Joint distribution.

1. John plays chess with Bill and Bob. For each game he gets 1 point for a win, 1/2 point for a draw and 0 points for a loss. Let X be outcome of his game with Bill and Y be outcome of his game with Bob. Suppose that the joint distribution of X and Y is given in the following table.

$Y \backslash X$	0	$1 / 2$	1
0	.10	.07	.11
$1 / 2$.07	.05	.10
1	.05	.10	.35

(a) Compute the marginal distributions of X and Y;
(b) Compute the probability that both games have the same result; that John losses at least once.
(c) Find the distribution of $X+Y$.
(d) Find the distribution of Y given that $X=\frac{1}{2}$.
2. Suppose 50 \% of all drivers have American cars, 40 \% have Japanese cars and 10 \% have European cars. Consider 15 consecutive cars crossing certain intersection.
(a) What is the probability that 8 are American, 5 are Japanese and 2 are European; 9 American and 6 Japanese?
(b) Find the marginal distribution of the number of American cars.
3. Let (X, Y) have density $p(x, y)=k(2 x+y)$ if $0 \leq x \leq 1,0 \leq y \leq 1$ and 0 otherwise.
(a) Find the constant k.
(b) Compute $P(X>Y)$.
(c) Find the marginal distribution of Y.
(d) Find the distribution of Y given that $X=\frac{1}{2}$.
(e) Compute $E\left(X^{2}\right)$.
(f) Compute $V X, V Y$ and $\operatorname{Cov}(X, Y)$.
4. Suppose that Johns arrival time to a bus stop is uniform on the segment 1:00 to 1:10 and bus arrival time is uniform on the segment 1:00 to 1:20 and is independent of John's. What is the probability that John misses the bus; that he has to wait more than 5 min?
5. Let X and Y be independent, $X \sim \operatorname{Exp}(1), Y \sim \operatorname{Exp}(2)$. Compute $P(X>Y)$.
6. X and Y are independent. $Z=X+Y$. Find the distribution of Z if
(a) $X \sim \operatorname{Pois}(2), Y \sim \operatorname{Pois}(3)$
(b) $X \sim \operatorname{Uni}(0,1), Y \sim \operatorname{Uni}(0,1)$;
(c) $X \sim \operatorname{Exp}(5), Y \sim \operatorname{Exp}(2)$.
7. X_{1}, X_{2}, X_{3} and X_{4} are independent and uniformly distributed on $[0,1]$. Let $M=\max \left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. Find the distribution of M.
8. Let (X, Y) be uniformly distributed in a triangle $x \geq 0, y \geq 0,2 x+3 y \leq 6$.
(a) Find marginal distribution of X. (b) Compute $P(X>Y)$. (c) Compute $V X, V Y$ and $\operatorname{Cov}(X, Y)$.

