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Abstract. We propose a theory of combinatorially explicit Schubert poly-
nomials which represent the Schubert classes in the Borel presentation of the

cohomology ring of the orthogonal flag variety X = SON/B. We use these
polynomials to describe the arithmetic Schubert calculus on X. Moreover, we
give a method to compute the natural arithmetic Chern numbers on X, and
show that they are all rational numbers.

0. Introduction

Let V be a complex vector space equipped with a nondegenerate skew-symmetric
bilinear form. Let X denote the flag variety for the symplectic group, which
parametrizes flags of isotropic subspaces in V . In [T5], we defined a family of
symplectic Schubert polynomials for X, which represent the classes of the Schubert
varieties in the Borel presentation [Bo] of the cohomology ring of X. These polyno-
mials were applied to understand the structure of the Gillet-Soulé arithmetic Chow
ring of X, thought of as a smooth scheme over the ring of integers. Our aim in
this companion paper to [T5] is to explain the analogous theory for the orthogonal
group, which arises when the chosen bilinear form on V is symmetric.

The symplectic Schubert polynomials of [T5] are closely related to the type C
Schubert polynomials of Billey and Haiman [BH]. As in [BH, Thm. 3], our theory
of orthogonal Schubert polynomials for the root system of type Bn is, up to well
known scalar factors, the same as that for the root system Cn. Moreover, using
these Bn Schubert polynomials, one can describe the arithmetic Chow ring of the
flag variety of the odd orthogonal group in a similar fashion to the symplectic group,
following [T5, Thm. 3]. Therefore in this paper we will concentrate on the even
orthogonal case, and construct Schubert polynomials for the root system of type
Dn. For the application to arithmetic intersection theory, we must deal with an
extra relation which comes from the vanishing of the top Chern class of the maximal
isotropic subbundle of the trivial vector bundle over X. Fortunately, this relation
can be computed using our work [T4] on the Arakelov theory of even orthogonal
Grassmannians.

This paper is organized as follows. We begin in §1 with combinatorial preliminar-

ies on P̃ -polynomials and the Lascoux-Schützenberger and Billey-Haiman Schubert
polynomials. We introduce our theory of orthogonal Schubert polynomials in §2.2
and list some of their basic properties in §2.3. Section 3 computes the curvature
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of the relevant homogeneous vector bundles over X(C), equipped with their nat-
ural hermitian metrics. The arithmetic intersection theory of X is studied in §4.
Our method for computing arithmetic intersections is explained in §4.3, and the
arithmetic Schubert calculus is described in §4.4.

I wish to thank the anonymous referees, whose comments helped to improve the
exposition in this article.

1. Preliminary definitions

1.1. P̃ - and P -functions. We let Π denote the set of all integer partitions. The
length ℓ(λ) of a partition λ = (λ1, . . . , λr) is the number of (nonzero) parts λi, and
the weight |λ| is the sum

∑
i λi. We let λi = 0 for any i > ℓ(λ). A partition is

strict if no nonzero part is repeated. Let Gn = {λ ∈ Π | λ1 ≤ n} and let Fn be the
set of strict partitions in Gn.

Let X = (x1, x2, . . .) be a sequence of commuting independent variables. Define
the elementary symmetric functions ek = ek(X) by the generating series

∞∑

k=0

ek(X)tk =
∞∏

i=1

(1 + xit).

We will often work with coefficients in the ring A = Z[ 12 ]; the polynomial ring
Λ′ = A[e1, e2, . . .] is the ring of symmetric functions in the variables X with these

coefficients. Next, we define the P̃ -functions of Pragacz and Ratajski [PR]. Set

P̃0 = 1 and P̃k = ek/2 for k > 0. For i, j nonnegative integers, let

P̃i,j = P̃iP̃j + 2

j−1∑

r=1

(−1)rP̃i+rP̃j−r + (−1)jP̃i+j .

If λ is a partition of length greater than two, define

P̃λ = Pfaffian(P̃λi,λj
)1≤i<j≤2m,

where m is the least positive integer with 2m ≥ ℓ(λ).

These P̃ -functions have the following properties:

(a) The P̃λ(X) for λ ∈ Π form an A-basis of Λ′.

(b) P̃k,k(X) = 1
4ek(X2) = 1

4ek(x2
1, x

2
2, . . .) for all k > 0.

(c) If λ = (λ1, . . . , λr) and λ+ = λ ∪ (k, k) = (λ1, . . . , k, k, . . . , λr) then

P̃λ+ = P̃k,kP̃λ.

(d) The coefficients of P̃λ(X) are nonnegative rational numbers.

Let Λ′
n = A[x1, . . . , xn]Sn be the ring of symmetric polynomials in Xn = (x1, . . . , xn).

Then we have two additional properties.

(e) If λ1 > n, then P̃λ(Xn) = 0. The P̃λ(Xn) for λ ∈ Gn form an A-basis of Λ′
n.

(f) P̃n(Xn)P̃λ(Xn) = P̃(n,λ)(Xn) for all λ ∈ Gn.

Suppose that Y = (y1, y2, . . .) is a second sequence of variables and define sym-
metric functions qk(Y ) by the equation

∞∑

k=0

qk(Y )tk =

∞∏

i=1

1 + yit

1 − yit
.
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Let Γ′ = A[q1, q2 . . .] and define an A-algebra homomorphism η : Λ′ → Γ′ by setting
η(ek(X)) = qk(Y ) for each k ≥ 1. For any strict partition λ, the Schur P -function

Pλ(Y ) may be defined as the image of P̃λ(X) under η. The Pλ for strict partitions
λ have nonnegative integer coefficients and form a free A-basis of Γ′.

