STAT400. Sample questions for midterm 1.

- **1.** Let A and B are sets such that P(A) = 0.6, P(B) = 0.4 and P(AB) = 0.3.
 - (a) Compute $P(A \cup B)$.
 - (b) Compute P(A|B).
 - (c) Compute $P((A \cup B)')$.

Solution. (a) $P(A \cup B) = P(A) + P(B) - P(AB) = 0.6 + 0.4 - 0.3 = 0.7$. (b) $P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.3}{0.4} = 0.75$. (c) $P((A \cup B)') = 1 - P(A \cup B) = 1 - 0.7 = 0.3$.

2. Let A denote the event that a customer at a certain store has visa, B denote the event that she has a master card and C denote the event that she has a discovery card. Suppose that $P(A) = 0.70, P(B) = 0.63, P(C) = 0.33, P(AB) = 0.50, P(AC) = 0.25, P(BC) = 0.23, P(A \cup B \cup C) = 0.88.$ Compute the probabilities that a customer

- (a) owns none of the cards;
- (b) has all three types;
- (c) have exactly one type.

Solution. (a) $P((A \cup B \cup C)') = 1 - P(A \cup B \cup C) = 1 - 0.88 = 0.12.$

(b)
$$P(ABC) = P(A \cup B \cup C) - P(A) - P(B) - P(C) + P(AB) + P(AC) + P(BC) = 0.88 - (0.70 + 0.63 + 0.33) + (0.50 + 0.25 + 0.23) = 0.20.$$

(c) P(ABC') = P(AB) - P(ABC) = 0.30, P(AB'C) = P(AC) - P(ABC) = 0.05, P(A'BC) = P(BC) - P(ABC) = 0.03. Hence P(AB'C') = P(A) - P(ABC) - P(ABC') - P(ABC') = 0.15, P(A'BC') = P(B) - P(ABC) - P(ABC') - P(A'BC) = 0.10, P(A'B'C) = P(C) - P(ABC) - P(A'BC) - P(AB'C) = 0.05. Therefore the probability that the customer owns exactly one card is 0.15 + 0.10 + 0.05 = 0.30.

3. How many ways are there to distribute 6 different toys and 9 differnt candies between 3 children

- (a) without any restrictions;
- (b) If the first child needs to get exactly two toys and 3 candies;
- (c) If all children need to get exactly two toys and 3 candies.

Solution. (a) There are 15 objects. There are 3 possibilities for each object. So the answer is 3^{15} .

(b) There are $\begin{pmatrix} 6\\2 \end{pmatrix}$ ways to choose toys for the first child $\begin{pmatrix} 9\\3 \end{pmatrix}$ ways to choose candies for her. After the first child is served 10 objects remain so similar to part (a) there are 2^{10} ways to distribute them. Thus the answer is $\begin{pmatrix} 6\\2 \end{pmatrix} \begin{pmatrix} 9\\3 \end{pmatrix} 2^{10}$.

(c) There are $\begin{pmatrix} 6\\2,2,2 \end{pmatrix} = \frac{6!}{(2!)^3}$ ways to distribute the toys and $\begin{pmatrix} 9\\3,3,3 \end{pmatrix} = \frac{6!}{(2!)^3}$ ways to distribute the candy so the answer is $\frac{6!9!}{(2!)^3(3!)^3}$.

4. (a) How many ways are there to divide 52 cards between four people so that each person gets 13 cards.

(b) Find the probability that players 1 and 3 have two aces each.

(c) Find the probability that player 1 has all his cards red (that is, they are either hearts or diamonds) and has exactly one ace.

Solution. (a) $\begin{pmatrix} 52\\13,13,13,13 \end{pmatrix} = \frac{52!}{(13!)^4}$. (b) There are $\begin{pmatrix} 4\\2 \end{pmatrix}$ to distribute the aces and $\begin{pmatrix} 48\\11,13,11,13 \end{pmatrix} = \frac{48!}{(11!)^2(13!)^2}$. So the answer is $\frac{48!4!}{(11!)^2(13!)^2(2!)^2} : \frac{52!}{(13!)^4} = \frac{48!4!(13!)^2}{52!(11!)^2(2!)^2}$. (c) There are $\begin{pmatrix} 52\\13 \end{pmatrix}$ ways to choose cards for the first player. If we want him to have only red cards with exactly one ace then there are 2 ways to choose ace and $\begin{pmatrix} 24\\12 \end{pmatrix}$ ways to choose red non ace cards. So the answer is $2\begin{pmatrix} 24\\12 \end{pmatrix} / \begin{pmatrix} 52\\13 \end{pmatrix}$.

5. The first box contains 2 red and 3 blue balls and the second box has 3 red and 2 blue balls. A ball is chosen at random from the first box and put in the second box. Then a ball is chosen at random from the second box.

- (a) Find the probability that the first ball is blue;
- (b) Find the probability that both balls are blue;
- (c) Find the probability that the balls have the same color.

