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Abstract. We use Young’s raising operators to introduce and study double

eta polynomials, which are an even orthogonal analogue of Wilson’s double

theta polynomials. Our double eta polynomials give Giambelli formulas which
represent the equivariant Schubert classes in the torus-equivariant cohomol-
ogy ring of even orthogonal Grassmannians, and specialize to the single eta

polynomials of Buch, Kresch, and the author.

1. Introduction

Let k be a positive integer and OG = OG(n − k, 2n) be the Grassmannian
which parametrizes isotropic subspaces of dimension n − k in the vector space
C

2n, equipped with an orthogonal form. The eta polynomials Hλ(c) of Buch,
Kresch, and the author [BKT2, T2] are Giambelli polynomials which represent the
Schubert classes in the cohomology ring of OG. Our aim here is to define double

eta polynomials Hλ(c | t) which represent the equivariant Schubert classes in the
equivariant cohomology ring H∗T (OG), where T is a maximal torus of the complex
even orthogonal group. The companion theory of double theta polynomials for the
symplectic and odd orthogonal Grassmannians was provided in [TW]; we refer the
reader there for more information, and to [T1, T2] for the solution of the equivariant
Giambelli problem in general, for any isotropic partial flag variety.

The Schubert classes on OG(n−k, 2n) are parametrized by the k-Grassmannian

elements of the Weyl group W̃n for the root system Dn. The group W̃n is the
subgroup of the hyperoctahedral group consisting of all signed permutations with an

even number of sign changes. We define the embedding W̃n →֒ W̃n+1 by adjoining

the fixed point n+ 1, let W̃∞ := ∪nW̃n, and work initially in the latter group. An

element w = (w1, w2, . . .) of W̃∞ is k-Grassmannian if and only if

|w1| < w2 < · · · < wk and wk+1 < wk+2 < · · · .

Our Giambelli formulas require the equivalent parametrization of the Schubert
classes by the typed k-strict partitions of [BKT1]. An integer partition λ =
(λ1, . . . , λℓ) is k-strict if no part λj greater than k is repeated. A typed k-strict
partition is a pair consisting of a k-strict partition λ together with an integer
type(λ) ∈ {0, 1, 2}, which is positive if and only if λj = k for some index j.

There is a bijection between the k-Grassmannian elements of W̃∞ and typed
k-strict partitions, obtained as follows. If the element w corresponds to the typed
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partition λ, then for each j ≥ 1,

(1) λj =

{
k − 1 + |wk+j | if wk+j < 0,

#{p ≤ k : |wp| > wk+j} if wk+j > 0

while type(λ) > 0 if and only if |w1| > 1, and in this case type(λ) is equal to 1 or
2 depending on whether w1 > 0 or w1 < 0, respectively. Using this bijection, we
attach to any typed k-strict partition λ a finite set of pairs 1

(2) C(λ) := {(i, j) ∈ N× N | 1 ≤ i < j and wk+i + wk+j < 0}

and a sequence β(λ) = {βj(λ)}j≥1 defined by

(3) βj(λ) :=

{
wk+j + 1 if wk+j < 0,

wk+j if wk+j > 0.

For example, the 3-Grassmannian element w = (−4, 6, 8,−5,−2,−1, 3, 7) of W̃8

corresponds to the 3-strict partition λ = (7, 4, 3, 3, 1) of type 2, and we have C(λ) =
{(1, 2), (1, 3), (1, 4), (2, 3)} and β(λ) = (−4,−1, 0, 3, 7).

Let t = (t1, t2, . . .) be a list of commuting variables and z be a formal vari-
able. For any integers j ≥ 0 and r ≥ 1, the elementary and complete symmetric
polynomials ej(t1, . . . , tr) and hj(t1, . . . , tr) are defined by the generating series

r∏

i=1

(1 + tiz) =

∞∑

j=0

ej(t1, . . . , tr)z
j and

r∏

i=1

(1− tiz)
−1 =

∞∑

j=0

hj(t1, . . . , tr)z
j ,

respectively. Let erj(t) := ej(t1, . . . , tr), h
r
j(t) := hj(t1, . . . , tr), and e0j (t) = h0

j (t) =
δ0,j , where δ0,j denotes the Kronecker delta. Furthermore, if r < 0 then define

hr
j(t) := e−rj (t). Let b = (̃bk, b1, b2, . . .) and c = (c1, c2, . . .) be two further families

of commuting variables, and set c0 = b0 = 1 and cp = bp = 0 for any p < 0. These
variables are related by the equations

(4) cp =





bp if p < k,

bk + b̃k if p = k,

2bp if p > k.

For any p, r ∈ Z and for s ∈ {0, 1}, define the polynomials crp and asp by

crp :=

p∑

j=0

cp−j h
r
j(−t) and asp :=

1

2
cp +

p∑

j=1

cp−j h
s
j(−t).

Moreover, define

bsk := bk +

k∑

j=1

ck−j h
s
j(−t) and b̃sk := b̃k +

k∑

j=1

ck−j h
s
j(−t).

An integer sequence α = (α1, α2, . . .) is assumed to have finite support when it
appears as a subscript. For any integer sequences α and ρ, let

ĉρα := ĉρ1

α1
ĉρ2

α2
· · ·

1The condition wk+i + wk+j < 0 in (2) is equivalent to λi + λj ≥ 2k + j − i.
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where, for each i ≥ 1,

ĉρi
αi

:= cρi
αi

+





(2b̃k − ck)e
αi−k
αi−k

(−t) if ρi = k − αi < 0 and i is odd,

(2bk − ck)e
αi−k
αi−k

(−t) if ρi = k − αi < 0 and i is even,

0 otherwise.

The eta polynomials are defined using Young’s raising operators [Y]. The basic
operator Rij for i < j acts on an integer sequence α by the prescription

Rij(α) := (α1, . . . , αi + 1, . . . , αj − 1, . . .).

A raising operator R is any finite monomial in the basic operators Rij . If R :=∏
i<j R

nij

ij is any raising operator and m ≥ 1, denote by suppm(R) the set of all
indices i and j such that nij > 0 and j < m. For any typed k-strict partition λ, we
consider the raising operator expression Rλ given by

(5) Rλ :=
∏

i<j

(1−Rij)
∏

(i,j)∈C(λ)

(1 +Rij)
−1.

Definition 1. Let λ be a typed k-strict partition of length ℓ, let ℓk(λ) denote
the number of parts λi which are strictly greater than k, let m := ℓk(λ) + 1 and
β := β(λ). Let R be any raising operator appearing in the expansion of the power
series Rλ and set ν := Rλ. If type(λ) = 0, then define

R ⋆ ĉβλ = cβν := cβ1

ν1
· · · cβℓ

νℓ

where, for each i ≥ 1,

cβi
νi

:=

{
cβi
νi

if i ∈ suppm(R),

ĉβi
νi

otherwise.

If type(λ) > 0 and R involves any factors Rij with i = m or j = m, then define

R ⋆ ĉβλ := cβ1

ν1
· · · cβm−1

νm−1
aβm
νm

cβm+1

νm+1
· · · cβℓ

νℓ
.

