Joint distribution.

1. John plays chess with Bill and Bob. For each game he gets 1 point for a win, 1/2 point for a draw and 0 points for a loss. Let X be outcome of his game with Bill and Y be outcome of his game with Bob. Suppose that the joint distribution of X and Y is given in the following table.

Y X	0	1/2	1
0	.10	.07	.11
1/2	.07	.05	.10
1	.05	.10	.35

(a) Compute the marginal distributions of X and Y;

(b) Compute the probability that both games have the same result; that John losses at least once.

(c) Find the distribution of X + Y.

(d) Find the distribution of Y given that $X = \frac{1}{2}$.

2. Suppose 50 % of all drivers have American cars, 40 % have Japanese cars and 10 % have European cars. Consider 15 consecutive cars crossing certain intersection.

(a) What is the probability that 8 are American, 5 are Japanese and 2 are European; 9 American and 6 Japanese?

(b) Find the marginal distribution of the number of American cars.

- **3.** Let (X, Y) have density p(x, y) = k(2x + y) if $0 \le x \le 1$, $0 \le y \le 1$ and 0 otherwise.
 - (a) Find the constant k.
 - (b) Compute P(X > Y).
 - (c) Find the marginal distribution of Y.
 - (d) Find the distribution of Y given that $X = \frac{1}{2}$.
 - (e) Compute $E(X^2)$.
 - (f) Compute VX, VY and Cov(X, Y).

4. Suppose that Johns arrival time to a bus stop is uniform on the segment 1:00 to 1:10 and bus arrival time is uniform on the segment 1:00 to 1:20 and is independent of John's. What is the probability that John misses the bus; that he has to wait more than 5 min?

5. Let X and Y be independent, $X \sim Exp(1)$, $Y \sim Exp(2)$. Compute P(X > Y).

- **6.** X and Y are independent. Z = X + Y. Find the distribution of Z if
 - (a) $X \sim Pois(2), Y \sim Pois(3)$
 - (b) $X \sim Uni(0,1), Y \sim Uni(0,1);$
 - (c) $X \sim Exp(5), Y \sim Exp(2).$

7. X_1, X_2, X_3 and X_4 are independent and uniformly distributed on [0, 1]. Let $M = \max(X_1, X_2, X_3, X_4)$. Find the distribution of M.

8. Let (X, Y) be uniformly distributed in a triangle $x \ge 0$, $y \ge 0$, $2x + 3y \le 6$. (a) Find marginal distribution of X. (b) Compute P(X > Y). (c) Compute VX, VY and Cov(X, Y).