Solution. (a) $P(B_1) = \frac{3}{5}$. (b) $P(B_1B_2) = P(B_1)P(B_2|B_1) = \frac{3}{5} \times \frac{3}{6} = \frac{3}{10}$. (c) $P(R_1R_2) = P(R_1)P(R_2|R_1) = \frac{2}{5} \times \frac{4}{6} = \frac{4}{15}$. So the answer is $P(B_1B_2) + P(R_1R_2) = \frac{17}{30}$.

6. In a certain city 70% of drivers are careful and 30% are agressive. Assume that a careful driver has 10% chance of getting a speed ticket independent of the past performance and an agressive driver has 30% chance of getting a speed ticket independent of the past performance.

(a) Find the probability that a careful driver will get a ticket during the first year but not during the second year.

(b) Find the probability that an agressive driver will get a ticket during the first year but not during the second year.

(c) Given that a driver was ticket during the first year but not during the second year find the probability that he is agressive.

 $\mathbf{2}$

Solution. Let C be the event that the driver is careful, A be the event that he is agressive, T be the event that he gets ticket during some year and F be the event that he is ticket free. Then

(a) $P(T_1F_2|C) = P(T_1|C)P(F_2|C) = 0.1 \times 0.9 = 0.09.$ (b) $P(T_1F_2|A) = P(T_1|A)P(F_2|A) = 0.3 \times 0.7 = 0.21.$ (c) By Bayes Theorem

$$P(A|T_1F_2) = \frac{P(A)P(T_1F_2|A)}{P(A)P(T_1F_2|A) + P(C)P(T_1F_2|C)} = \frac{0.3 \times 0.21}{0.3 \times 0.21 + 0.7 \times 0.09} = 0.5.$$

7. There are two identical urns. The first urn contains 5 balls numbered 1 to 5. The first urn contains 10 balls numbered 1 to 10. One urn is chosen at random and then 3 balls are selected from that urn without replacement. Let A be the event that the first urn is chosen, B be the event that the second urn is chosen and C be the event that the maximum number of the balls chosen is 4. Compute

(a) P(C|A) and P(C|B); (b) P(C); (c) P(A|C).

Solution. (a) Note that in order for maximum to be equal to 4 we need one of the three balls to have number 4 and remaining two be from the set $\{1, 2, 3\}$. So

$$P(C|A) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix}}{\begin{pmatrix} 5\\3 \end{pmatrix}} = \frac{3}{10}, \quad P(C|B) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix}}{\begin{pmatrix} 10\\3 \end{pmatrix}} = \frac{1}{40}.$$

(b) $P(C) = \frac{1}{2} \times \frac{3}{10} + \frac{1}{2} \times \frac{1}{40} = \frac{13}{80}.$ (c) $P(A|C) = \frac{P(AC)}{P(C)} = \frac{1}{2} \times \frac{3}{10} / \frac{13}{80} = \frac{12}{13}$

8. Consider the chain below. Suppose that each element works with probability 2/3 independently of the others.

- (a) Find the probability that the chain works.
- (b) Find the probability that the chain works given that the first element works.
- (c) Find the probability that the first element works given that the chain works.

Solution. Let A_j be event that element j works and C be the event that the whole chain works. Then

(a)
$$P(C) = P(A_1A_2 \cup A_3) = P(A_1A_2) + P(A_3) - P(A_1A_2A_3) = \frac{2}{3} + \left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^3 = \frac{22}{27}.$$

(b) $P(C|A_1) = P(A_2 \cup A_3) = P(A_2) + P(A_3) - P(A_2A_3) = 2 \times \frac{2}{3} - \frac{4}{9} = \frac{8}{9}.$

(c)
$$P(A_1|C) = \frac{P(A_1)P(C|A_1)}{P(C)} = \frac{2}{3}\frac{8}{9}/\frac{22}{27} = \frac{8}{11}$$

9. Let A, B and C be mutually independent and P(A) = 1/2, P(B) = 1/3, P(C) = 1/4. Let D be the event that exactly one of events A, B and C occurs.

- (a) Compute P(D).
- (b) Compute P(A|D), P(B|D), P(C|D).
- (c) Compute $P(A|(B \cup C))$.

Solution. (a) $P(D) = P(AB'C') + P(A'BC') + P(A'B'C) = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} + \frac{1}{2} \times \frac{3}{4} + \frac{1}{2} \times \frac{2}{3} \times \frac{1}{4} = \frac{1}{2} \times \frac{1}{2}$ $\frac{\frac{6}{24} + \frac{3}{24} + \frac{2}{24} = \frac{11}{24}}{(b) P(A|D) = \frac{P(AB'C')}{P(D)} = \frac{6}{11}, P(B|D) = \frac{P(A'BC')}{P(D)} = \frac{3}{11}, P(C|D) = \frac{P(A'B'C)}{P(D)} = \frac{2}{11}.$

(c) Due to independence $P(A|B \cup C) = P(A) = \frac{1}{2}$.