If R has no such factors, then define

R ⋆ ĉβλ :=

{
cβ1

ν1
· · · c

βm−1

νm−1
bβm

k c
βm+1

νm+1
· · · cβℓ

νℓ
if type(λ) = 1,

cβ1

ν1
· · · c

βm−1

νm−1
b̃βm

k c
βm+1

νm+1
· · · cβℓ

νℓ
if type(λ) = 2.

Define the double eta polynomial Hλ(c | t) by

Hλ(c | t) := 2−ℓk(λ)Rλ ⋆ ĉ
β(λ)
λ .

The single eta polynomial Hλ(c) of [BKT2] is given by Hλ(c) = Hλ(c | 0).

Table 1 lists the double eta polynomials indexed by the 1-Grassmannian and

2-Grassmannian elements in W̃3. In the table, the symbols erj and hr
j are used to

denote erj(−t) and hr
j(−t), respectively. As is customary, a bar over an integer is

used to denote a negative sign.
Let {e1, . . . , e2n} denote the standard orthogonal basis of C

2n and let Fi be
the subspace spanned by the first i vectors of this basis, so that F⊥n−i = Fn+i for
0 ≤ i ≤ n. Let Bn denote the stabilizer of the flag F• in the group SO2n(C), and
let Tn be the corresponding maximal torus in the Borel subgroup Bn. The Tn-
equivariant cohomology ring H∗Tn

(OG(n − k, 2n),Z) is defined as the cohomology

ring of the Borel mixing space ETn ×Tn OG. The Schubert cells in OG are the
Bn-orbits, and are indexed by the typed k-strict partitions λ whose Young diagram
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Table 1. Double eta polynomials for Grassmannian w ∈ W̃3

w λ β Hλ(c | t)

123 1
213 1 (1, 3) b1 + h1

1

213 1′ (0, 3) b̃1

123 2 (−1, 3) b2 + b̃1e
1
1

312 (1, 1) (1, 2) (b1 + h1
1)(c1 + h2

1)− (b2 + c1h
1
1 + h1

2)

312 (1, 1)′ (0, 2) b̃1(c1 + h2
1)− b2

132 3 (−2, 2) b3 + b2e
2
1 + b̃1e

2
2

321 (2, 1) (−1, 0) (b2 + b̃1e
1
1)b1 − (b3 + b2e

1
1)

321 (2, 1)′ (−1, 1) (b2 + b̃1e
1
1)(̃b1 + h1

1)− (b3 + b2e
1
1)

231 (3, 1) (−2, 0) (b3 + b2e
2
1 + b̃1e

2
2)b1 − (b4 + b3e

2
1 + b2e

2
2)

231 (3, 1)′ (−2, 1) (b3 + b2e
2
1 + b̃1e

2
2)(̃b1 + h1

1)− (b4 + b3e
2
1 + b2e

2
2)

132 (3, 2) (−2,−1) (b3 + b2e
2
1 + b̃1e

2
2)(b2 + b1e

1
1)

−(b4 + b3e
2
1 + b2e

2
2)(c1 + e11) + (b5 + b4e

2
1 + b3e

2
2)

132 1 2 b1 + h2
1

231 2 1 b2 + b1h
1
1 + h1

2

231 2′ 0 b̃2

132 3 −1 b3 + b̃2e
1
1

123 4 −2 b4 + b3e
2
1 + b̃2e

2
2

fits in an (n − k) × (n + k − 1) rectangle. Any such λ defines a Schubert cell
X◦λ = X◦λ(F•) of codimension |λ| :=

∑
i λi by the prescription

X◦λ := {Σ ∈ OG | dim(Σ ∩ Fq) = #{j | pj(λ) ≤ q} ∀ 1 ≤ q ≤ 2n}

where, for 1 ≤ j ≤ n− k, we have

pj(λ) := n+

{
1− βj(λ) if βj(λ) ∈ {0, 1} and n is odd,

βj(λ) otherwise.

The Schubert variety Xλ is the closure of the Schubert cell X◦λ. Since Xλ is stable
under the action of Tn, we obtain an equivariant Schubert class [Xλ]

Tn := [ETn×
Tn

Xλ] in H∗Tn
(OG(n− k, 2n)).

The natural inclusions W̃n →֒ W̃n+1 of the Weyl groups defined earlier induce
surjections of graded algebras

· · · → H∗Tn+1
(OG(n+ 1− k, 2n+ 2)) → H∗Tn

(OG(n− k, 2n)) → · · ·

and the stable equivariant cohomology ring of OG, denoted by HT (OGk), is the
associated graded inverse limit

HT (OGk) := lim
←−

H∗Tn
(OG(n− k, 2n)).

One identifies here the variables ti with the characters of the maximal tori Tn in a
compatible way, as in [BH, §2] and [IMN1, §10]. We then have that HT (OGk) is a
free Z[t]-algebra with a basis of stable equivariant Schubert classes

τλ := lim
←−

[Xλ]
Tn ,

one for every typed k-strict partition λ.
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Consider the graded polynomial ring Z[b] := Z[̃bk, b1, b2, . . .], where the variable

bi has degree i for each i, and b̃k has degree k. Let J (k) ⊂ Z[b] be the homogeneous
ideal generated by the relations

bpbp +

p∑

i=1

(−1)ibp+icp−i = 0 for p > k,(6)

bk b̃k +
k∑

i=1

(−1)ibk+ibk−i = 0,(7)

where the ci satisfy the relations (4), and define the quotient ring B(k) := Z[b]/J (k).
We call the graded polynomial ring B(k)[t] the ring of double eta polynomials.

The following result establishes the precise connection between the double eta
polynomials Hλ(c | t) and the equivariant Schubert classes on OG, namely, that the
former represent the latter. We regard H∗Tn

(OG(n − k, 2n)) as a Z[t]-module via
the natural projection map Z[t] → Z[t1, . . . , tn].

Theorem 1. The polynomials Hλ(c | t), as λ runs over all typed k-strict partitions,

form a free Z[t]-basis of B(k)[t]. There is an isomorphism of graded Z[t]-algebras

π : B(k)[t] → HT (OGk)

such that Hλ(c | t) is mapped to τλ for every typed k-strict partition λ. For every

n ≥ 1, the morphism π induces a surjective homomorphism of graded Z[t]-algebras

πn : B(k)[t] → H∗Tn
(OG(n− k, 2n))

which maps Hλ(c | t) to [Xλ]
Tn , if λ fits inside an (n − k) × (n + k − 1) rectangle,

and to zero, otherwise.

The map πn in Theorem 1 is induced from the type D geometrization map of
[IMN1, §10] and [T2, §7] (see §4.1). When all the parts λi of the indexing typed
k-strict partition λ are greater than k, then the equality [Xλ]

Tn = πn(Hλ(c | t)) is
equivalent to the Chern class formula for even orthogonal degeneracy loci obtained
by Kazarian [Ka] in 2001. When we set t = 0, Theorem 1 gives the Giambelli
formula for the ordinary Schubert classes on OG from [BKT2, Thm. 1].