1.2. Divided differences and type A Schubert polynomials. The symmetric
group Sn is the Weyl group for the root system An−1. We write the elements ̟ of
Sn using the single-line notation (̟(1),̟(2), . . . ,̟(n)). The group Sn is generated
by the simple transpositions si for 1 ≤ i ≤ n− 1, where si interchanges i and i + 1
and fixes all other elements of {1, . . . , n}.

The elements of the Weyl group W̃n for the root system Dn may be represented
by signed permutations; we will adopt the notation where a bar is written over an

element with a negative sign. The group W̃n is an extension of Sn by an element
s0 which acts on the right by

(u1, u2, . . . , un)s0 = (u2, u1, u3, . . . , un).

A reduced word of w ∈ W̃n is a sequence a1 . . . ar of elements in {0, 1, . . . , n − 1}
such that w = sa1

· · · sar
and r is minimal (so equal to the length ℓ(w) of w). If

we convert all the 0’s which appear in the reduced word a1 . . . ar to 1’s, we obtain
a flattened word of w. For example, 20312 is a reduced word of 1432, and 21312 is
the corresponding flattened word. Note that 21312 is also a word, but not reduced,

for 1432. The elements of maximal length in Sn and W̃n are

̟0 = (n, n − 1, . . . , 1) and w0 =

{
(1, 2, . . . , n) if n is even,

(1, 2, . . . , n) if n is odd

respectively.

The group W̃n acts on the ring A[Xn] of polynomials in Xn: the transposition
si interchanges xi and xi+1 for 1 ≤ i ≤ n− 1, while s0 sends (x1, x2) to (−x2,−x1)
(all other variables remain fixed). Following [BGG] and [D1, D2], we have divided
difference operators ∂i : A[Xn] → A[Xn]. For 1 ≤ i ≤ n − 1 they are defined by

∂i(f) = (f − sif)/(xi − xi+1)

while

∂0(f) = (f − s0f)/(x1 + x2),

for any f ∈ A[Xn]. For each w ∈ W̃n, define an operator ∂w by setting

∂w = ∂a1
◦ · · · ◦ ∂aℓ

if w = a1 · · · aℓ is a reduced word for w.
For every permutation ̟ ∈ Sn, Lascoux and Schützenberger [LS] defined a type

A Schubert polynomial S̟(Xn) ∈ Z[Xn] by

S̟(Xn) = ∂̟−1̟0

(
xn−1
1 xn−2

2 · · · xn−1

)
.

This definition is stable under the natural inclusion of Sn into Sn+1, hence the
polynomial Sw makes sense for w ∈ S∞ = ∪∞

n=1Sn. The Sw for w ∈ S∞ form a
Z-basis of Z[X] = Z[x1, x2, . . .]. The coefficients of Sw are nonnegative integers.
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1.3. Billey-Haiman Schubert polynomials of type D. We regard W̃n as a

subgroup of W̃n+1 in the obvious way and let W̃∞ denote the union of all the W̃n.
Let Z = (z1, z2, . . .) be a third sequence of commuting variables. Billey and Haiman
[BH] defined a family {Dw}w∈fW∞

of Schubert polynomials of type D, which form

an A-basis of the ring Γ′[Z]. The expansion coefficients for a product DuDv in the
basis of type D Schubert polynomials agree with the Schubert structure constants

on even orthogonal flag varieties for sufficiently large n. For every w ∈ W̃n there is
a unique expression

(1) Dw =
∑

λ strict

̟∈Sn

fw
λ,̟Pλ(Y )S̟(Z)

where the coefficients fw
λ,̟ are nonnegative integers. We proceed to give a combi-

natorial formula for these numbers.
A sequence a = (a1, . . . , am) is called unimodal if for some r ≤ m, we have

a1 > a2 > · · · > ar−1 ≥ ar < ar+1 < · · · < am,

and if ar−1 = ar then ar = 1.

Let w ∈ W̃n and λ be a Young diagram with r rows such that |λ| = ℓ(w). A
Kraśkiewicz-Lam tableau for w of shape λ is a filling T of the boxes of λ with
positive integers in such a way that

a) If ti is the sequence of entries in the i-th row of T , reading from left to right,
then the row word tr . . . t1 is a flattened word for w.

b) For each i, ti is a unimodal subsequence of maximum length in tr . . . ti+1ti.

Let T be a Kraśkiewicz-Lam tableau of shape λ with row word a1 . . . aℓ. We define
m(T ) = ℓ(λ) + 1 − k, where k is the number of distinct values of sa1

· · · saj
(1) for

0 ≤ j ≤ ℓ. It follows from [La, Thm. 4.35] that m(T ) ≥ 0.

Example 1. Let λ ∈ Fn−1, ℓ = ℓ(λ), k = n − 1 − ℓ, and µ be the strict partition
whose parts are the numbers from 1 to n which do not lie in the set {1, λℓ +
1, . . . , λ1 + 1}. The barred permutation

wλ = (λ1 + 1, . . . , λℓ + 1, 1̂, µk, . . . , µ1)

where 1̂ is equal to 1 or 1 according to the parity of ℓ is the maximal Grassmannian

element of W̃n corresponding to λ. There is a unique Kraśkiewicz-Lam tableau Tλ

for wλ, which has shape λ, and whose i-th row consists of the numbers 1 through
λi in decreasing order. Moreover, we have m(Tλ) = 0. For instance, if λ = (6, 4, 3)
then we obtain

Tλ =
6 5 4 3 2 1
4 3 2 1
3 2 1.