10. An urn contains 4 red and 6 blue balls. Balls are taken at random without replacement until both colors are present.

- (a) Find the probability that two balls are enough.
- (b) Find the probability that three balls are not enough.
- (c) Find the probability that exactly three balls are needed.

Solution. Let X be the number of trials needed.

Solution. Let Λ be the number of creation (a) There are $\begin{pmatrix} 10\\2 \end{pmatrix}$ ways to choose two balls. If X = 2 then one ball should be red (4 possibilities) and the other blue (6 possibilities). Thus $P(X = 2) = \frac{6 \times 4}{\begin{pmatrix} 10\\2 \end{pmatrix}} = \frac{8}{15}$.

(b) If X > 3 then the first three ball should be all red or all blue. Thus

$$P(X > 2) = \frac{\begin{pmatrix} 4 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix}}{\begin{pmatrix} 10 \\ 3 \end{pmatrix}} = \frac{3}{15}.$$

(c) $P(X \le 3) = 1 - P(X > 3) = \frac{12}{15}$. $P(X = 3) = P(X \le 3) - P(X = 2) = \frac{4}{15}$.

11. An urn has 5 red, 5 green and 5 blue balls. 3 balls are chosen at random (without replacement). Let X be the number of different colors chosen.

- (a) Compute the probability mass function of X.
- (b) Compute the cumulative distribution function of X.
- (c) Compute EX and VX.

Solution. (a) There are $\begin{pmatrix} 15\\3 \end{pmatrix}$ ways to chose the balls. If they are of the same color then we need (I) to choose color (3 possibilities) and (II) chose the balls of that color $\begin{pmatrix} 5\\3 \end{pmatrix}$

possibilities). Thus $P(X = 1) = \frac{3 \times \begin{pmatrix} 5 \\ 3 \end{pmatrix}}{\begin{pmatrix} 15 \\ 3 \end{pmatrix}} = \frac{6}{91}$. If the balls are of the two colors then we need to choose (I) colors of the pair, the single ball and the void color (3! possibilities), choose a pair $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ possibilities) and choose a single ball (5 possibilities). So $P(X = 2) = \frac{3 \times \begin{pmatrix} 5 \\ 2 \end{pmatrix} \times 5}{\begin{pmatrix} 15 \\ 3 \end{pmatrix}} = \frac{60}{91}$. If all balls are of different colors there are 5^3 ways to choose the balls since there 5 possibilities for each color, so $P(X = 3) = \frac{5^3}{\begin{pmatrix} 15 \\ 3 \end{pmatrix}} = \frac{25}{91}$. Thus the probability mass

function takes form $p \begin{bmatrix} A & I & Z & S \\ p & \frac{6}{91} & \frac{60}{91} & \frac{25}{91} \end{bmatrix}$. $(b) \ Since \ \frac{6}{91} + \frac{60}{91} = \frac{66}{91} \ and \ \frac{66}{91} + \frac{25}{91} = 1 \ we \ have \ F(x) = \begin{cases} 0 & if \ x < 1 \\ \frac{6}{91} & if \ 1 \le x < 2 \\ \frac{66}{91} & if \ 2 \le x < 3 \\ 1 & if \ x \ge 3 \end{cases}$ $(c) \ EX = 1 \times \frac{6}{91} + 2 \times \frac{60}{91} + 3 \times \frac{25}{91} = \frac{201}{91} \approx 2.21 \ EX^2 = 1 \times \frac{6}{91} + 4 \times \frac{60}{91} + 9 \times \frac{25}{91} = \frac{471}{91} \approx 5.18$ $VX = EX^2 - (EX)^2 = \frac{2460}{8281} \approx 0.29.$

12. The probability mass function of X is given in the following table $\begin{bmatrix} X & 0 & 1 & 2 & 3 \\ p & 0.1 & 0.2 & 0.3 & 0.4 \end{bmatrix}$

Let $Y = (X - 1)^2$.

- (a) Compute the probability mass function of Y.
- (b) Compute the cumulative distribution function of Y.
- (c) Compute EY and VY.

Solution. (a) P(Y = 0) = P(X = 1) = 0.2, P(Y = 1) = P(X = 0) + P(X = 2) = 0.2 $0.1 + 0.3 = 0.4. \ P(Y = 4) = P(X = 3) = 0.4. \ So \ the \ probability \ mass \ function \ of \ Y \ takes$ $form \frac{X \ 0 \ 1 \ 4}{p \ 0.2 \ 0.4 \ 0.4}.$

(b) Since
$$0.2 + 0.4 = 0.6$$
, $0.6 + 0.4 = 1$ we have $F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.2 & \text{if } 0 \le x < 1 \\ 0.6 & \text{if } 1 \le x < 4 \\ 1 & \text{if } x \ge 4 \end{cases}$.

(c) $EY = 0 \times 0.2 + 1 \times 0.4 + 4 \times 0.4 = 2$. $EY^2 = 0 \times 0.2 + 1 \times 0.4 + 16 \times 0.4 = 6.8$ $VY = 6.8 - 2^2 = 2.8$.