Our proof of Theorem 1 follows the argument of [TW], which dealt with the
analogous theory of double theta polynomials Θλ(c | t) for the symplectic Grass-
mannians. Adapting the work of Ikeda and Matsumura [IM], we showed in [TW,
§5] that the Θλ(c | t) are compatible with the action of left divided difference oper-
ators on the polynomial ring Z[c, t]. In the type D framework of the present paper,

we similarly prove that the action of W̃∞ on B(k)[t] lifts to an action on Z[b, t],
and gives rise to divided differences there. In §3.4, we introduce a family of dou-

ble polynomials Ĥλ(c | t) which are indexed by k-strict partitions. These specialize

to the single polynomials Ĥλ(c) of [BKT2, §5.2], are compatible with the divided
differences on Z[b, t], and enjoy properties entirely parallel to those of the double
theta polynomials Θλ(c | t). However, the double eta polynomials Hλ(c | t) are more
subtle: there are instances where the compatibility with divided differences is true
for them only modulo the relation (7) (see Proposition 5 and Remark 1). We con-
clude the proof Theorem 1 by using a formula for the equivariant Schubert class of
a point, which is a special case of the aforementioned result from [Ka].
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It is important to note that the double eta polynomials Hλ(c | t) defined here
are new, and are not equal to the type D double Schubert polynomials of [IMN1]
indexed by the k-Grassmannian elements of the Weyl group, which represent equi-
variant Schubert classes on the complete even orthogonal flag variety. The latter
objects are really formal power series, and are expressed using a different set of
variables which are not intrinsic to the Grassmannian OG(n− k, 2n). The precise
relationship between the two familes of polynomials is discussed in §4.1.

Our research on this article was influenced by three prior works: Kazarian’s
paper [Ka] on degeneracy locus formulas of Pfaffian type, Wilson’s thesis [W], where
double theta polynomials were first defined and studied, and Ikeda and Matsumura’s
article [IM], which exhibited the compatibility of these polynomials with left divided
differences, and proved that they represent equivariant Schubert classes. We thank
each of these authors for their contributions. In recent work, Anderson and Fulton
[AF] have defined a family of double eta polynomials independently, and extended
them further to ‘multi-eta polynomials’, which represent (a power of 2 times) the
classes of certain degeneracy loci of even orthogonal type.

This paper is organized as follows. In Section 2, we define the type D divided
difference operators on Z[b, t] and establish their basic properties. Section 3 proves
the required compatibility of double eta polynomials with divided differences, and

studies the related family of polynomials Ĥλ(c | t). The proof of Theorem 1 is
completed in Section 4, which also describes how the polynomials Hλ(c | t) are
related to the general equivariant Giambelli polynomials of [T1].

Our work on double eta polynomials was announced during the conference ‘IM-
PANGA 15’ which took place in Będlewo, Poland. It is a pleasure to thank the
organizers for their hospitality and for making this stimulating event possible. I
also thank the referee for comments which helped to improve the exposition.

2. Divided difference operators on Z[b, t]

In this section we will work exclusively in the polynomial ring Z[b, t]. We begin

by defining the action of the Weyl group W̃∞ on Z[b, t] by ring automorphisms and
the associated family of t-divided difference operators {∂i}i≥0 on Z[b, t].

The elements of the Weyl group W̃n of type Dn are represented as signed per-
mutations of the set {1, . . . , n} with an even number of negative entries. The group

W̃n is generated by the simple transpositions si = (i, i + 1) for 1 ≤ i ≤ n − 1 and
an element s0 := sB0 s1s

B
0 , where sB0 (1) = 1 denotes the sign change. The action of

W̃∞ on Z[b, t] is defined as follows. The simple reflections si for i > 0 act by inter-
changing ti and ti+1 and leaving all the remaining variables fixed. The reflection
s0 maps (t1, t2) to (−t2,−t1), fixes the tj for j ≥ 3, and satisfies the equations

s0(bp) :=

{
bp − 2(t1 + t2)c

2
p−1 if p < k,

bp − (t1 + t2)c
2
p−1 if p ≥ k

and s0(̃bk) := b̃k − (t1 + t2)c
2
k−1. Observe that for every p ≥ 1, we have

s0(cp) = cp − 2(t1 + t2)c
2
p−1 = cp − 2(t1 + t2)

p−1∑

j=0

(−1)j


 ∑

a+b=j

ta1t
b
2


 cp−1−j .



DOUBLE ETA POLYNOMIALS AND EQUIVARIANT GIAMBELLI FORMULAS 7

It is useful to write this as an equation of generating series

(8) s0

(
∞∑

p=0

cpu
p

)
=

1− t1u

1 + t1u

1− t2u

1 + t2u
·

∞∑

p=0

cpu
p

where u denotes a formal variable such that si(u) = u for each i.
One checks that, with the above definition of si for i ≥ 0, the braid relations for

W̃∞ are satisfied in Z[b, t], and so we obtain a well defined group action. Moreover,

the action of W̃∞ on Z[b, t] induces an action on the quotient ring B(k)[t]. Define
the divided difference operators ∂i on Z[b, t] by

∂0f :=
f − s0f

t1 + t2
, ∂if :=

f − sif

ti+1 − ti
, if i ≥ 1.

The same equations also define operators ∂i on B(k)[t]. These latter correspond to
the left divided differences δi studied in [IMN1]. The previous formulas imply that

∂0(cp) = 2c2p−1 and ∂0(bk) = ∂0(̃bk) = c2k−1.

For every i ≥ 0, the operator ∂i satisfies the Leibnitz rule

∂i(fg) = (∂if)g + (sif)∂ig.

For r < 0 we let t−r := tr. We recall the following basic result from [TW, §1].

Lemma 1. Suppose that p, r ∈ Z.

(a) Assume that r > 0. Then we have

crp = cr−1p − tr c
r
p−1.

(b) Assume that r ≤ 0. Then we have

crp = cr−1p + tr−1 c
r
p−1.

We now prove several identities satisfied by the operators ∂i, analogous to those
shown in [TW, §5]. Observe first that, for r ≥ 1, we have

(9)

∞∑

p=0

crpu
p =

(
∞∑

i=0

ciu
i

)
r∏

j=1

1

1 + tju

while, for r ≤ −1, we have

(10)

∞∑

p=0

crpu
p =

(
∞∑

i=0

ciu
i

)
|r|∏

j=1

(1− tju).

Lemma 2. Suppose that i ≥ 1. We have the identities

si(c
r
p) =





crp if r 6= ±i,

ci+1
p + tic

i+1
p−1 if r = i > 0,

c−i+1
p − ti+1c

−i+1
p−1 if r = −i < 0

and

s0(c
r
p) =





crp if |r| ≥ 2,

c2p − t1c
2
p−1 if r = 1,

c2p − (t1 + t2)c
2
p−1 + t1t2c

2
p−2 if r = 0,

c1p − (t1 + t2)c
1
p−1 + t1t2c

1
p−2 if r = −1.
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Proof. Since crp is symmetric in (t1, . . . , t|r|), the identity si(c
r
p) = crp for r 6= ±i

is clear. If r ≥ 2, then we apply s0 to both sides of (9) and use (8) to show that
s0(c

r
p) = crp for all p; the proof when r ≤ −2 is similar, using (10).

