamical
ingredient is the CLT theory for the composition of ladder maps Gn. Gn describes
the internal state of the particle starting at the level n when it arrives at level n+ 1
for the first time. This part relies on the theory of sequential dynamical systems. The
probabilistic ingredients consist of renewal theory which allows to pass from the CLT
for hitting times to the CLT for the particle position and on the CLT for the quenched
drift, which uses the central limit theory for weakly dependent random variables.

In order to describe the main ideas of our approach in the simplest possible settings
we present two models. Model A is strongly ballistic. Namely among any three steps,
at least two are to the right. In this case the dynamical part uses the CLT for bounded
observables of sequential expanding maps available in the literature ([9]). Model B
is more realistic, since the particle could move arbitrary far to the left, albeit with
a small probability. In this case the dynamical part needs to be extended as well
leading to more complicated arguments.

In a future work we plan to apply our method to Lorentz gas in the presence
of random field. In this case the local dynamics and, hence, the ladder maps Gn

are hyperbolic rather than expanding which requires a significant improvement of the
existing dynamical results. Therefore this model will be a subject of a separate paper.

We note that our work is the first example, where the CLT is proven for an open
class of deterministic systems in random environment as time tends to infinity (the
results of [1] could be used to obtain examples of DRWE satisfying the CLT, however,
the parameters need to be tuned very carefully to obtain the equivalence with RWRE).
Before describing precisely our models (which will be done in §1.2) we mention the
previous work where the CLT is obtained for the deterministic motion in random
environment. We note that in the models described below the environment depends
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on an additional parameter ε and the time scales as some power of 1/ε, while in our
work the environment is fixed and time tends to infinity.

The first model deals with a particle moving in a dilute random media (so called
Boltzmann-Grad regime) where the time tends to zero and the sizes of the scatters go
to zero at the same time. A selection of papers on this subject includes [6, 41, 42, 35].
While this topic is of great physical relevance, it is beyond the scope of the present
work. We just mention that since the interactions happen rarely, it is easier to make
use of the mixing properties of the environment.

Another problem dealing with deterministic motion in the random media is equa-
tions with rapidly oscillating coefficients. The study of the equation ẋ = v(x, ξt/ε),
where ξt is a rapidly mixing random process and ε > 0 is a small parameter, goes
back to the work of Khasminskii ([28, 29]). Note that this system is non autonomous
but it can be converted to an autonomous form by rewriting it as

ẋ = v(x, ξs/ε), ṡ = 1.

Khasminskii shows that the solutions of this equations are close to the solutions of
the averaged equation ˙̄x = v̄(x̄) where v̄(x̄) = E(v(x̄, ξ)) and obtains the CLT for
the fluctuations. More generally, the results similar to [28, 29] can be obtained for
the systems in the form ẋ = v(x/ε) where v : Rd → Rd is a rapidly mixing process
and vd > δ for some δ > 0. (In this case xd plays the role of time), see [26]. Similar
results are also available for the the second order equations with rapidly oscillating
coefficients, see [27, 31, 32, 17] and references wherein.

A third subject is the billiard models where the reflections from the boundary are
random to model microscopic roughness of the walls (see [10, 11, 12, 19]). While limit
theorems are available for the random model, the derivation of the same laws from
the underlying microscopic dynamics remains a challenging open problem.

1.2. Results. We consider a model of DRW defined by (1.1) where d = 1, M = T
and Tn : T → T are smooth uniformly expanding maps. We will also assume that
the particle’s coordinate changes every time, thus T = Wn,−1∪Wn,1. We consider the
following models.

Model A. Let T̄ be an expanding map so that there are constants 3 < γ ≤ K and
K1 > 0, such that for all n and all x ∈ T we have

(1.2) γ ≤ |T̄ ′n(x)| ≤ K, sup
x∈T
|T̄ ′′n (x)| ≤ K1.

Let W̄ ⊂ T be a segment such that

(1.3) T̄ pW̄ ∩W = ∅ for p = 1, 2.

We also suppose that for a sufficiently small δ0 we have that for all n ‖Tn−T̄‖C2(T) ≤ δ0

and the Hausdorff distance between Wn,−1 and W̄ is smaller than δ0.
Note that the condition T̄ pW̄ ∩W = ∅ for p = 1, 2, is a ballisticity condition ensur-

ing that among every three moves of the particle at least two are to the right. Thus
the particle moves to the right ballistically. Namely zn ≥ n/3 and zn ≥ zm − 1 for
n > m.

Model B. Let a be a large integer. Let T̄ (x) = ax (mod 1) and W̄−1 ⊂ T be
a segment with |W̄−1| < 1

2
. We suppose that for a sufficiently small δ0 and for all
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n ∈ Z, ‖Tn−T̄‖C2(T) ≤ δ0 and the Hausdorff distance between Wn,−1 and W̄ is smaller
than δ0.

Thus in this model the local dynamics enjoys a strong expansion, which makes this
model similar to the one considered in [1]. (Note that in Model B the local dynamics
is smooth while [1] consider β transformations which have discontinuity on the cir-
cle. We believe that the method of our paper can be extended to maps with a finite
number of discontinuities provided that slope is sufficiently large (depending on the
number of discontinuity points) but to keep the presentation simple we restrict our
attention to smooth maps.)

Our first result is the CLT for the hitting time. Namely let τn(x, k) be the smallest
time t such that F t(x, k) ∈ T× {n}. Define the maps Gn : T→ T by

(1.4) Gn(x) = πTF
rn(x)(x, n) where rn(x) = τn+1(x, n)

and πT denotes the projection on the first coordinate. Thus Gn(x) describes the
internal state of the walker, which starts at site n with internal state x, at the first
time when the walker reacher site n+ 1. We shall also write τn(x) := τn(x, 0). Note
that

(1.5) τn(x) =
n−1∑
k=0

rk(Gk−1 ◦ · · · ◦G0x).

We say that the DRW satisfies the CLT for hitting times if

(1.6)
τn − E(τn)√

Var(τn)
⇒ N (0, 1) as n→∞

where N (a, σ2) denotes the normal distribution with mean a and standard deviation
σ. Here and elsewhere in this article we assume (unless it is explicitly stated otherwise)
that x is uniformly distributed on T.

Theorem 1.1. (a) Given T̄ there exist δ̄0 such that if δ0 ≤ δ̄0 then the DRW from
model A satisfies the CLT for hitting times.

(b) Assume that in model B, |W̄−1| < 1
2
. Then there exists a0 ∈ N so that for all

a ∈ N, with a ≥ a0, there exists δ̄(a) so that if δ ≤ δ̄(a) then the maps {Gn}n∈Z are
well defined and the DRW satisfies the CLT for hitting times.

Remark 1.2. We can assume that |W̄−1| < 1
2

without loss of generality. Otherwise,
we will switch W̄−1 with W̄1.

In order to obtain some information about the position of the particle zn we need
to choose the maps and the gates in an iid way.

Let E = {(T1,W1), . . . , (Tm,Wm)} be a collection of maps and gates, so that any
sequence (Tn,Wn,−1)n∈Z, with (Tn,Wn) ∈ E , ∀n ∈ Z, satisfies the conditions of The-
orem 1.1 (that is either for all n the assumptions of model A are satisfied, or for all
n the assumptions of model B are satisfied).

Theorem 1.3. Take δ̄ so small that every realization {(Tn,Wn)}n∈Z from the collec-
tion E satisfies the conditions of Theorem 1.1.
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(a) (Quenched CLT) There are constants a,σ > 0 such that for almost all iid
realizations of the pairs (Tn,Wn) there are constants bn = bn(ω) such that if x is
uniformly distributed on T then

zn − bn
(1/a3/2)σ

√
n
⇒ N (0, 1) as n→∞.

(b) (Annealed CLT)There are constants v, σ such that if x and {(Tn,Wn)} are
independent, x is uniformly distributed on T and (Tn,Wn) are chosen from E in an
iid fashion, then

zn − vn
(1/a3/2)σ

√
n
⇒ N (0, 1) as n→∞.

Remark 1.4. The ballisticity condition (1.3) ensures that the time needed to move to
the right for Model A is in BV as a function of the initial condition x. This allows us to
apply existing results about the central limit theorem for non-autonomous dynamical
systems, such as [2, 9, 18, 22, 37]. In case the return time is unbounded, as is the
case for Model B, one needs to extend the existing result allowing much less regular
functions. This extension is formulated in Theorem 3.1 and is proven in the appendix.
This result is of independent interest.

We also hope that our approach will be useful for other models of motions in
random media, and this will be a subject of a future work.

2. Notations and definitions

For the sequence of maps {Gn}n∈Z and k ≤ m we define maps Gk,m as follows

Gk,m(x) = Gm ◦ · · · ◦Gk(x).

If above we have only one map, i.e. Gm = G, for all m ∈ Z, then Gk,m = Gm−k+1.
Let

D(2)
n = {(t1, t2, · · · , tn) : tk ∈ {−1, 1}, 1 ≤ k ≤ n}.

Definition 2.1. For n ≥ 1, t ∈ D(2)
n , let

sk(t) = t1 + · · ·+ tk, 1 ≤ k ≤ n, and s0(t) = 0.

We will also be interested in the following subset of D
(2)
n

Definition 2.2. Let R
(2)
n ⊂ D

(2)
n , be the set of all t = (t1, . . . , tn), for which

sk(t) ≤ 0, 1 ≤ k ≤ n− 1, and sn(t) = 1.

Remark 2.3. For even n we have R
(2)
n = ∅.

Definition 2.4. Let A ⊂ T be a set such that there is a collection of closed and
disjoint intervals {Ik}mk=1 so that ∪mk=1Ik ⊂ Ā and |A \ ∪nk=1Ik| = 0. Denote

I(A) = {I1, . . . , In}.
Note that if I(A) exists, then it is unique.

We now recall some definitions and facts from [9]. Denote by BV the space of all
functions with bounded variation and by V (f) the variation of the function f ∈ BV .
The space BV is equipped with the norm

|f |BV := V (f) + ||f ||1,
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where ||f ||1 is relative to the Lebesgue measure. For f ∈ BV , we have: ||f ||∞ ≤ |f |BV .
Define also BV0 = {f ∈ BV :

∫
T fdx = 0}.

We will be interested in maps satisfying

Hypothesis 2.5. G : T → T is such that there exists a finite or countable partition
(Ij) of [0, 1] or T such that the restriction of the map to each interval Ij is strictly
monotone and G|Ij ∈ C2(Ij). We also assume that

γ := inf
j

inf
x∈Ij
|G′(x)| > 2, and sup

j
sup
x∈Ij

∣∣∣∣ (G(x))′′

(G(x)′)2

∣∣∣∣ <∞.
Given a map G as above define

K := sup
j

sup
x∈Ij
|G′(x)| and K1 := sup

j
sup
x∈Ij
|G′′(x)| .

Note that we can have K,K1 =∞.

Definition 2.6. We say that a collection of intervals {Ik}mk=1, with
m⋃
k=1

Ik = T is a

Markov partition for a map G satisfying Hypothesis 2.5, if

G(Ik) = T, 1 ≤ k ≤ m,

and G is injective and continuous on each Ik.

The transfer operator of a map satisfying Hypothesis 2.5 is given by

(2.1) PGf(x) =
∑
j

f (σjx)
1

|G′ (σjx)|
1G(Ij)(x),

where σj is the inverse function of the restriction of G on Ij. It is well known that∫
T

(PGf) gdx =

∫
T
f(x)g(Gx)dx, ∀f ∈ L1, g ∈ L∞.

Note also the following form of the transfer operator

PG(f)(x) =
∑

y:G(y)=x

f(y)

|G′(y)|
.

Lemma 2.7. Let f ∈ L2(T). Then∥∥∥Pf∥∥∥
2
≤
√
|P1|∞ ‖f‖2.

Proof. By Hölder’s inequality( ∑
y:G(y)=x

f(y)

|G′(y)|

)2

≤
( ∑
y:G(y)=x

f 2(y)

|G′(y)|

)( ∑
y:G(y)=x

1

|G′(y)|

)
.

