STAT400. Sample questions for midterm 2.

1. In this problem you may neglect the probability of twins.
(a) A family has 5 children. Find the probability that they have 2 boys and 3 girls.
(b) A family decides to have children until they have 3 girls. Find the probability that they have 2 boys.
(c) A family decides to have children until they have 3 girls. Let C be the total number of children in the family. Compute EC and VC.
2. (a) 40% of lightbulb produced by Shining Beauty company have suboptimal performance. 5 bulbs are chosen for test. Find the probability that 2 bulbs or less have suboptimal performance.
(b) 40% of lightbulb produced by Shining Beauty company have suboptimal performance. 500 bulbs are chosen for test. Compute approximately the probability that 210 bulbs or less have suboptimal performance.
(c) 0.4% of lightbulb produced by Light company have suboptimal performance. 500 bulbs are chosen for test. Compute approximately the probability that 2 bulbs or less have suboptimal performance.
3. Calls to a customer service center form Poisson process with intensity 4 calls per hour.
(a) Find the probability that there are less than 3 calls between 9:00 and 10:00.
(b) John works from 9:00 am to 3:00 pm. His shift is divided into 6 one hour intervals. John calls an interval easy if there are less than 3 calls during that interval. Find the probability that during a particular day he has at least one easy interval.
(c) Find the probability that the first call during John watch arrives between 9:00 and 9:20 and the second between 9:20 and 9:40.
4. Let X have cumultive density function

$$
F(x)= \begin{cases}0, & \text { if } x \leq 0 \\ \frac{x^{2}+x^{4}}{2} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x \geq 0\end{cases}
$$

(a) Compute density of X.
(b) Compute $E X$ and $V X$.
(c) Let $Y=X^{3}$. Compute $E Y$ and $V Y$.
5. Let X have normal distribution with mean 2 and standard deviation 2.
(a) Compute 25 and 75th percentiles.
(b) Compute $P(X>5)$.
(c) Compute $E\left(X^{2}\right)$.
6. Let the distribution of X and Y be given in the following table.

$$
\left\lvert\, \begin{array}{c|c|c|c}
X \backslash Y & 1 & 2 & 3 \\
0 & .05 & .10 & 15 \\
1 & .05 & .05 & .10 \\
2 & .20 & .05 & .25
\end{array}\right.
$$

(a) Compute the marginal distributions of X and Y.
(b) Compute $P(X=Y)$.
(c) Compute $\operatorname{Cov}(X, Y)$.
7. Let (X, Y) have uniform distribution on the trapezoid $0 \leq y \leq 1,0 \leq x \leq 1+y$.
(a) Compute the marginal distributions of X and Y.
(b) Compute $V(X)$.
(c) Compute $\operatorname{Cov}(X, Y)$.
8. Let X be independent, X have uniform distribution on $[0,1]$ and Y have exponential distribution with parameters 1. Let $Z=X+Y$.
(a) Compute the density of Z.
(b) Compute $\operatorname{Cov}(X, Z)$.
(c) Compute $P(3 Y>Z)$.
9. Let $S=X_{1}+X_{2}+\ldots X_{162}$ where X_{j} are independent identically distributed random variables. Suppose that X_{j} have density equal to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Compute ES.
(b) Compute VS.
(c) Compute approximately $P(S>110)$.
10. 60 scientists from 30 universities attend a conference. The conference includes a lunch in a cafetria which has 30 tables each suitable for 2 people. The people seated for lunch at random. Let $X_{j}=1$ if the scientists from university j seat togather and $X_{j}=0$ otherwise.
(a) Compute $E\left(X_{1}\right)$ and $V\left(X_{1}\right)$.
(b) Compute $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
(c) Let $X=X_{1}+X_{2}+\ldots X_{30}$ be the number of tables occupied by the people from the same university. Compute $E X$ and $V X$.