If r = i > 0, then si(c
i
p) = ci+1

p + tic
i+1
p−1 follows from the identity

si

(
1

1 + ti

)
=

1

1 + ti+1
=

1

(1 + ti)(1 + ti+1)
+

ti
(1 + ti)(1 + ti+1)

.

If r = −i < 0, then si(c
−i
p ) = c−i+1

p − ti+1c
−i+1
p−1 follows from si(1− ti) = 1− ti+1.

If r = 1 then equation (9) gives

s0

(
∞∑

p=0

c1pu
p

)
=

1− t1u

(1 + t1u)(1 + t2u)

(
∞∑

p=0

cpu
p

)
= (1− t1u)

(
∞∑

p=0

c2pu
p

)

while if r = −1, equation (10) gives

s0

(
∞∑

p=0

c−1p up

)
=

(1− t1u)(1− t2u)

1 + t1u

(
∞∑

p=0

cpu
p

)
= (1− t1u)(1− t2u)

(
∞∑

p=0

c1pu
p

)
.

The displayed formulas for s0(c
1
p) and s0(c

−1
p ) follow. Finally, we use equation (8)

to compute s0(cp). �

Proposition 1. Suppose that p, r ∈ Z.

(a) For all i ≥ 1, we have

∂ic
r
p =

{
cr+1
p−1 if r = ±i,

0 otherwise.

We have

∂0c
r
p =





c2p−1 if r = 1,

2c2p−1 if r = 0,

2c1p−1 − cp−1 if r = −1,

0 if |r| ≥ 2.

In particular, we have

(11) ∂0c
−1
p = 2a1p−1, ∂1c

−1
p = 2a0p−1, and (∂0 + ∂1)c

−1
p = 2c1p−1.

(b) For all i ≥ 1, we have

(12) ∂i(c
−i
p ciq) = c−i+1

p−1 ci+1
q + c−i+1

p ci+1
q−1.

(c) We have

∂0(c
−1
p c1q) = 2(a1p−1c

2
q + a1pc

2
q−1), ∂1(c

−1
p c1q) = 2(a0p−1c

2
q + a0pc

2
q−1), and(13)

(∂0 + ∂1)(c
−1
p c1q) = 2(c1p−1c

2
q + c1pc

2
q−1).(14)

Proof. For part (a), observe that if i > 0 and r 6= ±i, then the result follows from
Lemma 2 immediately. If r = i > 0, then we compute easily that

∂i

(
∞∑

p=0

crpu
p

)
=

(
∞∑

p=0

cpu
p+1

)
r+1∏

j=1

1

1 + tju

from which the desired result follows. We work similarly when r = −i < 0.
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To evaluate the divided difference ∂0, note, for instance, that

∞∑

p=0

c1pu
p − s0

(
∞∑

p=0

c1pu
p

)
=

(t1 + t2)u

(1 + t1u)(1 + t2u)

(
∞∑

p=0

cpu
p

)

and the computation of ∂0(c
1
p) follows. The rest are evaluated similarly, but we pay

special attention to the third case. We compute using the Leibnitz rule that

∂0(c
−1
p ) = ∂0(cp − t1cp−1) = 2c2p−1 − cp−1 + 2t2c

2
p−2.

However, for any p, we have

c2p+ t2c
2
p−1 = cp+

p−1∑

j=0

cp−1−j(h
2
j+1(−t)+ t2h

2
j (−t)) = cp+

p−1∑

j=0

cp−1−jh
1
j+1(−t) = c1p.

It follows that ∂0(c
−1
p ) = 2c1p−1 − cp−1 = 2a1p−1. Since ∂1(c

−1
p ) = cp−1 = 2a0p−1, the

equations (11) follow.
For part (b), use the Leibnitz rule and Lemmas 1 and 2 to compute

∂i(c
−i
p ciq) = ∂i(c

−i
p )ciq + si(c

−i
p )∂i(c

i
q)

= c−i+1
p−1 ciq + (c−i+1

p − ti+1c
−i+1
p−1 )ci+1

q−1

= c−i+1
p−1 (ciq − ti+1c

i+1
q−1) + c−i+1

p ci+1
q−1

= c−i+1
p−1 ci+1

q + c−i+1
p ci+1

q−1.

We finally establish the equations (13) and (14). An application of (12) gives

∂1(c
−1
p c1q) = cp−1c

2
q + cpc

2
q−1 = 2(a0p−1c

2
q + a0pc

2
q−1).

The Leibnitz rule implies that

∂0(c
−1
p c1q) = 2a1p−1c

1
q + s0(c

−1
p )c2q−1

= 2a1p−1(c
2
q + t2c

2
q−1) + (c1p − (t1 + t2)c

1
p−1 + t1t2c

1
p−2)c

2
q−1

= 2a1p−1c
2
q + (c1p − t1c

1
p−1 + t2(c

1
p−1 − cp−1 + t1c

1
p−2))c

2
q−1

= 2a1p−1c
2
q + (2c1p − cp)c

2
q−1 = 2(a1p−1c

2
q + a1pc

2
q−1).

where we employed the identity c1q = c2q+t2c
2
q−1 and, in the second to last equation,

the identity c1p = cp − t1c
1
p−1 twice. This completes the proof. �

We will require certain variations of the previous identities. Set ap := a0p = 1
2cp

for each integer p. Let fk be a variable of degree k, which will be equal to bk, b̃k,
or ak, depending on the context. For s ∈ {0, 1}, define

fs
k := fk +

k∑

j=1

ck−jh
s
j(−t),

set f̃k := ck − fk, and f̃s
k := ck − 2fk + fs

k . For any p, r ∈ Z, define ĉrp by

ĉrp := crp +

{
(2fk − ck)e

p−k
p−k(−t) if r = k − p < 0,

0 otherwise.
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Lemma 3. Suppose that i ≥ 1. We then have the identities

si(ĉ
r
p) =





ĉrp if r 6= ±i,

ĉi+1
p + tiĉ

i+1
p−1 if r = i > 0,

ĉ−i+1
p − ti+1ĉ

−i+1
p−1 if r = −i < 0.

Moreover, if |r| ≥ 2, then s0(ĉ
r
p) = ĉrp.

Proof. If p > k, then we have that

ĉk−pp = ck−pp + (2fk − ck)e
p−k
p−k(−t).

Since si((2fk−ck)e
p−k
p−k(−t)) = (2fk−ck)si(e

p−k
p−k(−t)), the identity si(ĉ

p−k
p ) = ĉp−kp

for p− k 6= ±i is clear. If p−k = −i, then si(ĉ
−i
p ) = ĉ−i+1

p − ti+1ĉ
−i+1
p−1 follows from

the corresponding identity of Lemma 2 and the calculation

si(e
i
p−k(−t)) = ei−1p−k(−t)− ti+1e

i−1
p−1−k(−t).

We have ĉk−pp = ck−pp +(−1)p−k(2fk − ck)t1 · · · tp−k. If p− k ≥ 2, then s0 leaves all

terms on the right hand side invariant, and hence s0(ĉ
k−p
p ) = ĉk−pp . The remaining

equalities follow from Lemma 2. �

Proposition 2. Suppose that p ∈ Z and p > k.