Integrating this inequality we obtain∫
T
(Pf)2dx ≤

∫
T
Pf 2dx|P1|∞ = |P1|∞

∫
T
f 2dx.

Taking square root on both sides we get the required estimate. �
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Let P be a set of contractions on L1 (a set of linear operators satisfying ‖Pf‖1 ≤
‖f‖1, for every P ∈ P). Following [9] the p distance between two transfer operators
R,R′ will be defined as follows

(2.2) dp (R,R′) = sup
{f∈BV :|f |BV ≤1}

‖Rf −R′f‖p .

When p = 1, we will drop the index and denote it by d. For P ∈ P , we denote its δ
neighborhood by B(P, δ) := {R ∈ P : d(R,P ) < δ}.

We say that the collection P satisfies the Lasota-Yorke property (LY), if there
exists ρ ∈ (0, 1) and C > 0, so that for any P ∈ P we have

(LY) ∀f ∈ BV, V (Pf) ≤ ρV (f) + C‖f‖1.

We say the subset P0 ⊂ P satisfies the exponential decay of correlations property
(Dec) in BV0 if there exist θ < 1 and K > 0 such that, for all integers l ≥ 1, all
l-tuples of operators P1, . . . , Pl in P0 we have

(Dec) ∀f ∈ BV0, |Pl · · ·P1f |BV ≤ Kθl|f |BV .
It follows from (LY) (see [9, Lemma 2.4]) that there exists M > 0, so that for any
Pn, . . . , P1 ∈ P and f ∈ BV
(2.3) |Pn · · ·P1f |BV ≤M |f |BV , for all n ≥ 1.

We say that the sequence of operators {Pn}n≥1 satisfies the condition (Min), if
there exists σ > 0 such that

(Min) PnPn−1 . . . P11(x) ≥ σ, ∀x ∈ T,∀n ∈ N.
We say that the collection P satisfies conditions (Min) if any sequence in P satisfies
the property (Min) with the same constant σ. In the sequel we will use the notation

Pn1 = PnPn−1 · · ·P11.

We recall a criterion for verifying the condition (Dec):

Proposition 2.8. ([9, Proposition 2.10]) Let P be a collection of contractions satis-
fying (LY) and P ∈ P that satisfies (Dec), i.e.

(2.4) |P nf |BV ≤ Cγn|f |BV , ∀f ∈ BV0.

Then there exists δ0 > 0, such that the set P0 = B (P, δ0)∩P satisfies (Dec) in BV0

The relevance of the properties introduced above comes from the following result.

Theorem 2.9. [9, Theorem 5.1] Let (fn) be a sequence of observables, so that sup
n≥1
|fn|BV <

∞. Assume that for the sequence of transformations {Tn}n≥1 the corresponding set
of transfer operators {PTn}n≥1 satisfy (Min) and (Dec). Let

Sn(x) =
n−1∑
k=0

fn(T1,n(x))−
∫
T
fn(T1,n(x))dx

where T1,n = Tn ◦ · · · ◦ T1. If the norms ‖Sn‖2 are unbounded as n→∞ then

Sn
‖Sn‖2

⇒ N (0, 1).
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Theorem 2.9 is sufficient to handle Model A. For Model B we need an extension
of this result, namely, Theorem 3.1 formulated in §3.1 and proven in Appendix A.
Theorem 3.1 allows to handle unbounded observable and is of independent interest.

Definition 2.10. We say that the observable ϕ is cohomologous to zero for the map
T if there exist an observable H ∈ L2 and c ∈ R such that

ϕ+ c = H−H ◦ T.

3. Some auxiliary results

3.1. An extension of a result of Conze-Raugi. In Appendix A we prove the
following extension of Theorem 2.9. Observe that the functions {fn} below can also
be unbounded

Theorem 3.1. Assume the operators {Pn}n≥0 fulfill the conditions (Dec) and (Min)
on BV and let {fn}n≥1 be a sequence of observables, such that there exists D > 0, so
that

(3.1) sup
{g∈BV :|g|BV ≤1}

|Pn(fn−1g)|BV < D and sup
{g∈BV :|g|BV ≤1}

|Pn(f 2
n−1g)|BV < D,

for all n ≥ 1. Consider the sum

Sn(x) =
n−1∑
k=0

f̃k, where f̃k = fk(G1,k(x))−
∫
fk(G1,k(x))dx.

If the sequence of variances σn = ‖Sn‖2 is unbounded and for every ε > 0 we have

(3.2) lim
n→∞

∑n
k=1

∫
f̃ 2
k (x)1[εσn,∞)

(
f̃ 2
k (x)

)
dx

σ2
n

= 0,

then
Sn
σn
⇒ N (0, 1) as n→∞.

Remark 3.2. Let Tn = T × {n}. Note that in several results in Sections 2 and 3
including Theorems 2.9 and 3.1 we consider maps G1,k with domain T1 and range
Tk+1. In particular fk are defined on Tk+1. This is done to have the same notation as
in [9]. However, in applications we will deal with maps G0,k−1 with domain T0 and
range Tk. This is done since it is natural to consider the walk started at the origin
rather than site 1.

3.2. Lasota-Yorke inequality. We need the following standard fact whose proofs
could be found in [9], page 105.

Lemma 3.3. (a) Let [u, v] ⊂ [c, d] ⊂ [0, 1], and f be of bounded variation. Then

(3.3) |f(u)|+ |f(v)| ≤ V[c,d](f) +
2

(d− c)

∫ d

c

|f(t)|dt.

(b) In particular

|f(u)|+ |f(v)| ≤ V[u,v](f) +
2

(v − u)

∫ v

u

|f(t)|dt.
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Lemma 3.4. Let G satisfy Hypothesis 2.5 and suppose that there is an interval W ⊂
T such that T is smooth everywhere except, possibly, at the endpoints of W. Assume
also there is K > 0 such that sup

x∈T\∂W
|G′(x)| ≤ K Then there is C = C(γ,K,K1) > 0

such that

(3.4) V (PGf) ≤ 3

γ
V(f) + C‖f‖1.

Proof. Recall that

PGf(x) =
∑
j

f (σjx)
1

|G′ (σjx)|
1G(Ij)(x),

where σj is the inverse function of G on its intervals of monotonicity (Ij). We can
assume that |W | ≤ 1

2
. Otherwise, instead of W we can consider W c. Since G has only

two discontinuity points, the partition (Ij) can be chosen in such a way that there
will be at most one interval I ∈ (Ij), with |I| < 1

2([K]+1)
. Indeed, we can define the

partition (Ij) on W c so that |Ij| = |W c|
[K]+1

, j = 1, . . . , [K]+1. Since 1
2([K]+1)

< |Ij| < 1
K

,

then G|Ij will be one-to-one on each one of these intervals. If now |W | < 1
2([K]+1)

,

then we will take W to be one of the partition intervals, otherwise we divide W into
intervals of size 1

2([K]+1)
and a reminder interval Ii, so that |Ii| < 1

(2[K]+1)
.

Note that

V (PGf) ≤
∑
j

V
(
f (σjx)

1

|G′ (σjx)|
1G(Ij)

)
≤

(3.5)
∑
j

(
VG(Ij)

[(
f

G′

)
◦ σj

]
+
[∣∣∣ f
G′

∣∣∣(σjαj) +
∣∣∣ f
G′

∣∣∣(σjβj)]) =: I + II

where G(Ij) = [αj, βj]. By an inequality in [9], page 106, we have

VG(Ij)

[(
f

G′

)
◦ σj

]
= VIj

[(
f

G′

)]
≤
VIj(f)

γ
+
K1

γ2

∫
Ij

|f(t)|dt.

Summing over j we get

(3.6) I ≤ V (f)

γ
+
K1

γ2
‖f‖1.

Next for all monotonicity intervals with |Ij| > 1
(2[K]+1)

we use Lemma 3.3(b) obtaining∣∣∣ f
G′

∣∣∣(σjαj) +
∣∣∣ f
G′

∣∣∣(σjβj) ≤ 1

γ
[|f |(σjαj) + |f |(σjβj)]

(3.7) ≤
VIj(f)

γ
+

2

γ|Ij|

∫
Ij

|f(x)|dx ≤
VIj(f)

γ
+

4([K] + 1)

γ

∫
Ij

|f(x)|dx.

It remains to handle the shortest interval Ii. Let Ii+1 be a partition element adjacent
to Ii and set I = Ii ∪ Ii+1. Then |I| > 1

2([K]+1)
and by (3.3), applied to Ii ⊂ I = [c, d],

we have ∣∣∣ ( f

G′

)
(σiαi)

∣∣∣+
∣∣∣ ( f

G′

)
(σiβi)

∣∣∣ ≤
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(3.8)
1

γ
(|f(σiαi) + |f |(σiβi)) ≤

1

γ
VI(f) +

2

γ|I|

∫
I

|f |dx.

Summing the above estimates we obtain

V (PGf) ≤ 3

γ
V (f) + C‖f‖1

where the factor 3
γ

is the sum of three terms of size 1
γ

coming from (3.6), (3.7), and

(3.8) respecively. This completes the proof. �

3.3. Positivity of density. We say that the sequence of expanding maps {Gn}n≥1

satisfies property (C) if for every ε > 0, there exists s ≥ 1 and M > 0 such that for
every x ∈ T, n ∈ N and any interval I ⊂ T, with |I| > ε, there exists y = y(n, I, x) ∈ I
so that

Gn,n+s(y) = x, |DyGn,n+s| ≤M.

Lemma 3.5. Assume there exists K > 0, such that for every n ≥ 1,

sup
j

sup
x∈I(n)

j

|G′n(x)| ≤ K.

If {Gn} satisfy the classical covering property namely for every interval I there exist
a number s ∈ N, such that for every n ≥ 1, Gn,n+s(I) = T then property (C) holds.

Proof. Take a partition of T into intervals {Jk} of lengths in [ ε
4
, ε

2
]. For each Jk we

can find its own covering number sk. Note that any number s larger than sk is again a
covering number for Jk. Let s be the largest number in the set {sk}. Now observe that
any interval J of length larger than ε contains an interval from {Jk} in its interior.
Hence we will have Gn,n+s(I) = T. It remains to notice that |DxGn,n+s| ≤ Ks. �

We say the map G satisfies property (C) if the sequence G,G, . . . satisfies this
property.

The following proposition extends several classical results for a single expanding
map (see [34]) to a sequence of expanding maps satisfying property (C).

Proposition 3.6. Let G = {Gn}n≥1, be a sequence of expanding maps so that for each
n ≥ 1 there is an interval Jn ⊆ T such that Gn(Jn) = T and sup

n≥1
sup
x∈Jn
|G′n(x)| ≤ K0,

for some finite K0. Assume also the set of associated transfer operators {Pn}n≥1

satisfies property (LY). Then

(a) If G satisfies property (C) then there exists σ > 0 so that for any n ≥ 1 and
x ∈ T

PnPn−1 · · ·P11(x) ≥ σ.

(b) Let G ∈ G be an expanding map which satisfies property (C). Then P also
satisfies property (Dec).

Proof. (a) We follow the proof of [2, Proposition 2]. For a > 0, let

Ea =

{
f ∈ BV : f ≥ 0, V (f) ≤ a

∫
f

}
.
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By Lemma 3.2 in [34], for any f ∈ Ea there exist an interval I, with |I| = 1
2a

, so that

f(x) ≥ 1
2

∫
f for all x ∈ I. Note that by the Lasota-Yorke inequality (LY) we have

V (Pr · · ·P1f) ≤ ρrV (f) + Cr‖f‖1 ≤ (aρr + Cr)

∫
f.

Hence, for a ≥ Cr
1−ρr , we have (Pr . . . P1) (Ea) ⊂ Ea for any choice of P1, . . . , Pr. In

order also to have 1 ∈ Ea, we will actually choose a = max
{

1, Cr
1−ρr

}
. By Property

(C), for ε = 1/2a we can find s ≥ 1, M < ∞ so that for any x ∈ T and any n ∈ Z
one can find ζ ∈ I, with Gn,n+s(ζ) = x and |DζGn,n+m| ≤M.