Proposition 1 (BH, La). For every w ∈ W̃∞, we have fw
λ,̟ =

∑
T 2m(T ), summed

over all Kraśkiewicz-Lam tableaux T for w̟−1 of shape λ, if ℓ(w̟−1) = ℓ(w) −
ℓ(̟), and fw

λ,̟ = 0 otherwise.

Proof. According to [BH, Thm. 3], the polynomial Dw satisfies

Dw =
∑

uv=w

Eu(Y )Sv(Z),
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summed over all factorizations uv = w in W̃∞ such that ℓ(u) + ℓ(v) = ℓ(w) with
v ∈ S∞. The left factors Eu(Y ) are the type D Stanley symmetric functions
of [BH, La]. We deduce from [BH, Prop. 3.7] and [La, Thm. 4.35] that for any

u ∈ W̃∞,

Eu(Y ) =
∑

λ

du
λ Pλ(Y )

where du
λ =

∑
T 2m(T ), summed over all Kraśkiewicz-Lam tableaux T for u of shape

λ. The result follows by combining these two facts. �

2. Orthogonal Schubert polynomials

2.1. Consider the vector space C2n with its canonical basis {ei}
2n
i=1 of unit coordi-

nate vectors. We define the skew diagonal symmetric form [ , ] on C2n by setting
[ei, ej ] = 0 for i + j 6= 2n + 1 and [ei, e2n+1−i] = 1 for 1 ≤ i ≤ 2n. The orthog-
onal group SO2n(C) is the group of linear automorphisms of C2n preserving the
symmetric form. The upper triangular matrices in SO2n form a Borel subgroup B.

A subspace Σ of C2n is called isotropic if the restriction of the symmetric form
to Σ vanishes. Consider a partial flag of subspaces

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E2n = C2n

with dimEi = i and En isotropic. Each such flag can be extended to a complete flag
E• in C2n by letting En+i = E⊥

n−i for 1 ≤ i ≤ n; we will call such a flag a complete

isotropic flag. We say that two isotropic subspaces E and F of dimension n are in

the same family if dim(E ∩F ) ≡ n (mod 2); two complete isotropic flags E• and F•

are in the same family if En and Fn are. The variety X = SO2n/B parametrizes
complete isotropic flags E• with En in the same family as 〈e1, . . . , en〉. We use the
same notation to denote the tautological flag E• of vector bundles over X.

There is a group monomorphism φ : W̃n →֒ S2n whose image consists of those
permutations ̟ ∈ S2n such that ̟(i) + ̟(2n + 1 − i) = 2n + 1 for all i and the
number of i ≤ n such that ̟(i) > n is even. The map φ is determined by setting,

for each w = (w1, . . . , wn) ∈ W̃n and 1 ≤ i ≤ n,

φ(w)(i) =

{
n + 1 − wn+1−i if wn+1−i is unbarred,

n + wn+1−i otherwise.

Let F• be a fixed complete isotropic flag in the same family as the flags in X.

For every w ∈ W̃n define the Schubert variety Xw(F•) ⊂ X as the closure of the
locus of E• ∈ X such that

dim(Er ∩Fs) = # { i ≤ r | φ(w0ww0)(i) > 2n− s } for 1 ≤ r ≤ n− 1, 1 ≤ s ≤ 2n.

The Schubert class σw in H2ℓ(w)(X, Z) is the cohomology class which is Poincaré
dual to the homology class determined by Xw(F•).

Following Borel [Bo, §29], the cohomology ring H∗(X, A) is presented as a quo-
tient

(2) H∗(X, A) ∼= A[x1, . . . , xn]/Jn

where Jn is the ideal generated by the W̃n-invariants of positive degree in A[Xn].
The inverse of the isomorphism (2) sends the class of xi to −c1(En+1−i/En−i) for
each i with 1 ≤ i ≤ n.
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2.2. For every λ ∈ Gn and ̟ ∈ Sn, define the polynomial Dλ,̟ = Dλ,̟(Xn) by

Dλ,̟ = P̃λ(Xn)S̟(−Xn) = (−1)ℓ(̟)P̃λ(Xn)S̟(Xn).

Lascoux and Pragacz [LP] showed that the products P̃λ(Xn)S̟(Xn) for λ ∈ Fn−1

and ̟ ∈ Sn form a basis for the polynomial ring A[Xn] as an A[Xn]
fWn -module.

Observe that the Dλ,̟(Xn) for λ ∈ Gn and ̟ ∈ Sn form a basis of A[x1, . . . , xn]
as an A-module. The ideal Jn of §2.1 is generated by the polynomials ei(X

2
n) =

4 P̃i,i(Xn) and en(Xn) = 2 P̃n(Xn), and the P̃ -polynomials have the factorization

properties (c), (f) and the vanishing property (e) of §1.1. We deduce that P̃λ(Xn) ∈
Jn unless λ ∈ Fn−1.

Definition 1. For w ∈ W̃n, define the orthogonal Schubert polynomial Dw =
Dw(Xn) by

Dw =
∑

λ∈Fn−1
̟∈Sn

fw
λ,̟Dλ,̟(Xn)

where the coefficients fw
λ,̟ are the same as in (1) and Proposition 1.

Theorem 1. The orthogonal Schubert polynomial Dw(Xn) is the unique Z-linear

combination of the Dλ,̟(Xn) for λ ∈ Fn−1 and ̟ ∈ Sn which represents the

Schubert class σw in the Borel presentation (2).