(a) For all i ≥ 1, we have

∂iĉ
k−p
p =





ĉk−p+1
p−1 if i = p− k ≥ 2,

2fk if i = p− k = 1,

0 otherwise.

We have

∂0ĉ
k−p
p =

{
2f̃1

k if k − p = −1,

0 if k − p < −1.

In particular, we have

(15) ∂0ĉ
−1
k+1 = 2f̃1

k , ∂1ĉ
−1
k+1 = 2fk, and (∂0 + ∂1)ĉ

−1
k+1 = 2c1k.

(b) For all i ≥ 2, we have

(16) ∂i(ĉ
−i
p ciq) = ĉ−i+1

p−1 ci+1
q + ĉ−i+1

p ci+1
q−1.

(c) We have

∂0(ĉ
−1
k+1c

1
q) = 2(f̃1

k c
2
q + a1k+1c

2
q−1),(17)

∂1(ĉ
−1
k+1c

1
q) = 2(fkc

2
q + a0k+1c

2
q−1), and(18)

(∂0 + ∂1)(ĉ
−1
k+1c

1
q) = 2(c1kc

2
q + c1k+1c

2
q−1).(19)

Proof. Recall that

ĉk−pp = ck−pp + (2fk − ck)e
p−k
p−k(−t).

For part (a), observe that if p− k 6= i ≥ 1, then the result follows from Lemma
2. If i = p− k ≥ 2, then we compute that

∂i

(
(2fk − ck)e

p−k
p−k(−t)

)
= (2fk − ck)∂ie

i
p−k(−t) = (2fk − ck)e

i−1
p−1−k(−t)

from which the desired result follows. For p = k + 1, we have

ĉ−1k+1 = c−1k+1 + t1(ck − 2fk)
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and we compute that

∂1(ĉ
−1
k+1) = ck − (ck − 2fk) = 2fk.

The fact that ∂0ĉ
k−p
p = 0 for k− p < −1 follows immediately from Lemma 3. Since

Proposition 1(a) gives ∂0(c
−1
k+1) = 2c1k − ck, we deduce that

(20) ∂0(ĉ
−1
k+1) = 2c1k − 2fk = 2f̃1

k .

This completes the proof of part (a).
Part (b) follows from the Leibnitz rule and Lemmas 1 and 3, exactly as in the

proof of (12). For part (c), use (13) to compute that

∂1(ĉ
−1
k+1c

1
q) = ∂1(c

−1
k+1c

1
q + (ck − 2fk)t1c

1
q)

= ∂1(c
−1
k+1c

1
q) + (ck − 2fk)∂1(t1c

1
q)

= (ckc
2
q + ck+1c

2
q−1)− (ck − 2fk)c

2
q

= 2fkc
2
q + ck+1c

2
q−1.

We similarly have

∂0(ĉ
−1
k+1c

1
q) = ∂0(c

−1
k+1c

1
q + (ck − 2fk)t1c

1
q)

= ∂0(c
−1
k+1c

1
q) + (ck − 2fk)∂0(t1c

1
q)

= 2(a1kc
2
q + a1k+1c

2
q−1) + (ck − 2fk)c

2
q

= (2c1k − 2fk)c
2
q + 2a1k+1c

2
q−1.

�

Proposition 3. Suppose that p, q ∈ Z. We have

∂0(c
−1
p a0q) = 2(a1p−1c

2
q + a1pc

2
q−1)− 2a1p−1a

1
q(21)

∂0(c
−1
p f̃0

k ) = 2(a1p−1c
2
k + a1pc

2
k−1)− 2a1p−1f

1
k(22)

∂0(ĉ
−1
k+1a

0
q) = 2(f̃1

k c
2
q + a1k+1c

2
q−1)− 2f̃1

ka
1
q, and(23)

∂0(ĉ
−1
k+1f̃

0
k ) = 2(f̃1

k c
2
k + a1k+1c

2
k−1)− 2f̃1

kf
1
k .(24)

We also have

∂1(c
−1
p a1q) = 2(a0p−1c

2
q + a0pc

2
q−1)− 2ap−1aq(25)

∂1(c
−1
p f1

k ) = 2(a0p−1c
2
k + a0pc

2
k−1)− 2ap−1f̃k(26)

∂1(ĉ
−1
k+1a

1
q) = 2(f0

k c
2
q + a0k+1c

2
q−1)− 2fkaq, and(27)

∂1(ĉ
−1
k+1f

1
k ) = 2(f0

k c
2
k + a0k+1c

2
k−1)− 2fkf̃k.(28)

Proof. To prove equation (21), we use (13), the Leibnitz rule, and the observation
that ∂0(a

1
q) = 0, to compute

∂0(c
−1
p a0q) = ∂0(c

−1
p c1q)− ∂0(c

−1
p a1q) = 2(a1p−1c

2
q + a1pc

2
q−1)− 2a1p−1a

1
q.

Since ∂0(f
1
k ) = ∂0(c

1
k − f̃k) = c2k−1 − c2k−1 = 0, we similarly have that

∂0(c
−1
p f̃0

k ) = ∂0(c
−1
p c1k)− ∂0(c

−1
p f1

k ) = 2(a1p−1c
2
k + a1pc

2
k−1)− 2a1p−1f

1
k .

We compute using (17) that

∂0(ĉ
−1
k+1a

0
q) = ∂0(ĉ

−1
k+1c

1
q)− ∂0(ĉ

−1
k+1a

1
q) = 2(f̃1

k c
2
q + a1k+1c

2
q−1)− 2f̃1

ka
1
q.
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We similarly have

∂0(ĉ
−1
k+1f̃

0
k ) = ∂0(ĉ

−1
k+1c

1
k)− ∂0(ĉ

−1
k+1f

1
k ) = 2(f̃1

k c
2
k + a1k+1c

2
k−1)− 2f̃1

kf
1
k .

The proof of equations (25)–(28) is analogous, applying (13) and (18). �

3. Double eta polynomials

3.1. A basis theorem. For the rest of this paper, we will sometimes write equali-
ties that hold only in the ring B(k)[t], where we have imposed the relations (6) and
(7) on the generators bp. Whenever these relations are needed, we will emphasize

this by noting that the equalities are true in B(k)[t] rather than in Z[b, t].
We begin this section with a basis theorem for the Z[t]-algebra B(k)[t]. For any

typed k-strict partition λ of length ℓ, with m := ℓk(λ) + 1, we define bλ ∈ Z[b] as
follows. If type(λ) = 0, then set cλ := cλ1

· · · cλℓ
, while if type(λ) > 0, define

cλ :=

{
cλ1

· · · cλm−1
bk cλm+1

· · · cλℓ
if type(λ) = 1,

cλ1
· · · cλm−1

b̃k cλm+1
· · · cλℓ

if type(λ) = 2.

Finally, define bλ := 2−ℓk(λ) cλ.

Proposition 4. The monomials bλ, the single eta polynomials Hλ(c), and the

double eta polynomials Hλ(c | t) form three Z[t]-bases of B(k)[t], as λ runs over all

typed k-strict partitions.