Let m ≥ 0. We have P1,m+s1 = Pm+1,m+sP1,m1. Write m = pmr + qm, with
0 ≤ qm < r. Note that for k ≤ qm we have

P1,k1(x) ≥ K−k0 ,

since all the maps Gn have intervals Jn so that Gn(Jn) = T and |G′n(x)| ≤ K0, for all
x ∈ Jn. As a consequence, we have P1,m+s1 ≥ K−qm0 Pm+1,m+sgm, with gm = Pqm+1,m1.
Since Pqm+1,m1 is a concatenation of pm blocks of r operators applied to a function in
Ea, we obtain that gm belongs to Ea. Then, there exists an interval I, with |I| = 1

2a
,

on which gm ≥ 1
2
. This implies

P1,m+s1(x) ≥ K−qm0 Pm+1,m+s1I(x)

= K−qm0

∑
Gm+1,m+s(y)=x

1I(y)

|(DyGm+1,m+s)|
≥ K−qm0

M

completing the proof.
(b) By part (a) for a proper choice of the parameter a we have that P r (Ea) ⊂ Ea.

Given this inclusion the proof of (Dec) can be made the same way as in [34, Section
3] or [46, §3.2] so we omit it. �

Lemma 3.7. Let {Gn}n≥1 be a sequence of maps and intervals {Wn}n≥1 such that
for each n ≥ 1 Gn is continuous everywhere on T, except possibly at the endpoints
of Wn. Assume also we have |Gn(x)′| ≤ K at all points x away from discontinuity
points. Then there exists σ > 0 such that

(Pn · · ·P11) (x) ≥ σ, ∀x ∈ T, n ≥ 1,

where Pn is the transfer operator for Gn.

Proof. We verify the conditions of Proposition 3.6(a). First note that since γ > 3
then one can find an interval Jn ⊂ Wn or Jn ⊂ W c

n so that Gn(Jn) = T and we
obviously have |DxGn| ≤ K <∞. Property (LY) follows from Lemma 3.4. To verify
property (C), in view of Lemma 3.5, it is sufficient to show that {Gn}n≥1 satisfies the
covering property: for each I ⊂ T, there exists N = N(|I|) so that G1,N(I) = T.

If W1 ∩ I 6= ∅, then the intersection with ∂W1 divide I into at most three com-
ponents. Let I1 be the largest component. Then |I1| ≥ |I|/3. Consider the image
G1(I1). Then |G1(I1)| ≥ γ|I1|, since G1 is continuous both inside and outside of
W1. Next, we choose the largest interval I2 ⊂ G1(I1), so that either I2 ⊆ W2 or
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I2 ∩ W2 = ∅. Hence, |I2| ≥ |G1(I1)|/3 > γ
3
|I1|. Repeating this argument, we will

obtain a sequence of intervals (In)n≥1, so that

|In+1| >
(γ

3

)n
|In|.

Since γ
3
> 1, the image of I1 covers the circle in time O

(
ln
(

1
|I1|

))
. �

4. The growth of variance.

In this section we study the behavior of the variance of τn

σ2
n =

∫
T

(
n∑
i=1

[
ri (G1,i(x))−

∫
T
ri (G1,i(y)) dy

]2
)
dx.

The next proposition shows that the linear growth of variance is stable under small
perturbations. Note that the observables rn and r may be unbounded.

Recall Equation (2.2).

Proposition 4.1. Let G be a collection of maps satisfying Hypothesis 2.5 such that
its associated set of transfer operators satisfies (Dec). Assume G ∈ G, r ∈ L2(T) are
such that the acim h of G is bounded away from zero and r is not cohomologous to
a constant for G. Let P be the transfer operator of G. Then for each L > 0 there
exists δ0 > 0 such that the following holds. Let {Gn}n≥1 ⊂ G and rn ∈ L2(T) be such
that denoting by Pn the transfer operators of Gn we have that for all n ≥ 1

(4.1) |Pn(rn−1f)|BV ≤ L|f |BV , |P̄ (r̄f)|BV ≤ L|f |BV , f ∈ BV.
and

d2(Pn, P ) ≤ δ0, d2(Pn(rn−1·), P (r·)) ≤ δ0, ‖r − rn‖2 ≤ δ0.

Then
σ2
n = Var(τn) ≥ Cn,

where C = C(δ0, r̄, Ḡ, L) > 0.

Proof. Define

r̃k = rk −
∫
T
rk(G1,k(x))dx.

By assumption r is not cohomologous to zero and h(x) ≥ c > 0 for almost all x ∈ T
and some c > 0. Then by Proposition A.1 proven in the appendix there exists C > 0
so that

(4.2) σ̄2
n ≥ Cn,

where

σ̄2
n = n

n∑
i=1

∫
T
r̃2hdx+ 2

n∑
k=1

(n− k)

∫
T
r̃(x)r̃(Gk(x))dx

is the variance of the unperturbed system.
Similarly for the general case

(4.3) σ2
n =

n∑
i=1

∫
T
r̃2
i (G1,i(x))dx+ 2

∑
1≤i<j≤n

∫
T
r̃i(G1,i(x))r̃j(G1,j(x))dx.
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We now show that for each ε > 0, δ0 can be taken so small that for all large n ≥ 1

|σ̄2
n − σ2

n| ≤ εn.

To this end we note that∣∣∣ ∫
T
r̃i (G1,i(x)) r̃j (G1,j(x)) dx

∣∣∣ =

∣∣∣∣∫
T
r̃iPi · · ·Pj+1

(
r̃jPj1

)
dx

∣∣∣∣ ≤
≤ Kθ|i−j|

∣∣Pj+1(r̃jPj1)
∣∣
BV
‖r̃i‖1 ≤ D′θ|i−j|,

where in the last line we used (Dec) and the estimate

(4.4) |Pj+1(r̃jPj1)|BV ≤ |Pj+1(rjPj1)|BV +

∣∣∣∣∫
T
rj(G1,j)dx

∣∣∣∣ |Pj+11|BV

≤ L|Pj1|BV + ‖rj‖1‖Pj1‖∞|Pj+11|BV ≤ LM + LM2,

which relies on the fact that ‖Pj+1(rj)‖1 = ‖rj‖1 ≤ L. Therefore∣∣∣ ∑
i,j≤n;|i−j|≥N

∫
T
r̃i(G1,ix)r̃j(G1,jx)dx

∣∣∣ ≤ ∑
N≤i≤n

(n− i)D′θi ≤ D′
∑

N≤i≤n

nθi ≤ D′n
θN

1− θ
.

In a similar way for σ̄n we will have

(4.5)

∣∣∣∣∣2
n∑
k=1

(n− k)

∫
T
r̃(x)r̃(Gk(x))h(x)dx

∣∣∣∣∣ ≤ D′n
θN

1− θ
.

Next, we take N so large that

(4.6) D′n
θN

1− θ
≤ n

C

4
,

where C is from (4.2). We now consider the terms with |i − j| < N and show that
for arbitrary ε > 0, δ0 can be taken so small that the following bound holds

(4.7)
∣∣∣ ∫

T
r̃iPi · · ·Pj+1(τ̃jPj1)dx−

∫
T
r̃(x)P |i−j|(r̃h)dx

∣∣∣ ≤ C0ε,

for some C0 > 0. For this it is enough to show that for arbitrary ε > 0, δ0 can be
taken so small that if δ ≤ δ0 then

(4.8) ‖r̃i − r̃‖2 ≤ ε,

and

(4.9)
∥∥Pi · · ·Pj+1(r̃jPj1)− P |i−j|(r̃h)

∥∥
2
≤ ε.

By Lemma 2.13 of [9], for any p ≤ n we have that

(4.10) ‖Pn1− P n1‖1 ≤ C ′
(
pδ0 + (1− θ)−1 θp

)
.

Taking p = [ 1√
δ0

] + 1, we see that for small δ0

(4.11) ‖Pn1− P n1‖1 ≤ C ′
√
δ0.

Since, P n1 →L1 h, as n → ∞, then for n sufficiently large ‖Pn1− h‖1 ≤ 2C ′
√
δ0.

Thus

‖Pn1− h‖2 ≤
√

2M ‖Pn1− h‖1 ≤ C1δ
1
4
0 .
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Next, observe that

(4.12)
∣∣∣ ∫

T
(rk(G1,k)− r(Gk))dx

∣∣∣ =
∣∣∣ ∫

T
(Pk1rk − P k1r)dx

∣∣∣
≤
∣∣∣ ∫

T
Pn1(rk − r) + (Pn1− P n1)rdx

∣∣∣
≤M‖rk − r‖1 + ‖Pn1− P n1‖2‖r‖2 ≤Mδ0 + ‖r‖2L

1
2 δ

1
4
0 .

It then follows that for all n ≥ 1 and δ, ε small we will have

(4.13) ‖r̃ − r̃n‖2 ≤Mδ0 + ‖r‖2L
1
2 δ

1
4
0 + ‖r − rn‖2 ≤ (M + 1)δ0 + ‖r̄‖2L

1
2 δ

1
4
0 ,

since by assumption ‖r − rn‖2 ≤ δ0. Thus we obtain (4.8).
To show(4.9), observe that by the triangle inequality∥∥∥P |i−j+1|

(
r̃h
)
−Pi · · ·Pj+1

(
r̃jPj1

) ∥∥∥
2
≤
∥∥∥P |i−j|(P(r̃h))−P |i−j−1| (Pj+1(r̃jPj1)

) ∥∥∥
2

(4.14) +
∥∥∥P |i−j| (Pj+1(r̃jPj1)

)
− Pi · · ·Pj(Pj+1

(
τ̃jPj1

)
)
∥∥∥

2
= I + II.

By Lemma 2.4 of [9] we have that

d2(P1 . . . Pn, P
n) ≤

n∑
k=1

d2(Pk, P ).

Hence, by assumptions of the Proposition and in view of (4.4)

I ≤ d2

(
Pi · · ·Pj, P |i−j−1|) ∣∣Pj+1(τ̃jPj1)

∣∣
BV
≤ (LM + LM2)

|i−j|∑
k=1

d2 (Pk, P ) ≤ NC3δ0.

For II we have by Lemma 2.7 and the assumptions of our proposition that

II ≤
∥∥∥P |i−j−1|

(
Pj+1(r̃jPj1)− (P (r̃h)

)∥∥∥
2
.

≤ ‖P1‖|i−j−1|/2
∞

∥∥∥Pj+1(r̃jPj1)− P (r̃h)
∥∥∥

2
≤ C4M

|i−j−1|/2δ0.

Taking δ0 small enough we arrive at (4.9). Combining (4.8) and (4.9) we get (4.7).
Summing (4.7) for all |i− j| ≤ N we get∣∣∣ ∑

i,j≤n,|i−j|≤N

∫
T
τ̃i(G1,i(x))τ̃j(G1,j(x))dx−

N∑
k=1

(
(n− k)

∫
T
f(x)f(Gk(x))dx

)∣∣∣
(4.15) ≤ C ′Nnε+ C ′′Nε.

Thus by (4.15), (4.5) and (4.6) we can write

|σ2
n − σ̄2

n| ≤ n
2C

4
+ C ′Nnε+ C ′′Nε.

Therefore

σ2
n ≥ Cn− 2

C

4
n− C ′Nnε− C ′′Nε ≥

(C
2
− C ′Nε

)
n− C ′′Nε ≥ C1n

if ε is small enough. This finishes the proof. �
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Lemma 4.2. Let Ḡ be an expanding map satisfying Hypothesis 2.5 so that for some
x0 ∈ T we have Ḡ(x0) = x0 and Ḡ is continuous at a neighborhood of x0. Assume
for r̄ ∈ L2 we have r̄ = C in an open neighborhood of x0 and C 6=

∫
T r̄hdx. Assume

further that P̄ r̄ ∈ BV . Then τ̄ is not cohomologous to a constant under Ḡ.

Proof. Assume r̄ is a coboundary for Ḡ. Since P̄ r̄ ∈ BV , then by Proposition A.1
there exists g ∈ BV , such that the equality

r̄(x)−
∫
T
r̄(x)h(x)dx = g(x)− g(Ḡ(x))

holds almost surely. Let A′ ⊂ T be the set of all x ∈ A′ for which the equation above
holds for all the forward and backward images of x under Ḡ. Clearly |A′| = 1.