Proof. Recall that a partition is odd if all its non-zero parts are odd integers. For
each partition µ, let pµ =

∏
i pµi

, where pr(X) = xk
1 + xk

2 + · · · denotes the r-th
power sum. The pµ(Y ) for µ odd form a Q-basis of Γ′ ⊗A Q. We therefore have a
unique expression

(3) Dw =
∑

µ odd

̟∈Sn

aw
µ,̟ pµ(Y )S̟(Z)

in the ring Γ′[Z] ⊗A Q.
Józefiak [Jo] showed that the kernel of the homomorphism η from §1.1 is the

ideal generated by the symmetric functions of positive degree in X2 = (x2
1, x

2
2, . . .).

It follows from this and properties (b), (c) of §1.1 that η(P̃λ) = 0 unless λ is a strict
partition. Moreover, we have η(pk(X)) = 2 pk(Y ), if k is odd, and η(pk(X)) = 0, if
k > 0 is even.

Let podd = (p1, p3, p5, . . .). Define a polynomial Dw(podd(X),Xn−1) in the vari-
ables pk := pk(X) for k odd and x1, . . . , xn−1 by substituting pk(Y ) with pk(X)/2
and zi with −xi in (3). We deduce from (1), (3), and the above discussion that
Dw(podd(X),Xn−1) differs from

∑

λ strict

̟∈Sn

fw
λ,̟P̃λ(X)S̟(−Xn)

by an element in the ideal of Λ′[Xn−1] generated by the ei(X
2) for i > 0.

According to [BH, §2], for every w ∈ W̃n, the polynomial

Dw(Xn) := Dw(podd(Xn),Xn−1)

obtained by setting xi = 0 for all i > n in Dw(podd(X),Xn−1) represents the Schu-

bert class σw in the Borel presentation (2). Since P̃λ(Xn) ∈ Jn unless λ ∈ Fn−1,
it follows that Dw represents the Schubert class σw in the presentation (2), as
required.
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We claim that the Dλ,̟ for λ ∈ Gn r Fn−1 and ̟ ∈ Sn form an A-basis of Jn.
To see this, note that if h is an element of Jn then h(Xn) =

∑
i ei(X

2
n)fi(Xn) +

en(Xn)g(Xn) for some polynomials fi, g ∈ A[Xn]. Now the fi and g are unique
A-linear combinations of the Dµ,̟ for µ ∈ Gn and ̟ ∈ Sn, and properties (b), (c),
and (f) of §1.1 give

ei(X
2
n)Dµ,̟(Xn) = 4Dµ∪(i,i),̟(Xn)

and

en(Xn)Dµ,̟(Xn) = 2D(n,µ),̟(Xn),

respectively. We deduce that any h ∈ Jn lies in the A-linear span of the Dλ,̟ for
λ ∈ Gn r Fn−1 and ̟ ∈ Sn. Since the Dλ,̟ for λ ∈ Gn and ̟ ∈ Sn are linearly
independent, this proves the claim and the uniqueness assertion in the theorem. �

The statement of Theorem 1 may serve as an alternative definition of the or-
thogonal Schubert polynomials Dw(Xn).

2.3. We give below some properties of the polynomials Dw(Xn).

(a) The set

{Dw | w ∈ W̃n} ∪ {Dλ,̟ | λ ∈ Gn r Fn−1, ̟ ∈ Sn}

is an A-basis of the polynomial ring A[x1, . . . , xn]. The Dλ,̟ for λ ∈ Gn rFn−1 and
̟ ∈ Sn span the ideal Jn of A[x1, . . . , xn] generated by the ei(X

2
n) for 1 ≤ i ≤ n−1

and en(Xn) = x1 · · · xn.

(b) For every u, v ∈ W̃n, we have an equation

(4) Du · Dv =
∑

w∈fWn

dw
uv Dw +

∑

λ∈GnrFn−1
̟∈Sn

dλ̟
uv Dλ,̟

in the ring A[x1, . . . , xn]. The coefficients dw
uv are nonnegative integers, which vanish

unless ℓ(w) = ℓ(u) + ℓ(v), and agree with the structure constants in the equation
of Schubert classes

σu · σv =
∑

w∈fWn

dw
uv σw,

which holds in H∗(X, Z). The coefficients dλ̟
uv are integers, some of which may

be negative. Equation (4) provides a lifting of the Schubert calculus from the
cohomology ring H∗(X, A) ∼= A[x1, . . . , xn]/Jn to the polynomial ring A[x1, . . . , xn].

(c) For each m < n let i = im,n : W̃m → W̃n be the natural embedding using

the first m components. Then for any w ∈ W̃m we have

Di(w)(Xn)
∣∣
xm+1=···=xn=0

= Dw(Xm).

(d) For ̟ ∈ Sn and w ∈ W̃n, we have

∂̟Dw =

{
(−1)ℓ(̟) Dw̟ if ℓ(w̟) = ℓ(w) − ℓ(̟),

0 otherwise.

The remaining properties listed in [T5, §2.3] also have analogues here, and their
proofs are similar.