Proof. It follows from [BKT1, Thm. 3.2] that the elements bλ and the single eta
polynomials Hλ(c) for λ a typed k-strict partition form two Z-bases of B(k). We
deduce that these two families are also Z[t]-bases of B(k)[t]. By expanding the
raising operator definition of Hλ(c | t), we obtain that

Hλ(c | t) = bλ +
∑

µ

aλµ bµ

where aλµ ∈ Z[t] and the sum is over typed k-strict partitions µ with µ ≻ λ in
dominance order or |µ| < |λ|. Therefore, the Hλ(c | t) for λ typed and k-strict form
another Z[t]-basis of B(k)[t]. �

3.2. The left weak Bruhat order on W̃∞. The length of an element w in W̃∞
is denoted by ℓ(w). It follows, for example, from [BB, p. 253] that

ℓ(w) = #{i < j | wi > wj}+
∑

i :wi<0

(|wi| − 1)

for each w ∈ W̃∞. We deduce the following lemma.

Lemma 4. Suppose that w is a k-Grassmannian element of W̃∞.

(a) We have ℓ(s0w) < ℓ(w) if and only if w = (· · · 2 · · · ).

(b) Assume that i ≥ 1. We have ℓ(siw) < ℓ(w) if and only if w has one of the

following four forms:

(· · · i+ 1 · · · i · · · ) (· · · i · · · i+ 1 · · · ) (i · · · i+ 1 · · · ) (· · · i+ 1 · · · i · · · ).
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Let λ and µ be two typed k-strict partitions, set w := wλ, w′ := wµ, β := β(λ),

β′ := β(µ), and assume that w = siw
′ holds for some simple reflection si ∈ W̃∞.

It follows that µ ⊂ λ, so µ is obtained by removing a single box from λ, and hence
µp = λp − 1 for some p ≥ 1 and µj = λj for all j 6= p. Moreover, we must have
type(λ) + type(µ) 6= 3.

Using Lemma 4, we distinguish seven possible cases for w, discussed below. In
each case, the properties listed follow immediately from equations (1), (2), and (3).
First, we consider the four cases with i ≥ 1:

(a) w = (· · · i + 1 · · · i · · · ). In this case C(λ) = C(µ), βp = i, β′p = i + 1, while
βj = β′j for all j 6= p.

(b) w = (· · · i · · · i+ 1 · · · ). In this case C(λ) = C(µ), βp = −i, β′p = −i + 1, and
βj = β′j for all j 6= p.

(c) w = (i · · · i+ 1 · · · ). In this case w1 = i, type(λ) = 2 if i ≥ 2, C(λ) = C(µ),
βp = −i, β′p = −i+ 1, and βj = β′j for all j 6= p.

(d) w = (· · · i+ 1 · · · i · · · ). We distinguish two subcases here: Case (d1): w1 6=
i+ 1. Then C(λ) = C(µ) ∪ {(p, q)}, where wk+p = i+ 1 and wk+q = i. It follows
that βp = −i, βq = i, β′p = −i+1 = βp +1, and β′q = i+1 = βq +1, while βj = β′j
for all j /∈ {p, q}. Case (d2): w1 = i+ 1 and we have w−1(i) > k. In this case
type(λ) = 2, C(λ) = C(µ), βp = i, β′p = i+ 1, and βj = β′j for all j 6= p.

Next, we consider the three cases where i = 0.

(e) w = (1̂ · · · 2 · · · ). In this case C(λ) = C(µ), βp = −1, and β′p = 0 if w1 = 1,

while β′p = 1 if w1 = 1. We also have βj = β′j for all j 6= p.

(f) w = (2 · · · 1̂ · · · ). In this case C(λ) = C(µ), β′p = 2, and βp = 0 if wk+p = 1,
while βp = 1 if wk+p = 1. We also have βj = β′j for all j 6= p.

(g) w = (· · · 21 · · · ), with |w1| > 2. In this case C(λ) = C(µ) ∪ {(p, p + 1)}, where
wk+p = 2 and wk+p+1 = 1. It follows that λp = k+1, λp+1 = k, βp = −1, βp+1 = 0,
while µp = µp+1 = k, β′p = 1, β′p+1 = 2, and βj = β′j for all j /∈ {p, p+ 1}.

3.3. Double eta polynomials and divided differences. We are now ready to
establish the fundamental result about the compatibility of the polynomials Hλ(c | t)
with left divided differences.

Proposition 5. Let λ and µ be typed k-strict partitions such that |λ| = |µ|+1 and

wλ = siwµ for some simple reflection si ∈ W̃∞. Then we have

∂iHλ(c | t) = Hµ(c | t)

in B(k)[t].

Proof. Let w = wλ and w′ = wµ, where λ and µ are typed and such that w = siw
′

holds. We are in the situation of §3.2, hence µp = λp − 1 for some p ≥ 1 and
µj = λj for all j 6= p. Set β = β(λ). Let ǫj denote the j-th standard basis vector
in Z

ℓ. We now distinguish the following cases.

Case 1. type(λ) = type(µ) = 0.

Note that we have |w1| = |w′1| = 1, and hence i ≥ 2 and ℓk(λ) = ℓk(µ). We
must be in one among cases (a), (b), or (d1) of §3.2. In cases (a) or (b), it follows
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from Propositions 1 and 2 and the Leibnitz rule that for any integer sequence
α = (α1, . . . , αℓ), we have

∂iĉ
β(λ)
α = ĉ

(β1,...,βp−1)

(α1,...,αp−1)

(
∂i(ĉ

βp
αp
)ĉ

(βp+1,...,βℓ)

(αp+1,...,αℓ)
+ si(ĉ

βp
αp
)∂i(ĉ

(βp+1,...,βℓ)

(αp+1,...,αℓ)
)
)

= ĉ
(β1,...,βp−1)

(α1,...,αp−1)

(
ĉ
βp+1
αp−1

ĉ
(βp+1,...,βℓ)

(αp+1,...,αℓ)
+ si(ĉ

βp
αp
) · 0

)
= ĉ

(β1,...,βp+1,...,βℓ)

(α1,...,αp−1,...,αℓ)
= ĉ

β(µ)
α−ǫp .

Since λ− ǫp = µ, it follows that if R is any raising operator, then

∂i(R ⋆ ĉ
β(λ)
λ ) = ∂i(c

β(λ)
Rλ ) = c

β(µ)
Rλ−ǫp

= R ⋆ ĉβ(µ)µ .

As Rλ = Rµ, we deduce that

∂iHλ(c | t) = 2−ℓk(λ)∂i(R
λ ⋆ ĉ

β(λ)
λ ) = 2−ℓk(µ)Rµ ⋆ ĉβ(µ)µ = Hµ(c | t).

In case (d1), for any integer sequence α = (α1, . . . , αℓ), we compute that

∂iĉ
β(λ)
α = ∂iĉ

(β1,...,−i,...,i,...,βℓ)
(α1,...,αp,...,αq,...,αℓ)

= ĉ
(β1,...,−i+1,...,i+1,...,βℓ)
(α1,...,αp−1,...,αq,...,αℓ)

+ ĉ
(β1,...,−i+1,...,i+1,...,βℓ)
(α1,...,αp,...,αq−1,...,αℓ)

= ĉ
β(µ)
α−ǫp + ĉ

β(µ)
α−ǫq .

