Continuous distributions.

1. Leaks if a water pipe form a Poisson process with 4 leaks/year on avarage.
(a) Compute the probability that during the first 6 months there will be no leaks, in the next 6 months there will be three leaks and during the second year there will be 3 leaks.
(b) Let T be the time of the first leak. Compute $P(T \leq t)$.
2. Suppose that X has probability distribution function equal to $c x^{2}$, if $x \in[0,1]$ and equal to 0 otherwise.
(a) Find c. (b) Compute the cumulative distribution function. (c) Compute EX and VX. (d) Compute median, 25th and 75th percentiles.
3. Let X have the cumulative distribution function $F(x)=\frac{x+x^{3}}{2}$ if $0 \leq x \leq 1,0$ if $x \leq 0$ and 1 if $x \geq 1$. Compute
(a) probability density function (b) $E X$ (c) $V X$.
4. A passanger arrives at the bus stop. His waiting time T has uniform distribution on $[0,10]$.
(a) Compute the cumulative distribution function.
(b) Compute $P(2 \leq T \leq 5), P(T>3)$.
(c) Compute ET and VT.
5. Suppose that a random variable X has proability density function $p(x)=e^{-x}$ if $x>0$ and 0 otherwise. Find the median of X.
6. Let Z be standard normal random variable. Find its median, 25th and 75th percentile.
7. The weight of a box of appples has normal distribution with mean 30 lbs and standard deviation 2 lbs. Compute the probability that the box weights
(a) exactly 31 pounds; (b) between 30 and 32 pounds (c) less than 29 pounds.
8. A coin is tossed 100 times compute approximately the probability that (a) there are exactly 50 heads. (b) the number of heads is between 47 and 52 (inclusive).
9. Lifetime T of a certain component has exponetial distribution with mean 10 years.
(a) Compute the probability that $T>5, T>10, T>15$.
(b) Compute the probability that componewnt will work for 15 years or more given that it worked for 5 years.
(c) Let S be the lifetime of the component measured in decades, thus $S=T / 10$. Compute the distribution of S.
10. In problem 1 compute let T_{2} and T_{3} be the times of the second and third leak respectively. Find their probability density functions.
11. Let Z be the standard normal random variable and $X=Z^{2}$. Find the distribution of X.
12. A malfunctioning of a certain engine could be caused by two components. Lifetimes of those components are independent and have exponential distributions with means 2 and 3 years respectively. Find the average lifetime of the engine.