8 HARRY TAMVAKIS

Table 1. Orthogonal Schubert polynomials for w ∈ W̃3

w Dw(X3) =
P

fw
λ,̟

ePλ(X3) S̟(−X3)

123 = 1 1

213 = s1
eP1 − S213

132 = s2 2 eP1 − S132

231 = s1s2
eP2 −

eP1 S132 + S231

312 = s2s1
eP2 − 2 eP1 S213 + S312

321 = s1s2s1
eP21 −

eP2 S213 −
eP2 S132 + eP1 S312 + 2 eP1 S231 − S321

213 = s0
eP1

123 = s0s1
eP2 −

eP1 S213

231 = s0s2
eP2 −

eP1 S132

132 = s0s1s2 −
eP2 S132 + eP1 S231

321 = s0s2s1
eP21 −

eP2 S213 + eP1 S312

312 = s0s1s2s1 −
eP21 S132 + eP2 S312 + eP2 S231 −

eP1 S321

312 = s2s0
eP2

132 = s2s0s1 −
eP2 S213

321 = s2s0s2
eP21 −

eP2 S132

123 = s2s0s1s2
eP2 S231

231 = s2s0s2s1 −
eP21 S213 + eP2 S312

213 = s2s0s1s2s1
eP21 S231 −

eP2 S321

321 = s1s2s0
eP21

231 = s1s2s0s1 −
eP21 S213

312 = s1s2s0s2 −
eP21 S132

213 = s1s2s0s1s2
eP21 S231

132 = s1s2s0s2s1
eP21 S312

123 = s1s2s0s1s2s1 −
eP21 S321

Example 2. a) We have the equations

Ds0
(Xn) = P̃1(Xn) =

1

2
(x1 + x2 + · · · + xn)

Ds1
(Xn) = P̃1(Xn) − Ss1

=
1

2
(−x1 + x2 + · · · + xn)

Dsi
(Xn) = 2 P̃1(Xn) − Ssi

= xi+1 + · · · + xn for 2 ≤ i ≤ n − 1.

b) For a maximal Grassmannian element wλ ∈ W̃n, we have Dw(Xn) = P̃λ(Xn).

Example 3. The list of all orthogonal Schubert polynomials Dw for w ∈ W̃3 is
given in Table 1. These polynomials are displayed according to the four orbits of the

symmetric group S3 on W̃3. Once the highest degree term in each orbit is known,
one can compute the remaining elements easily using type A divided differences,
by property (d) above. The reader should compare this table with [BH, Table 3].

3. Curvature of homogeneous vector bundles

For any complex manifold X, we denote the space of C-valued smooth differential
forms of type (p, q) on X by Ap,q(X). A hermitian vector bundle on X is a pair
E = (E, h) consisting of a holomorphic vector bundle E over X and a hermitian
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metric h on E. Let K(E) ∈ A1,1(X,End(E)) be the curvature of E with respect to
the hermitian holomorphic connection on E and set KE = i

2π
K(E). For any integer

k with 1 ≤ k ≤ rk(E), we have a Chern form ck(E) := Tr(
∧k

KE) ∈ Ak,k(X). The
total Chern form of E is c(E) = 1+

∑n
k=1 ck(E). These differential forms are closed

and their classes in the de Rham cohomology of X are the Chern classes of E.
To simplify the notation in this section, we will redefine the group SO2n(C)

using the standard symmetric form [ , ]′ on C2n whose matrix [ei, ej ]
′
i,j on unit

coordinate vectors is

(
0 Idn

Idn 0

)
, where Idn denotes the n × n identity matrix.

Let X = SO2n/B be the orthogonal flag variety and E• its tautological complete
isotropic flag of vector bundles. We equip the trivial vector bundle E2n = C2n

X
with

the trivial hermitian metric h compatible with the symmetric form [ , ]′ on C2n.
The metric h on E induces metrics on all the subbundles Ei and the quotient

line bundles Qi = Ei/Ei−1, for 1 ≤ i ≤ n. Our goal here is to compute the
SO(2n)-invariant curvature matrices of the homogeneous vector bundles Ei and
Qi for 1 ≤ i ≤ n. As in [T5, §3.2], we do this by pulling back these matrices of
(1, 1)-forms from X to the compact Lie group SO(2n), where their entries may be
expressed in terms of the basic invariant forms on SO(2n).

The Lie algebra of SO2n(C) is given by

so(2n, C) = {(A,B,C) | A,B,C ∈ Mn(C), B,C skew symmetric},

where (A,B,C) denotes the matrix

(
A B
C −At

)
. Complex conjugation of the

algebra so(2n, C) with respect to the Lie algebra of SO(2n) is given by the map τ

with τ(A) = −A
t
. The Cartan subalgebra h consists of all matrices of the form

{(diag(t1, . . . , tn), 0, 0) | ti ∈ C}, where diag(t1, . . . , tn) denotes a diagonal matrix.
Consider the set of roots

R = {±ti ± tj | i 6= j} ⊂ h∗

and a system of positive roots

R+ = {ti − tj | i < j} ∪ {tp + tq | p < q},

where the indices run from 1 to n. We use ij to denote a positive root in the first
set and pq for a positive root in the second. The corresponding basis vectors are
eij = (Eij , 0, 0) and epq = (0, Epq − Eqp, 0) for p < q, where Eij is the matrix with
1 as the ij-th entry and zeroes elsewhere.

Define eij = τ(eij), epq = τ(epq), and consider the linearly independent set

B′ = {eij , eij , epq, epq | i < j, p < q}.

The adjoint representation of h on so(2n, C) gives a root space decomposition

so(2n, C) = h ⊕
∑

i<j

(C eij ⊕ C eij) ⊕
∑

p<q

(C epq ⊕ C epq).