By assumption Ḡ(x0) = x0. Take x ∈ A′. Then
n∑
k=0

r̄(Ḡk(x))− n
∫
T
r̄(x)h(x)dx = g(x)− g(Ḡn(x)).

Observe that r̄(x) = r̄(x0) for x sufficiently close to x0. Hence

(4.16) |nr̄(x)− n
∫
T
r̄(x)h(x)dx| = n|C −

∫
T
r̄(x)h(x)dx| ≤ 2‖g‖∞.

By assumption C −
∫
T r̄(x)h(x)dx 6= 0 Hence, for large n, (4.16) can not take place.

This finishes the proof. �

5. Proof of the main results for Model A.

5.1. Proof of Theorem 1.1(a). By assumption

T̄ pW̄ ∩ W̄ = ∅ for p = 1, 2.

Recall that Tn = T̄ + hn, where hn ∈ C2(T), ‖hn‖C2 < δ0 and |W̄4Wn| < δ0. By
(1.3), for δ0 sufficiently small we will have

Tn(Wn) ∩Wn−1 = ∅, Tn−1(Tn(Wn)) ∩Wn = ∅.
This implies that

(5.1) Gn(x) =

{
Tn(Tn−1(Tn(x))) if x ∈ Wn,

Tn(x) if x ∈ T \Wn.

Hence the hitting times are

(5.2) rn(x) =

{
3 if x ∈ Wn,

1 if for x ∈ T \Wn.

Let r̄ and Ḡ respectively be

r̄(x) =

{
3 if x ∈ W̄ ,

1 if x ∈ T \ W̄ ;
Ḡ(x) =

{
T̄ (T̄ (T̄ (x)) if x ∈ W̄ ,

T̄ (x) if x /∈ T \ W̄ .

We denote by Pn and P̄ the transfer operators of Gn and Ḡ respectively.
To prove Theorem 1.1(a) we will verify that the collection {Pn} satisfies the con-

ditions of Theorem 2.9.
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Next, we show that the sequence {Pn} satisfies (Dec) if δ0 is sufficiently small. Note
that (Dec) for the unperturbed map P̄ follows from Proposition 3.6(b). Applying
Proposition 2.8 to P̄ , we can find a neighborhood of P̄ , where (Dec) property is
preserved. Hence, to establish (Dec) for the collection {Pn}n≥1 for δ0 small, it suffices
to show that the norms d1(Pn, P̄ ) are small when δ0 is small. Thus (Dec) is a
consequence of the following result whose proof will be given in §5.2.

Lemma 5.1. For δ0 sufficiently small there exists L > 0 such that

‖Pnf − P̄ f‖1 ≤ Lδ0|f |BV , ∀f ∈ BV.

The (Min) condition for Pn1 follows from Lemma 3.7. Thus, we have established
(Dec) and (Min) for the sequence {Pn}.

Note that for Model A, 1 <
∫
T r̄hdx < 3. Hence by Lemma 4.2, r̄ is not coho-

mologous to a constant for Ḡ. Thus, Proposition 4.1 gives the linear growth of the
variance for the sequence

τn(x) =
n−1∑
k=0

rk(Gk−1 ◦ · · · ◦G0x)

if δ0 sufficiently small. Now Theorem 1.1(a) follows from Theorem 2.9. �

5.2. Proof of Lemma 5.1. We recall the following fact from [9]. Let

w̃(f, t) =

∫ 1

0

sup
|y−x|≤t

|f(y)− f(x)|dx.(5.3)

Then

(5.4) w̃(f, t) ≤ 2tV (f).

As earlier, we need to estimate the norms

‖Pnf − P̄ f‖1 =

∫
T
|Pnf − P̄ f |dx.

For x ∈ Wn ∩ W̄ we have that

Gn(x) = Tn(Tn−1(Tn(x))) = T̄ (T̄ (T̄ (x)))) + gn(x),

where ‖gn‖C1+Lip(Wn∩W̄ ) < Cδ0. Hence, away from a set A ⊂ T of measure O(δ0)

we have ‖Ḡ − Gn‖C1+Lip(T\A) < Lδ0, ∀n ∈ Z. As both Ḡ and Gn are continuous

everywhere away from the endpoints of the intervals W̄ and Wn, then there is a set
B of measure O(δ0) such that for each x outside of B for every preimage y1, with
Ḡ−1(x) = y1, there is a preimage y2, G−1

n (x) = y2 close to y1. Since |G′n| ≤ K3, then
for each x there are at most [K3] + 1 many inverse branches of Gn. One can also see
that |y1 − y2| ≤ Lδ0/γ. We now write

PGnf(x)− PḠf(x) = E0(x) +
∑

y1:Gn(y1)=x

f(y1)

Ḡ′(y1)
−

∑
y2:Ḡ(y2)=x

f(y2)

G′n(y2)

= E0(x) +
∑
y1,y2

[
f(y1)

Ḡ′(y1)
− f(y2)

Ḡ′(y1)

]
+
∑
y1,y2

[
f(y2)

Ḡ′(y1)
− f(y2)

G′n(y2)

]
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where E0 is supported on B. In particular ‖E0‖1 ≤ Cδ0. Next,

(5.5)

∣∣∣∣ 1

Ḡ′(y1)
− 1

G′n(y2)

∣∣∣∣ ≤ ∣∣∣∣ K1(y1 − y2)

Ḡ′(y1)Ḡ′(y2)

∣∣∣∣+ ∣∣∣∣ 1

Ḡ′(y2)
− 1

G′n(y2)

∣∣∣∣ ≤ L

(
K1δ0

γ3
+
δ0

γ2

)
.

Note that we have K1 <∞. By the triangle inequality∫
T\B

∣∣∣∣ f(y1)

Ḡ′(y1)
− f(y2)

G′n(y2)

∣∣∣∣ dx ≤ ∫
T\B

∣∣∣∣ f(y1)

Ḡ′(y1)
− f(y2)

Ḡ′(y1)

∣∣∣∣ dx+

∫
T\B

∣∣∣∣ f(y2)

Ḡ′(y1)
− f(y2)

G′n(y2)

∣∣∣∣ dx.
For the first term on the right, we have by (5.4)∫

T\B

∣∣∣∣ f(y1)

Ḡ′(y1)
− f(y2)

Ḡ′(y1)

∣∣∣∣ dx ≤ 1

γ

∫
T\B
|f(y1)− f(y2)|dx

≤ 2

γ
sup |y1 − y2|VT(f) ≤ 2Lδ0

γ2
VT(f).

By (5.5) ∫
T\B

∣∣∣∣ f(y2)

Ḡ′(y1)
− f(y2)

G′n(y2)

∣∣∣∣ dx ≤ ‖f‖∞δ0L

(
K1

γ3
+

1

γ2

)
.

Since the measure of B is of order O(δ0), we also have∫
B

|Pnf − P̄ f |dx ≤ L1‖f‖∞|B| ≤ L2δ0‖f‖∞.

Recall that ‖f‖∞ ≤ |f |v. Summarizing the estimates above, we finally obtain
‖Pnf − P̄ f‖1 ≤ L′δ0|f |v. �

5.3. Quenched drift and variance. For k < m, let

am,k =

∫
T
[rm(Gm−1 ◦ · · · ◦Gm−k(x))dx].

For k = m− 1 we set am =
∫
T rm(G1,m−1x)dx.

The properties of am are summarized below.

Lemma 5.2. There are constants C1, C2, C3 > 0 0 < θ1, θ2, θ3 < 1 such that
(a) For each k the sequence m→ am,k is stationary and |am,k − am| < C1θ

k
1 .

(b) There exists the limit a = lim
m→∞

E(am) and moreover |E(am)− a| ≤ C2θ
m
2 .

(c) Cov(an1 , an2) ≤ C3θ
|n2−n1|
3 .

(d) There exists D2 ≥ 0 such that

[∫
T τm(x)dx

]
−ma

√
m

⇒ N (0, D2) as m→∞.

(e) For each ε > 0 there exists C(ω) such that for each n1, n2 < 10N such that
|n2 − n1| ≤ N3/4 we have∣∣∣ ∫

T
τn2dx−

∫
T
τn1dx− a(n2 − n1)

∣∣∣ ≤ C(ω)N3/8+ε.

Remark 5.3. Note that we do not claim that D in part (d) is not equal to zero.

Proof. (a) Note that for m > k∣∣∣ ∫
T
fm(Gm−1 ◦ · · · ◦Gm−kx)dx−

∫
T
fm(Gm−1 ◦ · · · ◦G1x)dx

∣∣∣
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≤
∫
T
fm|Pm . . . Pm−k[1− Pm−k−1 . . . P11]|dx ≤ C1θ

k,

where the last estimate is due to the exponential mixing condition (Dec).
(b) By part (a)

(5.6) E(am) = E(am,k) +O(θk1) = E(ak,0) +O(θk1).

Hence, |E(an) − E(am)| < Cθk1 , for n > m > k, which shows that the sequence
{E(an)}n≥1 is a Cauchy sequence. Thus, we have the limit a = lim

m→∞
E(am). Next,

by letting m→∞ in (5.6) we get (b).
(c) Assume n1 > n2. By (b) we can write |an1 − an1,n1−n2| ≤ C1θ

|n2−n1|. Hence

E[(an1 − E[an1 ])(an2 − E[an2 ])] = E[(an1,n1−n2 − E[an1 ])(an2 − E[an2 ])] + C ′θ|n1−n2|

= C ′θ|n1−n2|

where the last equality is due to that fact that an1,n1−n2 and an2 are independent
random variables and E[(an2 − E[an2 ])] = 0.

(d) follows from (c), see [24, Chapter XVIII].
(e) also follows from (c) as is shown in [20]. �

We also need the following result

Lemma 5.4 ([30]). There is a constant σ such that lim
n→∞

Var(τn)

n
= σ2 with proba-

bility 1.

5.4. Proof of Theorem 1.3 for Model A. Define S(n) = E(τn). This function is
monotone so we consider an inverse function

(5.7) Z(s)=max(x : S(n)≤s).
Denote

σ̂n =
√

Var(τZ(n)), z∗n = max
0≤k≤n

zk, bn = Z(n)

Lemma 5.5. S(n), bn, and σ2
n have linear growth. That is there is a constant C such

that
1

C
≤ S(n)

n
≤ C,

1

C
≤ bn

n
≤ C,

1

C
≤ σ̂2

n

n
≤ C.

Proof. Since n ≤ τn ≤ 3n we have n ≤ S(n) ≤ 3n. Therefore n/3 ≤ bn ≤ n.
The lower bound on σ̂2

n follows from Proposition 4.1, see the proof of Theorem 1.1.
The upper bound on σ̂2

n follows from (Dec) since

σ̂2
n =

∑
n1,n2≤n

Cov(rn1 , rn2) ≤
∑

n1,n2≤n

C1θ
|n2−n1| ≤ C2n. �

Let a be as in Lemma 5.2 and consider

P

(
z∗n − bn
(1/a)σ̂n

> t
)

= P
(
z∗n > bn + (1/a)tσ̂n

)
.

By definition of z∗n for every t ∈ R we have

P (z∗n > t) = P (τ[t] < n).
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Hence

P (z∗n > bn + uσ̂n) = P (τ[bn+uσ̂n] < n) = P

(
τ[bn+uσ̂n] − E[τ[bn+uσ̂n]]√

Var[τ[bn+uσ̂n]]
>
n− E[τ[bn+uσ̂n]]√

Var[τ[bn+uσ̂n]]

)
where

u = t/a.

We claim that

(5.8) lim
n→∞

n− E[τ[bn+uσ̂n]]√
Var[τ[bn+uσ̂n]]

= t.

Indeed using Lemma 5.2(e) and the linear growth on bn (Lemma 5.5) we obtain

E[τ[bn+uσ̂n]] = n+ [auσ̂n] +O(n0.4) = n+ [tσ̂n] +O(n0.4).

Hence the numerator of (5.8) is asymptotic to tσ̂n.