This follows from the Leibnitz rule, as in the proof of Proposition 1(b). If R is
any raising operator, then since i ≥ 2 we must have q > ℓk(λ) and hence q /∈
suppm(RRpq), where m = ℓk(µ) + 1. As λ− ǫp = µ, we deduce that

∂i(R ⋆ ĉ
β(λ)
λ ) = ∂i(c

β(λ)
Rλ ) = c

β(µ)
Rλ−ǫp

+ c
β(µ)
Rλ−ǫq

= R ⋆ ĉβ(µ)µ +RRpq ⋆ ĉ
β(µ)
µ .

Since Rλ +RλRpq = Rµ, it follows that ∂iHλ(c | t) = Hµ(c | t).

Case 2. type(λ) = 0 and type(µ) > 0.

In this case, we have |w1| = 1 and |w′1| > 1, so i ∈ {0, 1}. We must be in one
of cases (b), (c), or (e) of §3.2, hence C(λ) = C(µ). We also have λp = k + 1 and
λp+1 < k, so (p, p+ 1) /∈ C(λ), βp(λ) = −1, βp(µ) ∈ {0, 1}, and ℓk(λ) = ℓk(µ) + 1.

Observe that, for any integer sequence α = (α1, . . . , αℓ), we have

∂iĉ
β(λ)
α = ĉ

(β1,...,βp−1)

(α1,...,αp−1)

(
∂i(ĉ

−1
αp

)ĉ
(βp+1,...,βℓ)

(αp+1,...,αℓ)
+ si(ĉ

−1
αp

)∂i(ĉ
(βp+1,...,βℓ)

(αp+1,...,αℓ)
)
)

= ĉ
(β1,...,βp−1)

(α1,...,αp−1)
∂i(ĉ

−1
αp

)ĉ
(βp+1,...,βℓ)

(αp+1,...,αℓ)
.

We now compute using Propositions 1 and 2(a) that

∂1ĉ
−1
q =

{
2a0q−1 if q 6= k + 1

2fk if q = k + 1.

Proposition 1(a) and equation (20) give

∂0ĉ
−1
q =

{
2a1q−1 if q 6= k + 1

2f̃1
k if q = k + 1.

The rest is straightforward from the definitions, arguing as in Case 1.

Case 3. type(λ) > 0 and type(µ) = 0.

We have |w1| > 1 and |w′1| = 1, so i ∈ {0, 1}, and we are in one of cases (a), (d2),
or (f) of §3.2, hence C(λ) = C(µ). We also have λp = k, βp(λ) ∈ {0, 1}, βp(µ) = 2,
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and ℓk(λ) = ℓk(µ). Recall that ĉrp = crp whenever p ≤ k, b1k = c1k − b̃k, b̃
1
k = c1k − bk,

and asp = csp −
1
2cp. We deduce the calculations

∂0bk = ∂0b̃k = ∂1b
1
k = ∂1b̃

1
k = c2k−1

∂0a
0
p = ∂1a

1
p = c2p−1.

As in the previous cases, it follows that ∂iHλ(c | t) = Hµ(c | t).

Case 4. type(λ) = type(µ) > 0.

We have |w1| > 1 and |w′1| > 1. If i ≥ 2, then we must be in one of cases (a),
(b), (c), or (d1) of §3.2, and the result is proved by arguing as in Case 1. It remains
to study (i) case (d1) with w = (· · · 21 · · · ) and i = 1, or (ii) case (g) with w =
(· · · 21 · · · ) and i = 0. In both of these subcases, we have C(λ) = C(µ)∪{(p, p+1)},
ℓk(λ) = ℓk(µ) + 1, λp = k + 1, λp+1 = µp = µp+1 = k, βp(λ) = −1, βp+1(µ) = 2,
and βj(λ) = βj(µ) for all j /∈ {p, p + 1}. In subcase (i), we have βp+1(λ) = 1 and
βp(µ) = 0, while in subcase (ii), we have βp+1(λ) = 0 and βp(µ) = 1.

To deal with subcase (i), we argue as in Case 1 (d1), this time applying the
identities (25)–(28). There is now an added complication: we must show that the
total contribution from the four residual terms that appear with a negative sign
in equations (25)–(28) vanishes. To prove this, we may assume that λ has length
p + 1, and consider the effect of the raising operators R in the expansion of Rλ

which involve only basic operators Rij with i = p or j = p+ 1.
An integer sequence α = (α1, . . . , αℓ) is a composition if αi ≥ 0 for all i. For any

composition α, let |α| :=
∑

i αi and #α denote the number of non-zero components
αi. The relevant raising operator expression is

Ψ :=

(
p−1∏

i=1

1−Rip

1 +Rip

)(
p−1∏

i=1

1−Ri,p+1

1 +Ri,p+1

)
1−Rp,p+1

1 +Rp,p+1

=
∑

α′,α,d≥0

(−1)|α
′|+|α|+d 2#(α′,α,d)

(
p−1∏

i=1

R
α′

i

ip Rαi

i,p+1

)
Rd

p.p+1

where the sum is over all compositions α′ = (α′1, . . . , α
′
p−1), α = (α1, . . . , αp−1),

and integers d ≥ 0. If ν = (ν1, . . . , νp−1) is a fixed integer vector, then (−1/2) times

the total residual term in the expansion of ∂1(Ψ c
(β1,...,βp+1)

(ν,k+1,k) ) is equal to

(29) Sν :=
∑

α′,α,d≥0

(−1)|α
′|+|α|+d 2#(α′,α,d) c

(β1,...,βp−1)
ν+α′+α ak−|α′|+d ak−|α|−d.

The two factors aq in each summand of (29) are equal to aq, fk, or f̃k, according to
the equations (25)–(28) and depending on the choice of α′, α, and d, as in Definition
1. We now make a change of variables in the sum (29) by setting ρ := α′ + α and
r := |α|+ d, to obtain

(30) Sν =
∑

ρ≥0

(−1)|ρ| c
(β1,...,βp−1)
ν+ρ

k∑

r=0

T (ρ, r)

where the first sum is over all compositions ρ and

T (ρ, r) := (−1)r ak−|ρ|+r ak−r
∑

0≤α≤ρ

|α|≤r

(−1)|α| 2#(ρ−α,α,r−|α|).
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We compute that

k∑

r=0

T (0, r) = fkf̃k + 2

k∑

r=1

(−1)rak+rak−r = bk b̃k +

k∑

r=1

(−1)rbk+rbk−r ∈ J (k).

It follows that the sum of the terms in (30) with ρ = 0 vanishes in B(k)[t]. We
claim that the sum of all the remaining terms in (30) is identically zero.

Lemma 5. Let ρ be a non-zero composition. If r > |ρ|, then T (ρ, r) = 0, while if

0 ≤ r ≤ |ρ|, then T (ρ, r) + T (ρ, |ρ| − r) = 0.

Proof. The argument is based on the elementary identity

(31)

s∑

i=0

(−1)i 2#(s−i,i) = δs,0.

