STAT400 Midterm 2.

1. An urn contains 4 red and 4 blue balls.
(a) If 5 balls are chosen randomly without replacement find the probability that 3 balls will be red and 2 blue.
(b) If 5 balls are chosen randomly with replacement find the probability that 3 balls will be red and 2 blue.
(c) A class contains 10 students. If each student independently choses 5 balls with replacement find the probability that exactly 3 will pick 3 red balls and 2 blue balls.
Solution. (a) The number of red balls has hypergeometric distribution so the answer is $\frac{\binom{4}{3}\binom{4}{2}}{\binom{8}{5}}=\frac{3}{7}$.
(b) The number of red balls has binomial distribution with probability of success equal to $\frac{1}{2}$ so the answer is $\binom{5}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}=\frac{5}{16}$.
(c) Due to part (c) the number of students picking a 3 red balls has binomial distribution with probability of success $\frac{5}{16}$ so the answer is $\binom{10}{3}\left(\frac{5}{16}\right)^{3}\left(\frac{11}{16}\right)^{7}$.
2. Let X be a random variable with density function equal to $3 x^{2}$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Find the cumulative distribution function of X.
(b) Find the median of X.
(c) Find $E X$ and $V X$.
(d) Let $Y=X^{3}$. Find the cumulative distribution function of Y.

Solution. (a) Since X only assumes values between 0 and $1 F_{X}(x)=0$ for $x \leq 0$ and $F_{X}(x)=1$ for $x \geq 1$. If $x \in[0,1]$ then

$$
F_{X}(x)=\int_{0}^{x} 3 s^{2} d s=x^{3}
$$

(b) By part (a) the median satisfies $m^{3}=\frac{1}{2}$ so $m=\left(\frac{1}{2}\right)^{1 / 3}$. (c) $E X=$ $\int_{0}^{1} 3 x^{2} * x d x=\frac{3}{4}, E X^{2}=\int_{0}^{1} 3 x^{2} * x^{2} d x=\frac{3}{5}$ so $V(X)=\frac{3}{5}-\left(\frac{3}{4}\right)^{2}=\frac{3}{80}$.
(d) As in part (a) $F_{Y}(y)=0$ for $y \leq 0$ and $F_{Y}(y)=1$ for $y \geq 1$. If $y \in[0,1]$ then

$$
F_{Y}(y)=P\left(X^{3} \leq y\right)=\underset{1}{P\left(X \leq y^{1 / 3}\right)}=\left(y^{1 / 3}\right)^{3}=y
$$

Thus Y is uniformly distributed on $[0,1]$.
3. Let (X, Y) have joint density fundtion

$$
f(x, y)= \begin{cases}x y+\frac{3}{4} \quad \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal density of X.
(b) Find the conditional density of Y given that $X=\frac{1}{2}$.
(c) Compute $P(X>Y)$.

Solution.

$$
\begin{aligned}
& \text { (a) } f_{X}(x)=\int_{0}^{1}\left(x y+\frac{3}{4}\right) d y=\frac{x}{2}+\frac{3}{4} . \\
& \text { (b) } \quad F_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right)=\frac{\frac{y}{2}+\frac{3}{4}}{\frac{1}{4}+\frac{3}{4}}=\frac{y}{2}+\frac{3}{4} .
\end{aligned}
$$

(c) Solution 1.

$$
P(X>Y)=\int_{0}^{1}\left(\int_{0}^{x}\left(x y+\frac{3}{4}\right) d y\right) d x=\int_{0}^{1}\left(\frac{x^{3}}{2}+\frac{3 x}{4}\right) d x=\frac{1}{8}+\frac{3}{8}=\frac{1}{2} .
$$

Solution 2. Since (X, Y) is continuous $P(X=Y)=0$. Therefore $P(X>Y)=1-P(X<Y)$. On the other hand by symmetry $P(X<$ $Y)=P(X>Y)$. hence $P(X>Y)=\frac{1}{2}$.
4. Let $S=X_{1}+X_{2}+\ldots X_{100}$, where X_{j} are independent random variables having exponential distribution with parameter 1.
(a) Compute $E(S)$.
(b) Compute $V(S)$.
(c) Compute approximately the probability that $S>105$.

Solution. (a) $E S=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots E\left(X_{100}\right)=100 * 1=100$.
(b) $V S=V\left(X_{1}\right)+V\left(X_{2}\right)+\ldots V\left(X_{100}\right)=100 * 1=100$. Hence $\sigma_{S}=\sqrt{100}+10$.
(c) By the Central Limit Theorem $S \approx 100+10 Z$ where $Z \sim N(0,1)$. Hence
$P(S>105) \approx P(100+10 Z>105)=P(10 Z>5)=P(Z>0.5) \approx 0.31$.