To analyze the denominator denote τm,n =
∑

k=m,n−1

rk for m < n. Then

Var(τn) = Var(τm) + Var(τm,n) + Cov(τm, τm,n) = Var(τm) + Var(τm,n) +O(1).

By the linear growth of variance we obtain Var(τn) = Var(τm)+O(|n−m|). It follows

that the denominator of (5.8) is
√
σ̂2
n +O(σ̂n) = σ̂n +O(1).

Combining the estimates for the numerator and denominator we obtain (5.8).
Combining (5.8) and Theorem 1.1 we arrive at

(5.9) lim
n→∞

P
( z∗n − bn

(1/a)σ̂n
> t
)

=

∫ t

−∞

1√
2π
e−u

2/2du.

From the definition (5.7) it follows that E(τZ(n))/n → 1, as n → ∞. Then consider

E
(
τZ(n)

Z(n)

)
Z(n)
n

. By Lemma 5.2 for almost all environments lim
n→∞

E
(
τZ(n)

Z(n)

)
= a. Hence

for almost all environments we also have

lim
n→∞

Z(n)

n
=

(
lim
n→∞

Z(n)

τ(Z(n))

)(
lim
n→∞

τ(Z(n))

n

)
=

1

a
.

Thus

lim
n→∞

σ̂2
n

n
= lim

n→∞

Var[τZ(n)]

n
= lim

n→∞

Var[τZ(n)]

Z(n)

Z(n)

n
=

σ2

a
.

Therefore (5.9) can be rewritten as

lim
n→∞

P
( z∗n − bn

(1/a3/2)σ
√
n
> t
)

=

∫ t

−∞

1√
2π
e−u

2/2du.

Splitting
zn − bn√

n
=
zn − z∗n√

n
+
z∗n − bn√

n

and using that

(5.10) z∗n − 1 ≤ zn ≤ z∗n

we obtain part (a).
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(b) We write
τn − na√

n
=
τn − E[τn]√

n
+

E[τn]− na√
n

By part (a), the first term is asymptotically normal. By Lemma 5.2 the second term
is also asymptotically normal. Moreover, those terms are asymptotically independent
since the second term depends only on the environment, while the distribution of the
first term is asymptotically independent of the environment due to part (a). Since the

sum of two independent normal random variables is normal,
τn − na√

n
is asymptotically

normal with zero mean and variance

σ2 = σ2 +D2

where σ is from Theorem 1.3(a) and D is from Lemma 5.2(d).
Let v = 1/a. Then for x(n, t) :=

⌈
nv + v3/2σ

√
nt
⌉

we have

(5.11) P
(
z∗n − nv
v3/2σ

√
n
< t

)
= P

(
τx(n,t) − x(n, t)/v

σ
√
x(n, t)

>
n− x(n, t)/v

σ
√
x(n, t)

)
.

It follows from the above definition of x(n, t) that

lim
n→∞

n− x(n, t)1/v

σ
√
x(n, t)

= −t

Hence the CLT for z∗n in the annealed case follows from the discussion above. Using
(5.10) we obtain the annealed CLT for zn. �

6. Auxiliary results for Model B

We now turn to the proof of Theorem 1.1 (b). Due to the complexity of the
dynamics the maps Gn will be more complicated. In particular, the walker can make
arbitrary large number of backward steps before moving from site n to site n + 1.
Thus for Model B the maps Gn have infinitely many branches and the first hitting
times maps τn are unbounded. So we can no longer apply Theorem 2.9. In the rest
of the paper we establish properties which help us to verify that the transformations
{Gn} and the maps {τn}n≥1 satisfy the conditions of Theorem 3.1 which extends
Theorem 2.9 to the case of unbounded observables.

6.1. Long itineraries. For each n ≥ 1 and t ∈ D(2)
n we consider the set of all x ∈ T

for which the walker, starting its journey from (x,m), subsequently visits the sites
m+ s1(t),m+ s2(t), . . . ,m+ sn(t), i.e. for all 0 ≤ k ≤ n we have

πZ(F k(m,x)) = m+
k∑
`=0

s`(t),

where F 0(m,x) = (m,x). We denote the set of all such x by At,n,m. Observe that, for
large values of a this set is not empty for arbitrary m, t. Indeed, for large values of
a any point (z, x) will have a preimage inside any of the four intervals (z − 1,Wz−1),
(z − 1,W c

z−1), (z + 1,Wz+1) and (z + 1,W c
z+1). This means that at each step, by

choosing the backward image in an appropriate way, we can make the walker travel
in an arbitrary prescribed way. This proves that any trajectory is possible in Model B.
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Note that At,n,m can be written in the following way. For n = 1 At,n,m = Wm,t1 ,
and for n > 1

x ∈ Ws0(t)+m,t1 ,

(6.1) Ts0(t)+m(x) ∈ Ws1(t)+m,t2 ,

· · ·

Tsn−2(t)+m ◦ Tsn−3(t)+m ◦ · · · ◦ Tm(x) ∈ Wsn−1(t)+m,tn .

If Gm in (1.4) is well defined for almost all x ∈ T, then one can see that

Gm(x) =
∞∑
n=1

∑
t∈R(2)

n

Tsn−1(t)+m ◦ Tsn−1(t)+m ◦ · · · ◦ Ts0(t)+m(x)1At,n,m(x).

Note that in (6.1) the maps Tsk(t) and the gates Wsk(t),tk+1
are perturbations of the

map T̄ and the gates W̄± (depending on the sign of tk+1), so due to the general nature
of our argument, we will assume that the walker starts at 0, that is m = 0, and replace
the maps Tsk(t) and the gates Wsk(t),tk+1

with maps Tk(x) = (ax + hk(x)) (mod 1)
and gates Wk,tk+1

respectively. Thus the index k in Wk,tk+1
no longer represents the

position of the walker, but rather is a numbering parameter. However, we leave the
sequence {tk}nk=1 the same. Hence, for all n ≥ 1 and t ∈ D2

n we can write

(6.2) At,n =
n−1⋂
`=0

(T1,`)
−1(W`,t`+1

),

where T 0
1 (x) = x.

Since the sets (T1,`)
−1(W`,t`+1

) consist of finitely many disjoint intervals, one can
check that the set At,n satisfies the conditions of Definition 2.4. Thus the collection
I(At,n) is well defined.

Lemma 6.1. Let `1 < `2 and let P`1 and P`2 be Markov partitions of T1,`1 and T1,`2

respectively (see Definition 2.6). Then any interval from P`2 can intersect at most
two intervals from P`1.

Proof. Let P`1 and P`2 be Markov partitions of T1,`1 and T1,`2 respectively. We need
to show that any p ∈ P`2 can intersect at most two intervals from P`1 . If some p ∈ P`2
intersects more than two elements from P`2 there should exist an element p′ ∈ P`2 so
that p′ ⊂ p. Note that, by definition T1,`2(p) = T. However

(6.3) T1,`2−1(p) 6= T.

But since p′ ⊂ p and `1 < `2, then clearly T = T1,`1(p′) ⊂ T1,`2−1(p) contradicting
(6.3). �

The next propositions helps us to understand the long trajectories. Although it
may not be visible at first glance, the argument is close to and was inspired by the
classical growth lemma that is fundamental in the study of billiard maps.

Proposition 6.2. Let t ∈ D(2)
n and ` ≥ 0 be the number of −1s in t. Then, for all

a ∈ N sufficiently large, there exists k = k(a) ∈ N and δ̄(a) > 0 so that if δ ≤ δ̄(a)
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then there is a Markov partition Pn+1 of T1,n+1 so that the number of Markov partition
elements required to cover the set At,n can be estimated as follows

(6.4) {p ∈ Pn+1 : p ∩ At,n 6= ∅} ≤ (k + 1)l(a− k + 4)n−l.

Furthermore, each partition element contains at most one interval from At,n, i.e. for
any p ∈ Pn
(6.5) #{I ∈ I(At,n) : I ∩ p 6= ∅} ≤ 1,

and the following two bounds take place

(6.6) a|W̄−1| ≤ k ≤ a|W̄−1|+ 2,

and

(6.7) |At,n| ≤
(k + 1)l(a− k + 4)n−l

(a− δ̄)n
.

Proof. The Markov partition of T` (see (2.6)) will be denoted by

(6.8) P` = {P `
i }a−1

i=0 , ` ≥ 1.

To make it unique we assume that for all ` ≥ 1, 0 ≤ i ≤ a−1 we have T`(∂P
`
i ) = {0, 1}.

The Markov partition of T̄ will be denoted by {Pi}a−1
i=0 .

We now take a so large and δ̄(a) so small that for any ` ≥ 1, there is 0 ≤ i, j ≤ a−1
such that

P `
i ⊂ IntW`,1 P `

j ⊂ IntW`,−1,

where Int stands for the interior of the set. Let C1 and C−1 be the minimal subsets
of indexes {0, . . . , a− 1} such that for all `, k ≥ 0

(6.9) W k,1 ⊂ Int
( ⋃
i∈C1

P `
i

)
W k,−1 ⊂ Int

( ⋃
i∈C−1

P `
i

)
.

One can check that

(6.10) #{C1 ∩ C−1} ≤ 4.

Note that we have equality in (6.10) iff W−1 =
(
∪i∈C−1 Pi

)
, where Pi are from the

Markov partition of T̄ defined in (6.8). Therefore, if

(6.11) k(a) = k = #C−1

then

(6.12) #C1 ≤ a− (k − 4).

One can also check that

(6.13) |W̄−1| ≤
k

a
≤ |W̄−1|+

2

a
.

We now consider the set of all x ∈ T for which

x ∈
⋃
i∈Ct1

P 1
i , T1(x) ∈

⋃
i∈Ct2

P 2
i , · · · , T1,n−1(x) = Tn−1(Tn−1(· · · (T1(x)) ∈

⋃
i∈Ctn

P n
i
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where t = (t1, . . . , tn). Set

Bn =
n−1⋂
k=0

T−1
1,k

 ⋃
i∈Ctk+1

P k+1
i

 ,

where T1,0(x) = x. By (6.9) we have that At,n ⊂ Bn. Observe that for 1 < k < n− 1
the collections Pk = {T−1

1,k (P k+1
i ) : i = 0, . . . , a − 1} (we have k preimages and each

preimage is counted separately) constitutes a Markov partition for T1,k+1. Indeed, for
any p ∈ Pk

T1,k+1(p) = Tk+1(T1,k(p)) = Tk+1(P k+1
i ) = T.

By assumption for each 0 ≤ k ≤ n there exists P k
i , P

k
j so that P k

i ⊂ Wk,−1 and also

P k
j ⊂ Wk,1. This means that for t = ±1, T−1

1,k (Wk,t) contains an element from Pk in
its interior, i.e. a Markov partition element from T1,k+1. We now bound the number
of partition elements from Pn−1 that cover the set Bn. For this observe that Bn is the
union of all partition elements p from Pn−1 for which we have that for all k = 0, . . . , n

(6.14) T1,k(p) ⊂ P k+1
i , for some i ∈ Ctk .

Note that in term of the indexes i, this is the set of elements such that

{i1, . . . , in : ik ∈ Ctk , 0 ≤ k ≤ n− 1}.
The cardinality of this set can be bounded from above as follows

(#C−1)`(#C1)n−` ≤ k`(a− (k − 4))n−`.

Next, by the mean value theorem if p = [a, b] then

1 = T1,n(a)− T1,n(b) = (T1,n)′(ζ)(a− b).
Thus

1 = |(T1,n)′(ζ)||p|.
Hence

|p| = 1

|(T1,n)′(ζ)|
≤ 1

|(a+ h′n(T1,n−1(ζ))) · · · (a+ h′1(T1(ζ)))|
≤ 1

(a− δ̄)n
.

This implies

|At,n| ≤
(k + 1)l(a− k + 3)n−l

(a− δ)n
.

Next note that the condition (6.6) follows from (6.13).
We now show (6.5). For this we observe that each interval I ∈ I(At,n) contains

a Markov partition element from Pn−1 in its interior. Indeed, assume the opposite.
Then there exists two intervals I1, I2 ∈ I(An,t), so that for some p ∈ Pn−1 we have

I1 ∩ p 6= ∅ and I2 ∩ p 6= ∅.
Then there exists ` < n and two disjoint intervals J1, J2 ∈ I((T1,`)

−1(W`,t`+1
)), so

that
I1 ⊂ J1 and I2 ⊂ J2.