Extend B′ to a basis B of so(2n, C) and let B∗ denote the dual basis of so(2n, C)∗.
Let ωij , ωij , ωpq, ωpq be the vectors in B∗ which are dual to eij , eij , epq, epq, re-
spectively; we regard these elements as left invariant complex one-forms on SO(2n).
If p > q we agree that ωpq = −ωqp and ωpq = −ωqp. Finally, define ωij = γωij ,
ωij = γωij , ωpq = γωpq, and ωpq = γωpq, where γ is a constant such that γ2 = i

2π
,

and set Ωij = ωij ∧ ωij and Ωpq = ωpq ∧ ωpq.
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If π : SO(2n) → X denotes the quotient map, the pullbacks of the aforementioned
curvature matrices under π can now be written explicitly, following [GrS, (4.13)X ]
and [T5, §3.2]. In this way we arrive at the following proposition.

Proposition 2. For every k with 1 ≤ k ≤ n we have

c1(Qk) =
∑

i<k

Ωik −
∑

j>k

Ωkj −
∑

p6=k

Ωpk

and KEk
= {Θαβ}1≤α,β≤k, where

Θαβ = −
∑

j>k

ωαj ∧ ωβj −
∑

p6=α,β

ωpα ∧ ωpβ .

Let Ω =
∧

i<j

Ωij ∧
∧

p<q

Ωpq. It follows for instance from [PR, Cor. 5.16] that the

class of a point in X is Poincaré dual to
1

2n−1

n−1∏

k=1

c1(Q
∗

k)2n−2k. We conclude that

∫

X

Ω =

n−1∏

k=1

2

(2k)!
.

4. Arithmetic intersection theory on SO2n/B

4.1. Orthogonal flag varieties over Spec Z. For the rest of this paper, X will
denote the Chevalley scheme over Z for the homogeneous space SO2n/B described in
§2.1. Over any base field, the scheme X parametrizes complete isotropic flags E• of
a 2n-dimensional vector space E equipped with the skew diagonal symmetric form,
with En in the same family as 〈e1, . . . , en〉. The arithmetic orthogonal flag variety
X is smooth over Spec Z, and has a decomposition into Schubert cells induced by
the Bruhat decomposition of SO2n (see e.g. [Ja, §13.3] for details).

There is a tautological complete isotropic flag of vector bundles

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ E2n = E

over X. For each i with 1 ≤ i ≤ 2n we let Ei denote the short exact sequence

Ei : 0 → Ei−1 → Ei → Qi → 0.

Let CH(X) be the Chow ring of algebraic cycles on X modulo rational equivalence,
with coefficients in the ring A. Since X has a cellular decomposition, the class map
induces an isomorphism CH(X) ∼= H∗(X(C), A), following [Fu, Ex. 19.1.11] and
[KM, Lem. 6].

We deduce that there is a ring isomorphism

CH(X) ∼= A[Xn]/Jn.

This presentation of CH(X) may be understood geometrically as follows. The Whit-
ney sum formula applied to the filtration E• gives a Chern class equation

2n∏

i=1

(1 + c1(Qi)) = c(E)

in CH(X), which maps to the identity
∏2n

i=1(1−x2
i ) = 1, since E is a trivial bundle.

We thus obtain the relations ei(X
2
n) in Jn, for 1 ≤ i ≤ n−1. Moreover, the relation

x1 · · · xn holds because the top Chern class cn(En) vanishes.
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We have an isomorphism of abelian groups

CH(X) ∼=
⊕

w∈fWn

ADw(Xn)

where the polynomial Dw(Xn) represents the class of the codimension ℓ(w) Schubert
scheme Xw in X. The latter is defined as the closure of the corresponding Schubert
cell, the complex points of which are given in §2.1.

4.2. The arithmetic Chow group. For p ≥ 0 we let ĈH
p
(X)′ denote the p-th

arithmetic Chow group of X, as defined by Gillet and Soulé [GS1]. As in the case
of CH(X), we require coefficients in the ring A, so we will work throughout with

the groups ĈH
p
(X) := ĈH

p
(X)′ ⊗Z A. The elements in ĈH

p
(X) are represented

by arithmetic cycles (Z, gZ), where Z is a codimension p cycle on X and gZ is a
current of type (p− 1, p− 1) such that the current ddcgZ + δZ(C) is represented by

a smooth differential form on X(C). Define ĈH(X) =
⊕

p ĈH
p
(X).

Let A(X(C)) =
⊕

p A
p,p(X(C)) and A′(X(C)) ⊂ A(X(C)) be the set of forms ϕ in

A(X(C)) which can be written as ϕ = ∂η+∂η′ for some smooth forms η, η′. Define

Ã(X(C)) = A(X(C))/A′(X(C)). We let F∞ be the involution of X(C) induced by
complex conjugation. Let Ap,p(XR) be the subspace of Ap,p(X(C)) generated by

real forms η such that F ∗
∞η = (−1)pη; denote by Ãp,p(XR) the image of Ap,p(XR)

in Ãp,p(X(C)). Finally, let A(XR) =
⊕

p A
p,p(XR) and Ã(XR) =

⊕
p Ã

p,p(XR).
Since the homogeneous space X admits a cellular decomposition, it follows as in

[KM] that there is an exact sequence

(5) 0 −→ Ã(XR)
a

−→ ĈH(X)
ζ

−→ CH(X) −→ 0

where the maps a and ζ are defined by

a(η) = (0, η) and ζ(Z, gZ) = Z.

We equip E(C) with the trivial hermitian metric compatible with the skew diago-
nal symmetric form [ , ] on C2n. This metric induces metrics on (the complex points
of) all the vector bundles Ei and the line bundles Li = En+1−i/En−i, for 1 ≤ i ≤ n.
We thus obtain hermitian vector bundles Ei and line bundles Li and, following

[GS2], their arithmetic Chern classes ĉk(Ei) ∈ ĈH
k
(X) and ĉ1(Li) ∈ ĈH

1
(X). Set

x̂i = −ĉ1(Li) and for any w ∈ W̃n, define

D̂w := Dw(x̂1, . . . , x̂n) ∈ ĈH
ℓ(w)

(X).

The unique map of abelian groups

(6) ǫ : CH(X) → ĈH(X)

sending the Schubert class Dw(Xn) to D̂w for all w ∈ W̃n splits the exact sequence
(5). We thus obtain an isomorphism of abelian groups

(7) ĈH(X) ∼= CH(X) ⊕ Ã(XR).
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4.3. Computing arithmetic intersections. We now describe an effective pro-
cedure for computing arithmetic Chern numbers on the orthogonal flag variety X,
parallel to [T5, §4.3]. Let ck(Ei) and c1(Li) denote the Chern forms of Ei(C) and

Li(C), respectively. In the sequel we will identify these with their images in ĈH(X)
under the inclusion a. Let xi = −c1(Li) for 1 ≤ i ≤ n.

We begin with the short exact sequence

EOG : 0 → En → E → E
∗

n → 0

where En denotes the tautological maximal isotropic subbundle of E over X. Let

c̃(EOG) ∈ Ã(XR) be the Bott-Chern form [BC, GS2] associated to EOG for the total
Chern class. This form may be computed using [T1, Prop. 3], which gives

(8) c̃(EOG) =

n−1∑

k=1

(−1)kHkpk(E
∗

n).

Here pr(E
∗

n) = (−1)rTr((KEn
)r) denotes the r-th power sum form of E

∗

n, while
Hr = 1 + 1

2 + · · · + 1
r

is a harmonic number. Furthermore, by [GS2, Thm. 4.8(ii)],
we have an equation

(9) ĉ(En) ĉ(E
∗

n) = 1 + c̃(EOG)

in ĈH(X).
Consider the hermitian filtration

E : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En.

Let c̃(E) ∈ Ã(XR) be the Bott-Chern form of the hermitian filtration E correspond-
ing to the total Chern class, as defined in [T2]. According to [T2, Thm. 2], we
have

(10)

n∏

i=1

(1 − x̂i) = ĉ(En) + c̃(E).

If c̃(E) =
∑

i αi with αi ∈ Ãi,i(XR) for each i, then define c̃(E
∗
) =

∑
i(−1)i+1αi.

This gives the dual equation

(11)

n∏

i=1

(1 + x̂i) = ĉ(E
∗

n) + c̃(E
∗
).

The abelian group Ã(XR) = Kerζ is an ideal of ĈH(X) such that for any hermit-

ian vector bundle F over X and η, η′ ∈ Ã(XR), we have

(12) ĉk(F ) · η = ck(F ) ∧ η and η · η′ = (ddcη) ∧ η′.

We now multiply (10) with (11) and combine the result with (9) to obtain

(13)

n∏

i=1

(1 − x̂2
i ) = 1 + c̃(E , E

∗
),

where

(14) c̃(E , E
∗
) = c̃(EOG) + c̃(E) ∧ c(E

∗

n) + c̃(E
∗
) ∧ c(En) + (ddcc̃(E)) ∧ c̃(E

∗
).

By pulling back [T4, Eqn. (6)] to X, we get the equation

(15) ĉ(E
∗

n) =
1

2
Hn−1cn−1(E

∗

n).
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Equating the top degree terms in (11) and (15) gives

(16) x̂1 · · · x̂n =
1

2
Hn−1cn−1(E

∗

n) + c̃n(E
∗
).

In [T2], it is shown that c̃(E) is a polynomial in the entries of the matrices
KEi

and KLi
, 1 ≤ i ≤ n, with rational coefficients. Using this, (8), and (14),

we can express the differential form c̃(E , E
∗
) as a polynomial in the entries of the

matrices KEi
and KLi

with rational coefficients. On the other hand, Proposition 2
gives explicit formulas for all these curvature matrices in terms of SO(2n)-invariant
differential forms on X(C). Since we are using the skew diagonal symmetric form
to define the Lie groups here, the formulas in §3 have to be changed accordingly.
The matrix realization of the Lie algebra so(2n, C) in this case is given in [GW,
§1.2, §2.3], while the basis elements of h should be ordered as in [BH, (2.20)]. The
indices (i, j) and (p, q) in Proposition 2 are then replaced by (n + 1 − j, n + 1 − i)
and (n+1−q, n+1−p), respectively. Recalling that Li = En+1−i/En−i, we obtain
the identities

x1 = −Ω12 − Ω13 − · · · − Ω1n + Ω12 + Ω13 + · · · + Ω1n

x2 = Ω12 − Ω23 − · · · − Ω2n + Ω12 + Ω23 + · · · + Ω2n

...
...

...

xn = Ω1n + Ω2n + · · · + Ωn−1,n + Ω1n + Ω2n + · · · + Ωn−1,n

in A1,1(XR). We also deduce the next result.

Proposition 3. We have c̃1(E) = c̃1(E , E
∗
) = 0, c̃2(E) = −

∑

i<j

Ωij, and

c̃2(E , E
∗
) = −2

∑

i<j

Ωij − 2
∑

p<q

Ωpq.