Then clearly dist(J1, J2) < |p|, since one of their endpoints belongs to p. Next, by
construction there should be a Markov partition element p′ ∈ P` such that p′ is
between J1 and J2. This means that p′ ⊂ p. However this is not possible, since p will
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also intersect the partition elements that are neighboring with p′. But this means
that p intersect at least 3 partition element from P` which is not possible due to
Lemma 6.1. This proves (6.5). �

Proposition 6.3. Assume |W−1| < 1/2. Then there exists ρ < 1 and C > 0 such

that for every t = (t1, . . . , tn) ∈ D(2)
n , with t1 + · · ·+ tn ≤ 1, we have

(6.15) |At,n| ≤ C
ρn

2n
.

Proof. Let l be the number of times the walker goes left during his journey. By (6.7)

|At,n| ≤
(k + 1)l(a− k + 4)n−l

(a− δ)n
.

Next, due to l ≥ n−1
2

we have that

(k + 1)l(a− k + 4)n−l

(a− δ)n
≤ C

(k + 1)
n
2 (a− k + 4)

n
2

(a− δ)n

where we have used that k < a − k + 4 for large a, which holds since |W−1| < |W1|.
Rewrite

2n
(k + 1)

n
2 (a− k + 4)

n
2

(a− δ)n
=

(
4(k + 1)1/2(a− k + 4)1/2

(a− δ)

)n
.

Next

lim
a→∞,δ→0

4(k + 1)1/2(a− k + 4)1/2

(a− δ)
= 4|W−1|(1− |W−1|) < 1

where the last inequality is due to |W−1| < 1
2
.

Thus (6.15) holds with ρ =
4(k + 1)1/2(a− k + 4)1/2

(a− δ)
. �

Lemma 6.4. If |W̄−1| < 1/2, then for a ∈ N sufficiently large and δ = δ(a) small,
the maps {Gn}n∈Z are defined almost everywhere.

Proof. We need to show that

mes (x : zn(x) ≤ 0,∀n ≥ 0) = 0.

Since the number of all trajectories of length n is equal to 2n, then in view of Propo-
sition 6.3 we can write

(6.16) mes (x : zn(x) ≤ 0) ≤ 2n
ρn

2n
≤ ρn.

This completes the proof. �

6.2. Short itineraries. For t ∈ D2
n and gates {Wk,tk+1

}nk=0. Recall (6.2). Let

(6.17) Ht,n =
n−1⋂
k=0

(T̄ k)−1(W̄tk+1
),

where T̄ = ax (mod 1).
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Proposition 6.5. For given n ≥ 1 and t ∈ D(2)
n , we have that

(a) #I(At,n) ≤ 4an−1.

(b) For every ε > 0 there exists δ̄(a) such that if δ ≤ δ̄ = δ̄(a) for every closed
interval I in the collection I(Ht,n) there is a unique J ∈ I(At,n), so that |I4J | < ε.
Moreover, δ̄ can be taken so small that if δ < δ̄ then for every x ∈ I ∩ J we have

(6.18) |T1,n(x)− T̄ n(x)| ≤ ε,

∣∣∣∣ 1

(T1,n(x))′
− 1

(T̄ n(x))′

∣∣∣∣ ≤ ε,

and

|At,n4Ht,n| ≤ ε.

Proof. It follows from the definition that the boundary of At,n consists of

∂At,n ⊂
n−1⋃
k=0

(T1,k)
−1(∂Wk,tk+1

)).

In the same way

∂Ht,n ⊂
n−1⋃
k=0

(T̄ k)−1(∂W̄tk+1
).

Note that #∂(T k1 )−1(Wk,tk+1
) ≤ 2ak. Hence

#∂At,n ≤ 2 + 2a+ · · ·+ 2an−1 = 2
an − 1

a− 1
≤ 4an−1,

for a ≥ 2. This proofs part (a).

Obviously, for arbitrary ε > 0 we can take δ̄ so small that |T1,n(x) − T̄ n(x)| < ε
for all x ∈ T (the second statement in (6.18) is also similar). Clearly the sets
∂((T1,k)

−1(Wk,tk+1
)) and ∂(T̄ k)−1(W̄tk+1

) will be close to each other under small per-
turbations and for given k. Hence, for each I ∈ I(Ht,n) its endpoints will change a
little under small perturbations of T̄ . Thus we obtain that for some J ∈ I(At,n) we
have |I4J | < ε. Observe, that I(At,n) may contain other intervals too, that come
into existence under small perturbations of the maps T̄ k. However these intervals
occupy a set of small measure. Note that for any k ≥ 0

At,n4Ht,n ⊂ ((T1,k)
−1(Wk,tk+1

))4((T̄ k)−1(W̄tk+1
)).

Thus for δ̄ sufficiently small |An4A| < ε. �

Lemma 6.6. If a is sufficiently large and δ(a) is small enough then∣∣∣∣( 1

(T1,n(x))′

)′∣∣∣∣ =

∣∣∣∣ (T1,n(x))′′

(T1,n(x)′)2

∣∣∣∣ < D,

where D := sup
k≥1

sup
x∈T
|h′′k(x)| <∞.

Proof. We have

(T1,n(x))′ = T ′n(T1,n−1(x))T ′n−1(T1,n−2(x)) · · ·T ′1(x).
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Hence

(T1,n(x))′′ =
n∑
k=1

T ′n(T1,n−1(x)) · · ·T ′′k (T1,k−1(x))(T1,k−1(x)′)2.

We rewrite this as follows

(T1,n(x))′′ =
n∑
k=1

(T1,n(x))′

T ′k(T1,k−1)
T ′′k (T1,k−1)T1,k−1(x)′.

Thus

|(T1,n(x))′′| ≤
n∑
k=1

|T1,n(x)′|
|a− δ|

D|T1,k−1(x)′|.

Hence∣∣∣∣ (T1,n(x))′′

(T1,n(x)′)2

∣∣∣∣ ≤ n∑
k=1

D

(a− δ̄)
|T1,k−1(x)′|
|T1,n(x)′|

≤
n∑
k=1

D

(a− δ̄)n−k+1
≤

∞∑
m=1

D

(a− δ̄)m
=

D

a+ 1− δ̄

The last sum is smaller than D if δ̄ < 1. �

7. Properties of transfer operators

Proposition 7.1. Let a be as in Lemma 6.4. Then there is δ̄(a), such that if δ < δ̄(a),
then the collection {Pn}n≥1 satisfies property (LY): there exists a constant C(a, δ̄) > 0
such that for every n ≥ 1

(7.1) V (Pnf) ≤ 3

4
V(f) + C‖f‖1,

Proof. Throughout the proof, instead of the notations Gn and Pn, we will use the
generic notations G and P . As earlier, for At,n let I(At,n) be the set defined in 2.4.

As in the proof of Lemma 3.4, V (Pf) ≤ I + II where I and II are given by (3.5).
Similarly to the proof of (3.4)

(7.2) I ≤ V (f)

a− δ̄
+ L‖f‖1 where L = sup

x∈T

|G′′(x)|
|(G′(x))2|

.

By Proposition 6.6, L ≤ D.
Note that for x ∈ At,n we have (a− δ̄)n ≤ |G′(x)| ≤ (a+ δ̄)n. For large values of n

we estimate II using (3.8) taking I = T. Then for each interval Ij ∈ I(At,n) we have∣∣∣ ( f

G′

)
(σiαi)

∣∣∣+
∣∣∣ ( f

G′

)
(σiβi)

∣∣∣ ≤ 1

(a− δ̄)n
VT(f) +

2

(a− δ̄)n

∫
T
|f |dx

(7.3) ≤ 2

(a− δ̄)n
(V (f) + ‖f‖1) =

2

(a− δ̄)n
|f |BV .

Hence, by Proposition 6.3
∞∑
n=N

∑
t∈R(2)

n

∑
I∈I(At,n)

∣∣∣ ( f

G′

)
(σiαi)

∣∣∣+
∣∣∣ ( f

G′

)
(σiβi)

∣∣∣
(7.4) ≤

∞∑
n=N

#I(At,n)

(a− δ)n+1
|f |BV ≤

∞∑
n=N

ρn|f |BV .
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We now consider the terms n < N . First, for I ∈ I(At,n) with |I| > 1
(a−δ̄)n we repeat

the argument from the proof of Lemma 3.4 and divide I into intervals {J} of length
1

2(a−δ̄)n+1 and an interval J ′ with 1
2(a−δ̄)n+1 < |J ′| < 1

(a−δ̄)n+1 . Then, we use the estimate

(3.7) with γ ≥ (a− δ̄)n to obtain∣∣∣ f
G′

∣∣∣(σjαj) +
∣∣∣ f
G′

∣∣∣(σjβj) ≤ VJ(f)

(a− δ̄)n
+

4(a− δ̄)n+1

(a− δ̄)n

∫
Ij

|f(x)|dx.

Summing over all such intervals I ∈ I(At,n), for all n ≤ N and t ∈ R2
n we get

(7.5)
∑
n≤N

∑
t∈R(2)

n

∑
J :|I|> 1

(a−δ̄)n

(∣∣∣ f
G′

∣∣∣(σjαj) +
∣∣∣ f
G′

∣∣∣(σjβj)) ≤ VT(f)

a− δ̄
+ CN(a, δ̄)‖f‖1.

Now it remains to deal with intervals with lengths |I| < 1
(a−δ̄)n . To this end we again

use the bound (7.3). Then, in view of Proposition 6.5(a)∑
I:|I|≤ 1

(a−δ̄)n

V
(
f (σjx)

1

|G′ (σjx)|
1G(Ij)

)
≤ 4an−1

(a− δ̄)n
‖f‖BV .

Summing over n < N∑
n≤N

∑
I:|I|≤ 1

(a−δ̄)n

V
(
f (σjx)

1

|G′ (σjx)|
1G(Ij)

)

(7.6) ≤ 4

(a− δ̄)
∑
n≤N

2n
( a

a− δ̄

)n−1

‖f‖BV ≤
2N+3

(a− δ̄)
‖f‖BV

if δ̄ is small enough.
Now, taking N large in (7.4), the slope a large in (7.6) and taking (7.5), (7.2) into

account we obtain (7.1). �

Recall the definition of rn in (1.4). Observe now that for any t ∈ R(2)
n and k ≥ 0

we have

(7.7) rm(x) = 2k + 1, for any x ∈ At,2k+1,m.

Below P and r will stand for a generic transfer operator Pm and the first hitting times
map rm for m ∈ Z. As earlier we will drop the index m.

Proposition 7.2. There exists δ̄0 so that if δ < δ̄0 then there exists D > 0 such that

|P (f)|BV ≤ D|f |BV ,
and

|P (rf)|BV ≤ D|f |BV , |P (r2f)|BV ≤ D|f |BV , ∀f ∈ BV .

Proof. We follow the argument of Proposition 7.1. If in (7.4) instead of f we consider
the function rf , then using an identity VI(af) = aVI(f), valid for a ∈ R and an
interval I, and in view of (7.7) we obtain

V (P (rf)) ≤
∞∑
n=1

C1nρ
n|f |BV .(7.8)
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Thus

V (P (rf)) ≤ C2|f |BV .
Observe also that∫

T
|P (rf)|dx ≤

∫
T
P (r|f |)dx =

∫
T
r|f |dx ≤ |f |BV

∫
T
rdx.

Thus by (6.7)∫
T
rdx ≤

∞∑
`=0

∑
t∈R(2)

2`+1

(2`+ 1)|At,2`+1| < C1

∞∑
`=0

(2`+ 1)ρ` <∞.

Combining the above estimates we get

|P (rf)|BV = V (P (rf)) + ‖P (rf)‖1 ≤ D|f |BV .

The estimates for |P (r2f)|BV and |P (f)|BV are similar. �

Let P, r and P̄ , r̄ be the transfer operator and the first hitting times map of the
perturbed and unperturbed cases respectively.