Proof. The argument is the same as the proof of [T5, Prop. 4]. �

Let h(Xn) be a homogeneous polynomial in the ideal Jn of §2.1. We give an
effective algorithm to compute the arithmetic intersection h(x̂1, . . . , x̂n) as a class

in Ã(XR). First, we decompose h as a sum h(Xn) =
∑

i ei(X
2
n)fi(Xn)+en(Xn)g(Xn)

for some polynomials fi and g. Equation (13) implies that

(17) ei(x̂
2
1, . . . , x̂

2
n) = (−1)i c̃2i(E , E

∗
)

for 1 ≤ i ≤ n. Using this, (16), and (12), we see that

h(x̂1, x̂2, . . . x̂n) =
n∑

i=1

(−1)i c̃2i(E , E
∗
) ∧ fi(x1, . . . , xn)

+

(
1

2
Hn−1cn−1(E

∗

n) + c̃n(E
∗
)

)
∧ g(x1, . . . , xn)

in ĈH(X). By the previous analysis, we can write the right hand side of the above
equation as a polynomial in the xi and the entries of the matrices KEi

for 1 ≤
i ≤ n, with rational coefficients, which is (the class of) an explicit SO(2n)-invariant

differential form in Ã(XR).

Let d̂eg : ĈH
n2−n+1

(X) → R denote the arithmetic degree map of [GS1].
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Theorem 2. For any nonnegative integers k1, . . . , kn with
∑

ki = n2 − n + 1, the

arithmetic Chern number d̂eg(x̂k1

1 x̂k2

2 · · · x̂kn
n ) is a rational number.

Proof. Since
∑

ki = dimX = n2 − n + 1, the monomial xk1

1 · · · xkn
n lies in the ideal

Jn. We therefore obtain

x̂k1

1 x̂k2

2 · · · x̂kn
n = r Ω

for some r ∈ Q, where Ω is the top invariant form of §3. Using the computation at
the end of §3, it follows that

d̂eg(x̂k1

1 x̂k2

2 · · · x̂kn
n ) =

r

2

n−1∏

k=1

2

(2k)!
.

�

The flag variety X has a natural pluri-Plücker embedding j in projective space.
The morphism j is defined as the composite of the natural inclusion of X into the
variety parametrizing all partial flags

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E2n = E

with dim(Ei) = i for each i, followed by the pluri-Plücker embedding of the latter
type A flag variety into projective space. Let O(1) denote the canonical line bundle
over projective space, equipped with its canonical metric (so that c1(O(1)) is the
Fubini-Study form). Following [GS1, Fa, BoGS], the projective height of X relative
to O(1) is given by

hO(1)(X) = d̂eg
(
ĉ1(O(1))n2−n+1| X

)
.

Using Theorem 2 and arguing as in [T5, §4.6], we conclude that the projective
height hO(1)(SO2n/B) is a rational number. The height formula of Kaiser and

Köhler [KK] provides a different proof of this fact. Relating these two approaches
to computing the height to each other seems rather difficult; some first steps in this
direction are taken in [T3, T4].

4.4. Arithmetic Schubert calculus. For any partition λ ∈ Gn and ̟ ∈ Sn,
define

D̂λ,̟ = Dλ,̟(x̂1, . . . , x̂n).

If λ ∈ Gn r Fn−1, let rλ be the largest repeated part of λ, and let λ be the
partition obtained from λ by deleting two (respectively, one) of the parts rλ if
rλ < n (respectively, if rλ = n). If rλ < n, then properties (b), (c) in §1.1, (12),
and (17) imply that

D̂λ,̟ = D̂λ,̟P̃rλ,rλ
(x̂2

1, . . . , x̂
2
n) =

(−1)rλ

4
Dλ,̟(x1, . . . , xn) ∧ c̃2rλ

(E , E
∗
).

If rλ = n, then property (f) in §1.1, (12), and (16) give

D̂λ,̟ = D̂λ,̟P̃n(x̂1, . . . , x̂n) =
1

2
Dλ,̟(x1, . . . , xn) ∧ (

1

2
Hn−1cn−1(E

∗

n) + c̃n(E
∗
)).

Since D̂λ,̟ ∈ a(Ã(XR)) whenever λ ∈ Gn r Fn−1, we will denote these classes

by D̃λ,̟. The next theorem uses the basis of orthogonal Schubert polynomials to

compute arbitrary arithmetic intersections in ĈH(X) with respect to the splitting
(7) induced by (6).
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Theorem 3. Any element of the arithmetic Chow ring ĈH(X) can be expressed

uniquely in the form
∑

w∈fWn

awD̂w +η, where aw ∈ A and η ∈ Ã(XR). For u, v ∈ W̃n

we have

(18) D̂u · D̂v =
∑

w∈fWn

dw
uv D̂w +

∑

λ∈GnrFn−1
̟∈Sn

dλ̟
uv D̃λ,̟,

D̂u · η = Du(x1, . . . , xn) ∧ η, and η · η′ = (ddcη) ∧ η′,

where η, η′ ∈ Ã(XR) and the integers dw
uv, dλ̟

uv are as in (4).

Proof. The first statement is a consequence of the splitting (7). Equation (18) is

a consequence of the formal identity (4) and our definitions of D̂w and D̃λ,̟. The
remaining assertions follow from the structure equations (12). �

We remark that one can refine Theorem 3 by replacing ĈH(X) with the invariant

arithmetic Chow ring ĈHinv(X). Following [T5, §4.5], the ring ĈHinv(X) is obtained
by substituting the space A(XR) with a certain subspace of the space of all SO(2n)-
invariant differential forms on X(C). We leave the details to the reader.
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[KM] K. Künnemann and V. Maillot : Théorèmes de Lefschetz et de Hodge arithmétiques pour
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