Proposition 7.3. Given ε > 0, δ0(a) can be taken so small that if δ ≤ δ0(a), then

(7.9) ‖P (f)− P̄ (f)‖1 ≤ ε|f |BV , ‖P (f)− P̄ (f)‖2 ≤ ε|f |BV f ∈ BV

and

(7.10) ‖P (rf)− P̄ (r̄f)‖1 ≤ ε|f |BV , ‖P (rf)− P̄ (r̄f)‖2 ≤ ε|f |BV f ∈ BV.

For δ small, we will also have

(7.11) ‖r − r̄‖2 ≤ ε.

Proof. Note that if we have the first statement in (7.9), then by Proposition 7.2

‖P̄ (r̄f)− P (rf)‖2 ≤
√
‖P̄ (r̄f)− P (rf)‖∞‖P̄ (r̄f)− P (rf)‖1

≤

√
2D|f |BV

∫
T
|P̄ (rf)− P (r̄f)|dx ≤

√
2Dε|f |BV .

Hence, the second statement in (7.9) follows from the first. In a similar way we can
show that the second statement in (7.10) follows from the first.

We will show the first estimate in (7.10), as the proof of (7.9) is similar. We have

P (rf)(x) =
∑

y:G(y)=x

r(y)f(y)

|G′(y)|
.

For given N ∈ N we write

‖P (rf)− P̄ (r̄f)‖1 ≤ ‖P (1[1,N ](r)f)− P̄ (1[1,N ](r̄)f)‖1

+ ‖P (1(N,∞](r)f)‖1 + ‖P̄ (1(N,∞](r̄)f)‖1.

By Lemma 2.7

‖P (1(N,∞)(r)f)‖1 = ‖1(N,∞)(r)f‖1 ≤ |f |BV ‖1[N,∞)(r)‖1.
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For the last expression we have by (6.16)

‖1(N,∞)(r)‖1 ≤ C
∑
n>N

nρn.

Hence

(7.12) ‖1(N,∞)(r)P (rf)− 1(N,∞)(r̄)P̄ (r̄f)‖1 ≤ 2C
∑
n>N

nρn|f |BV .

Take N so large that 2C
∑
n>N

nρn ≤ ε. Then it remains to study the term

‖P (1[1,N ](r)f)− P̄ (1[1,N ](r̄)f)‖1.

Recall (5.4). For each n ∈ N and t ∈ R(2)
n consider the sets At,n and Ht,n defined in

(6.2) and (6.17). By Proposition 6.5 we have that for any I ∈ I(Ht,n) there exists
J ∈ I(At,n) such that for any ε > 0, δ0 can be taken so small that if δ < δ0, then for
all x ∈ I ∩ J

|G(x)− Ḡ(x)| ≤ ε.

We now consider the restrictions of transfer operators P and P̄ onto the set I ∩ J .
Analogous to the proof of Lemma 5.1 we can consider a pairing of the preimages of
x. On the set A of x for which there is pairing, we can write

(7.13) (Pf(x)− P̄ f(x))
∣∣∣
x∈A

=

 ∑
y1∈I∩J :G(y1)=x

r̄f(y1)

Ḡ′(y1)
−

∑
y2∈I∩J :Ḡ(y2)=x

rf(y2)

G′(y2)


We have that γ = (a− δ0) ≤ G′(x)|At,n . Then by Proposition 6.6,

|G′′(x)| ≤ D|G′(x)| ≤ D(a+ δ)n = K1(n)

and noting that |y1 − y2| < Lδ0
γ

, we can repeat the same computations as in Lemma

5.1 and obtain

(7.14)

∫
A

∣∣∣∣ r̄f(y2)

Ḡ′(y1)
− rf(y2)

G′(y2)

∣∣∣∣ dx ≤ n‖f‖∞δ0L

(
K1(n)

γ3
+

1

γ2

)
.

If there is no pairing between the preimages of x, then the preimage of x lies in the
set At,n4Ht,n.

By Proposition 6.5(b) we have that |At,k4Ht,k| < ε, for k ≤ N , if δ ≤ δ0. Hence,
the measure of the points in x ∈ T which have a preimage in At,k4Ht,k, with k ≤ N ,
can be estimated as follows

|G(At,k \Ht,k)| ≤ |T1,k(At,k \Ht,k)| ≤ (a+ δ0)k|At,k \Ht,k| ≤ ε(a+ δ0)N

and respectively
|Ḡ(Ht,k \ At,k)| ≤ ak|Ht,k \ At,k| ≤ εaN .

Since for fixed k and t every x can have at most ak many preimages under T1,k,
(k ≤ a), then we can estimate the measure of the points x for which there is no
pairing between its preimages as follows

(7.15)

∥∥∥∥∥∥
∑

{x:∃y, such that y∈At,k\Ht,k,G(y)=x}

r(y)f(y)

|G′(y)|

∥∥∥∥∥∥
1

≤ N‖f‖∞
(a− δ0)n

ak(a+ δ0)Nε,
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in a similar way

(7.16)

∥∥∥∥∥∥
∑

{x:∃y, such that y∈Ht,k\At,k,Ḡ(y)=x}

r̄(y)f(y)∣∣Ḡ′(y)
∣∣
∥∥∥∥∥∥

1

≤ N‖f‖∞
(a− δ0)n

akaNε.

Summing the above for all k ≤ N , t ∈ R
(2)
k and considering (7.12) and (7.14) we

arrive at the estimate
‖P̄ (r̄f)− P (rf)‖1 ≤ Cε|f |BV .

Since ε was arbitrary, (7.10) follows.

To see (7.11), note that for x ∈ I ∩ J we have that

τ̄(x) = τ(x) = n.

Hence

‖τ̄ − τ‖2 ≤‖1(N,∞](τ)‖2 + ‖1(N,∞](τ̄)‖2 + ‖1[1,N ](τ̄)− 1[1,N ](τ)‖2

≤2C1

∞∑
`=N

`2ρ` +
N∑
n=1

2nN
√
|At,n4Ht,n|.

Taking N large and δ0 sufficiently small, we get (7.11). �

Proposition 7.4. Let

r̃k = rk(G1,k−1(x))−
∫
T
rk(G1,k−1(x))dx, Sn(x) =

n−1∑
k=1

r̃k.

Assume that ‖Sn‖2 = σ2
n ≥ Dn, for all n ≥ 1. Then for arbitrary ε > 0

(7.17) lim
n→∞

∑n
k=1

∫
T r̃

2
k(x)1[εσn,∞) (r̃2

k(x)) dx

σ2
n

= 0.

Proof. We have

sup
k≥1

∫
T
rk(Gk−1 ◦ · · · ◦G1(x))dx ≤ sup

k≥1

(
‖P1,k−11‖∞

∫
T
rk(x)dx

)
= R <∞.

Note that
r̃2
k(x) ≤ 2(r2

k(x) +R2).

Also, if 2R ≤ rk(x) then r̃2
k(x) ≥ (rk(x)− R)2 ≥ r2

k(x)

4
. Since σn tends to infinity as

n→∞, then∫
T
r̃2
k(x)1[εσn,∞)(r̃

2
k(x))dx ≤ 2

∫
T

(
r2
k(x) +R2

)
1[4
√
εσn,∞)(r

2
k(x))dx

≤ 2
∞∑

k=[2
√
εσn]

∑
t∈R(2)

k

(k2 +R2)|At,k|.

For large k we can write k2 +R2 ≤ 2k2. Then

2
∑

k=[2
√
εσn]

∑
t∈R(2)

k

(k2 +R2)|At,k| ≤ C
∑

k=[
√

2εσn]

k2ρk.
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Since σ2
n ≥ Dn, the sum in the numerator of (7.17) tends to 0 uniformly in k as

n→∞. This finishes the proof of proposition. �

Lemma 7.5. (a) The maps {Gn}n∈Z for Model B satisfy property (C) from §3.3.
(b) for each n ∈ Z there is an interval Jn ⊆ T such that Gn(Jn) = T and

sup
n≥1

sup
x∈Jn
|G′n(x)| ≤ K0, for some finite K0.

(c) There exists σ > 0 such that

(7.18) Pn . . . P11(x) ≥ σ,

for any x ∈ T, and all n ≥ 1.

Proof. First note that by the choice of slope a > 1 for every n ≥ 1 we have that the
the gate Wn,1 contains a Markov partition element of Tn. Since Gn|Wn,1 = Tn|Wn,1 ,
we obtain part (b) choosing Jn = Wn,1.

Since part (c) follows from parts (a) and (b) due to Proposition 3.6(a), it only
remains to prove property (C).

We first show that there is k = k(|I|), so that

(7.19) πT(F k(I, 0)) = T.

The idea of the proof of this fact is analogous to Lemma 3.7 and is based on
complexity estimates. Without loss of generality we can assume that n = 1 and
that I ⊂ W1,1 or I ⊂ W1,−1. We now construct a sequence of intervals {In}n≥1

and positions {zn}n≥1, zn ∈ Z n ≥ 1, such that In ⊂ Wzn,1 or In ⊂ Wzn,−1 and
πZF (zn, In) = zn+1. πTF (zn, In) is divided by the singularity points ∂Wzn+1 into
continuity components and In+1 is chosen to be the largest component. Similar to
Lemma 3.7 we have that

(7.20) |In+1| ≥
(a− δ0)|In|

3
.

Hence, if (a− δ0) > 3 then the lengths of |In| will grow exponentially fast. Hence, for
some n, the interval πTF (zn, In) will cover two singularity points at once, i.e. we will
have

Wzn+1,1 ⊂ πTF (zn, In) or Wzn+1,−1 ⊂ πTF (zn, In).

This means that πTF (zn, In) will contain a gate partition in its interior. Note also
that n < C ln(1/|I|). If now as In+1 we chose the corresponding gate interval and
take into account that each gate contains a Markov partition element of Tzn in its
interior, it will follow that πTF (zn+1, In+1) = T, implying (7.19).

Observe now that from this time onward, we can choose the interval In+k to be the
forward gate of zn+k, i.e. In+k = Wzn+k,1

. But then zn+k = zn+1 + k, for k ≥ 2 and
πTF (zn+k, In+k) = T. Hence, there will be a time ` and a position m > 1 which will
be visited by the walker for the first time and to reach there the walker will have to
make no more then C ′ ln(1/|I|) steps. We will then have πTF

`(1, I) = T and

(7.21) G1,m(I) = T.

This proves the claim. Clearly m < C ln(1/|I|). Observe that by taking m large we
can also make the time m in (7.21) uniform for all intervals I with the given length.
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It also follows from our discussion that for every x ∈ T there exists y ∈ I such that
G1,m(y) = x and

|G′(y)| ≤ (a+ δ̄)s,

where s ≤ C ′ ln(1/|I|). This finishes the proof of property (C). �

Proposition 7.6. The transfer operator P̄ of Ḡ satisfies property (Dec).

Proof. This follows from Proposition (3.6)(b), Lemma 7.5 and Proposition 7.1. �

Proposition 7.7. The variance of τn grows linearly.

Proof. According to the discussion at the beginning of Lemma 7.5, there exists x0,
such that Ḡ(x0) = x0 and r̄(x0) = 1. Then

∫
T r̄hdx >

∫
T hdx = 1 = r̄(x0). By

Proposition 7.2 P̄ r̄ ∈ BV . Thus, by Lemma 4.2, r̄ is not cohomologous to zero and
Proposition 4.1 gives the result. �

8. Proof of the main results for Model B.

8.1. Proof of Theorem 1.1(b). We will check the conditions of Theorem 3.1 for
the sequence {Gn}∞n=1. Recall that

τn(x) =
n−1∑
k=0

rk(Gk−1 ◦ · · · ◦G0x).

By Proposition 7.1, both P̄ and Pn, n ≥ 1 satisfy (LY) for all δ sufficiently small
and a large. By Proposition 7.3, Pn and P̄ are close in d1 norm, when δ is small.
By Proposition 7.6, P̄ satisfies (Dec). Hence, by Proposition 2.8, (Dec) holds in
a d1 neighborhood of P̄ . Thus, we will have (Dec) for the collection {Pn}n∈Z for
sufficiently small δ. (Min) for Pn1 follows from Lemma 7.5. Next, (3.1) follows from
Proposition 7.2. By Proposition 7.7 the variance of τn grows linearly. Finally, (3.2)
follows from Proposition 7.4. Now Theorem 1.1(b) follows from Theorem 3.1. �

8.2. Backtracking.

Lemma 8.1. (a) Denote z∗n = max
0≤k≤n

zk. Then for Model B we have lim
n→∞

z∗n − zn√
n

= 0,

almost surely.
(b) There are constants C > 0, θ < 1 such that

Pr(z(·) visits n− k after reaching n) ≤ Cθk

where Pr denotes the Lebesgue measure.

Proof. (a) Without the loss of generality we can assume z0 = 0. By Borel-Cantelli
Lemma it suffices to show that for each t > 0∑

n=1

Pr

(
x :

zn(x)∗ − zn(x)√
n

> t

)
<∞.

Let `n(x) = min{k : 0 ≤ k ≤ n, zk(x) = z∗n(x)}. One can see that if z∗n − zn > t
√
n

then `n(x) ≤ n− t
√
n. Hence

(8.1) Pr(z∗n − zn > t
√
n) ≤ Pr(`n(x) ≤ n− t

√
n+ 1) =

[n−t
√
n]+1∑

k=1

Pr(`n(x) = k).
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Next consider the sets

Bm,k = {x : zk(x) ≤ m|z0 = m}.
This is the set of points, for which the walker starting its walk at z0 = m will be
located to the left of m after k steps. By (6.16) we have that for every m ∈ Z, k ≥ 1

|Bm,k| ≤ Cρk,

for some ρ < 1. Next, note that

Pr(`n(x) = k) ≤
k∑
s=1

∫
T
χBs,n−k(Gs−1 ◦ · · · ◦G0(x))dx

=
k∑
s=1

∫
T
χBs,n−k(x)Ps−1 . . . P01dx ≤Mk sup

s≤k
|Bs,n−k| ≤ CMkρn−k

where M is from (2.3). Hence, by (8.1) and due to k ≤ n− t
√
n+ 1, we can write

Pr(z∗n − zn > t
√
n) ≤ nCMnρt

√
n−1.

To finish the proof of part (a) it is enough to notice that∑
n≥1

Pr
(
z∗n − zn ≥ t

√
n
)
< MC

∑
n≥1

n2ρt
√
n−1 <∞.

Part (b) also follows from (6.16) and the fact that upon first time reaching level n
the internal state of the walker is distributed with the bounded density Pn1. �

8.3. Proof of Theorem 1.3 for Model B. Given the results of §§8.1–8.2 the proof
of Theorem 1.3 for Model B is similar to the proof for Model A and requires only
minor modifications which we presently describe.

(1) (5.10) no longer holds, however Lemma 8.1(a) is sufficient for replacing z∗n by
zn in our limit theorems.

(2) The proof of Lemma 5.2(c) needs to be modified since an1,n1−n2 and an2 are no
longer independent. However, one can replace an,k by

ãm,k =

∫
T
rm(G̃m−1 ◦ · · · ◦ G̃m−k/2(x))dx

where G̃` are obtained by motion in the environment where Wm−k,1 = T. In other
words, upon reaching level m− k the particle makes the next step to the right with
probability 1. Then ãn1,n1−n2 and an2 are independent. On the other hand

am − ãm,k = [am − am,k/2] + [am,k/2 − ãm,k].

The first term is exponentially small due to (Dec), while the second term equals to∫
T
[rm(G̃m−1 ◦ · · · ◦ G̃m−k/2(x))− rm(Gm−1 ◦ · · · ◦Gm−k/2(x))]dx

and it is exponentially small since the integrand is non-zero only if the walker starting
from level m−k/2 backtracks to level m−k which happens with exponentially small
probability due to (6.16).
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(3) It is no longer true that τn ≤ 3n so the proof of Lemma 5.5 needs to be modified.
As before the estimate for bn follows from the estimate for S(n). The lower bound

on S(n) still holds because τn ≥ n. The upper bound follows from the uniform
integrability of rm which is ensured by (6.16).

The lower bound on σ̂2
n follows from Proposition 7.7 while the upper bound follows

from (Dec). Namely, while it is no longer true for Model B that rm ∈ BV the fact
that Pmrm is uniformly bounded in BV suffices to get the exponentially decay of

Cov(rn1 , rn2). Indeed denoting r̃k(x) = rk(x)−
∫
T
rk(Gk−1 ◦ · · · ◦G0y)dy we get that

for n1 > n2 ∫
T

r̃n1(Gn1−1 ◦ · · · ◦G0x)r̃n2(Gn2−1 ◦ · · · ◦G0x)dx

=

∫
T
r̃n1Pn1−1 · · ·Pn2 (r̃n2Pn21) dx

which is exponentially small since Pn2 (r̃n2Pn21) ∈ BV0.
With the changes (1)–(3) discussed above the proof of Theorem 1.3 for Model B

proceeds by the same arguments as for Model A.

Appendix A. Sequential CLT for unbounded observables.

Proof of Theorem 3.1. Note that in general f̃n /∈ BV , but by (3.1) and (2.3)

|Pk(fk−1Pk−11)|BV ≤ D|Pk−11|BV ≤MD.

Hence, by (Dec)

|PnPn−1 . . . Pn−k

(
f̃n−k−1Pn−k−11

)
|BV ≤ KθkMD.

Thus, we can consider the martingale co-boundary decomposition defined in [9]
(A.1)

Hn =
1

Pn1

[
Pn

(
f̃n−1Pn−11

)
+ PnPn−1

(
f̃n−2Pn−21

)
+ · · ·+ PnPn−1 . . . P1

(
f̃0P01

)]
and set

(A.2)
ψn = f̃n + Hn −Hn+1 ◦Gn+1

Un = ψn(Gn ◦ . . . ◦G1).

Clearly

|Hn|BV ≤
KMD

σ

n∑
j=1

θk

where σ is from (Min). Since Pn1 ∈ BV , and by (Min) we also have 1
Pn1 ∈ BV ,

then Hn ∈ BV , for all n ≥ 1. Moreover

sup
n
|Hn|BV <∞.

Next note that

|Pn
(
ψn−1Pn−11

)
|BV ≤ |Pn

(
f̃nPn−11

)
|BV +|Pn ((Hn −Hn+1 ◦Gn+1)Pn−11)|BV <∞.
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It then follows that

(A.3) sup
n≥1
|Pn
(
ψn−1Pn−11

)
|BV <∞, sup

n≥1
|Pn
(
ψ2
n−1Pn−11

)
|BV <∞.

It is shown in [9], that Un is a sequence of reversed martingale and one has

n−1∑
k=0

f̃k(G
k
1) =

n−1∑
k=0

Uk(G
k
1) + Hn(Gk

1).

We recall the following estimate from [9]

(A.4)
∣∣∣‖Sn‖2 − ‖

n−1∑
k=0

Uk‖2

∣∣∣ =
∣∣∣‖Sn‖2 −

(
n−1∑
k=0

∫
U2
k (x)dx

) 1
2 ∣∣∣

≤ ‖Sn −
n−1∑
k=0

Uk‖2 ≤ sup
n≥1
|Hn|BV <∞.

Thus, σn is unbounded if and only if
n−1∑
k=0

∫
U2
k (x)dx is. The last expression is mono-

tone. Hence, if σn is unbounded, then it has to tend to infinity as n→∞.
We now define

σ̄2
n =

n−1∑
k=0

∫
U2
kdx, Vn =

n−1∑
k=0

∫ [
U2
k |Ak+1

]
dx.

Following [9], Theorem 5.1, we need to check the following two conditions of Theorem
5.8 of [9], which is an extension of a result of B.M. Brown [3]

(i) for every ε > 0, lim
n→+∞

σ̄−2
n

n−1∑
k=0

∫ [
U2
k1{|Uk|>εσn}

]
= 0.

(ii) the sequence (σ̄−2
n Vn)n≥1 converges to 1 in probability.

For (i) we have from [9], page 115 and the estimate ‖Pn1‖∞ ≤ M , that for all
n ≥ 1∫
U2
k1{|Uk|>εσn}dx =

∫ [
ψ2
k(G

n
1 )1[εσn,∞)(ψ

2
k(G

n
1 ))
]
dx

=

∫ [
ψ2
k(x)1[εσn,∞)(ψ

2
k(x))Pn1

]
dx ≤M

∫ [
ψ2
k(x)1[εσn,∞)(ψ

2
k(x))

]
dx.

By (A.2), ψ2
k(x) ≤ 2(f̃ 2

k (x))2 + 8 sup
k≥1
|Hk|2∞. Hence, if εσ̄n ≤ ψ2

k(x), then for n large

εσ̄n
8
≤ (f̃ 2

k (x))2.

Take n so large that 4 sup
k≥1
|Hk|2∞ ≤

εσ̄n
8

. Then

M

∫ [
ψ2
k(x)1[εσ̄n,∞)(ψ

2
k(x))

]
dx ≤ 2M

∫ [
(f̃ 2
k (x) + 4 sup

k≥1
|Hk|2∞)1[ εσ̄n

8
,∞)(f̃

2
k (x))

]
≤ 4M

∫ [
f̃ 2
k (x)1[ εσ̄n

8
,∞)(f̃

2
k (x))

]
.



DYNAMICAL RANDOM WALK ON THE INTEGERS WITH A DRIFT 37

Hence (i) follows from (3.2).
As for (ii) we have by [9], page 115∫ [

U2
k |Ak+1

]
=

(
Pk+1

(
ψ2
kPk1

)
Pk+11

)
◦ (Gn ◦ · · · ◦Gk+1)

By (Min) and (A.3) we have that

sup
k

∣∣∣∣∣
(
Pk+1

(
ψ2
kPk1

)
Pk+11

)∣∣∣∣∣
BV

<∞.

Given these estimates, the rest of the proof of (ii) is the same as in the proof of [9,
Theorem 5.1]. �

To verify the growth of the variance assumption in Theorem 3.1, the following fact
will be helpful.

Proposition A.1. Let Ḡ be such that P̄ satisfies (Dec) and for its acim we almost
surely have that h(x) ≥ c > 0. Assume that P τ̄ ∈ BV . Let

H =
1

h

∞∑
n=1

P n

(
h

(
τ̄ −

∫
τ̄hdx

))
,

Then H ∈ BV . Moreover if

(A.5) ψ := τ̄ −
∫
T
τ̄hdx+ H−H ◦ Ḡ,

does not vanish almost surely then

σ̂2
n = Var

[ n∑
k=1

τ̄◦Ḡk
]
≥ Cn

for some C > 0.

Proof. Consider the coboundary decomposition from the proof of Theorem 3.1 We
take Pn = P̄ and fn = τ for all n ≥ 1. Then

Hn,P =
1

P̄ n1

[
P̄
(
τ̃ P̄ n−11

)
+ P̄ 2

(
τ̃ P̄ n−21

)
+ · · ·+ P̄ n

(
τ̃ P̄1

)]
.

and respectively

ψn = τ̃ + Hn,P −Hn,P ◦G.
We now show that

(A.6) Hn,P →L2 H

as n→∞. For this note that
∫
T h
(
τ −

∫
τhdx

)
dx = 0. Hence∣∣∣P n

(
h

(
τ −

∫
τhdx

))
|BV ≤ Kθn−1

∣∣∣P (h(τ − ∫ τhdx

)) ∣∣∣
BV
.

Thus the general term in (A.6) decays exponentially fast. For small values of n the
convergence follows from the fact P̄ n1→L2 h, as n→∞, and the continuity of P̄ in
L2 metric. We also have that 1

P̄n1
→L2

1
h
. Thus, (A.5) follows.
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Now assume that ‖ψ‖2 > 0. Then by (A.4)

∣∣∣σ̂n −(n−1∑
k=0

∫
T
U2
k (x)dx

) 1
2 ∣∣∣ =

∣∣∣σ̂n − (n∫
T
ψ2hdx

) 1
2 ∣∣∣ ≤ |H|BV <∞

completing the proof of the proposition. �
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