By multiplying together a finite number of equations of the form (31), we obtain

(32)
∑

0≤α≤ρ

(−1)|α| 2#(ρ−α,α) = δρ,0

for any composition ρ, where the sum is over all compositions α with α ≤ ρ.
Assume now that ρ 6= 0. If r > |ρ|, then using (32) gives

T (ρ, r) = (−1)r ak−|ρ|+r ak−r · 2
∑

0≤α≤ρ

(−1)|α| 2#(ρ−α,α) = 0.

If 0 < r < |ρ|, then

(33) T (ρ, r) = (−1)rak−|ρ|+r ak−r
∑

0≤α≤ρ

|α|≤r

(−1)|α| 2#(ρ−α,α,r−|α|)

and the substitution α′ := ρ− α gives

(34) T (ρ, |ρ| − r) = (−1)rak−r ak−|ρ|+r

∑

0≤α′≤ρ

|α′|≥r

(−1)|α
′| 2#(ρ−α′,α′,|α′|−r).

Adding (33) to (34) and applying (32) gives T (ρ, r) + T (ρ, |ρ| − r) = 0.
Finally, we have

T (ρ, 0) = 2#ρ ak−|ρ|f̃k

while

T (ρ, |ρ|) = (−1)|ρ|akak−|ρ|
∑

0≤α≤ρ

(−1)|α| 2#(ρ−α,α,|ρ|−|α|)

= 2#ρ fkak−|ρ| + 2akak−|ρ|
∑

0≤α≤ρ
α 6=ρ

(−1)|ρ|−|α| 2#(ρ−α,α).

Since fk + f̃k = 2ak, adding the previous equations and applying (32) again shows
that T (ρ, 0) + T (ρ, |ρ|) = 0. �

Using Lemma 5 in equation (30) proves the claim, and completes the argument
in subcase (i). The proof for subcase (ii) is similar, this time using the equations
(21)–(24) and the relation

f̃1
kf

1
k + 2

k∑

r=1

(−1)ra1k+ra
1
k−r = 0
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in B(k)[t], which is easily checked. �

Remark 1. The proof of Proposition 5 establishes that the equality ∂iHλ(c | t) =
Hµ(c | t) holds in Z[b, t] in all cases of §3.2 except case (d1) with i = 1 or case (g)
with i = 0. In each of the latter two cases, we need to use the relation (7) exactly
once. The basic example that illustrates this is the equality

(35) ∂iH(k+1,k)(c | t) = H(k,k)(c | t),

where i ∈ {0, 1} and both of the indexing partitions have the same (positive) type.
Equation (35) is true in B(k)[t], but fails in Z[b, t].

3.4. The polynomials Ĥλ(c | t). In this subsection we define and study a closely

related family of polynomials Ĥλ(c | t) indexed by k-strict partitions λ. The poly-

nomials Ĥλ(c) := Ĥλ(c | 0) were studied in [BKT2, §5.2]. As explained in op.

cit., Ĥλ(c) represents the cohomology class of a certain Zariski closed subset Yλ

of OG(n − k, 2n), which is either a Schubert variety or a union of two Schubert

varieties. The double polynomials Ĥλ(c | t) similarly represent the Tn-equivariant
cohomology class [Yλ]

Tn in H∗Tn
(OG), under the geometrization map πn defined in

§4.1; this follows immediately from their definition below and Theorem 1.
If λ is any k-strict partition, define the finite set of pairs

C(λ) := {(i, j) ∈ N× N | 1 ≤ i < j and λi + λj ≥ 2k + j − i}

and the sequence β(λ) = {βj(λ)}j≥1 by

βj(λ) := k − λj +#{i < j | (i, j) /∈ C(λ)}+

{
1 if λj ≤ k

0 if λj > k,
for all j ≥ 1.

We have C(λ) = C(λ) and β(λ) = β(λ), where λ denotes the unique typed k-strict
partition which has the same shape as λ, and with the property that βj(λ) 6= 0, for

each j ≥ 1. For comparison with [BKT2], we note that βj(λ) = pj(λ) − n, where
pj(λ) is the function defined in the introduction of op. cit.

If λi = k for some index i, then we agree that Hλ(c | t) and H ′λ(c | t) denote
the double eta polynomials indexed by λ of type 1 and 2, respectively; otherwise,
Hλ(c | t) denotes the associated double eta polynomial indexed by λ of type zero.
We define the raising operator expression Rλ by equation (5), as before.

Definition 2. For any k-strict partition λ, let m := ℓk(λ) + 1 and β := β(λ). If
R is any raising operator appearing in the expansion of the power series Rλ and
ν := Rλ, define

R ⋆ ĉ
β(λ)
λ := cβ1

ν1
· · · cβℓ

νℓ

where for each i ≥ 1,

cβi
νi

:=

{
c
βi
νi if i ∈ suppm(R),

ĉ
βi
νi otherwise.

The polynomial Ĥλ(c | t) is defined by

Ĥλ(c | t) := 2−ℓk(λ)Rλ ⋆ ĉ
β(λ)
λ =

{
Hλ(c | t) +H ′λ(c | t) if λi = k for some i,

Hλ(c | t) otherwise.

Table 2 lists the double eta hat polynomials associated to the Grassmannian

elements in W̃3. We have retained the negative powers of 2 in this table for clarity.
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Table 2. Double eta hat polynomials for Grassmannian w ∈ W̃3

w λ β Ĥλ(c | t)

123 1
213, 213 1 (1, 3) c1 + h1

1

123 2 (−1, 3) 1

2
(c2 + 2b̃1e

1
1)

312, 312 (1, 1) (1, 2) (c1 + h1
1)(c1 + h2

1)− (c2 + c1h
1
1 + h1

2)

132 3 (−2, 2) 1

2
(c3 + c2e

2
1 + 2b̃1e

2
2)

321,321 (2, 1) (−1, 1) 1

2
((c2 + 2b̃1e

1
1)(c1 + h1

1)− 2(c3 + c2e
1
1))

231, 231 (3, 1) (−2, 1) 1

2
((c3 + c2e

2
1 + 2b̃1e

2
2)(c1 + h1

1)− 2(c4 + c3e
2
1 + c2e

2
2))

132 (3, 2) (−2,−1) 1

4
((c3 + c2e

2
1 + 2b̃1e

2
2)(c2 + 2b1e

1
1)

−2(c4 + c3e
2
1 + c2e

2
2)(c1 + e11) + 2(c5 + c4e

2
1 + c3e

2
2))

132 1 2 c1 + h2
1

231, 231 2 1 c2 + c1h
1
1 + h1

2

132 3 −1 1

2
(c3 + 2b̃2e

1
1)

123 4 −2 1

2
(c4 + c3e

2
1 + 2b̃2e

2
2)

Proposition 6. Let λ and µ be two k-strict partitions with |λ| = |µ|+ 1. Assume

that there exist a simple reflection si ∈ W̃∞ and a choice of type assigned to λ and

µ such that wλ = siwµ in W̃∞. Then the following assertions hold in Z[b, t].

(i) If type(λ) = type(µ) = 0, then i ≥ 2 and

∂iĤλ(c | t) = Ĥµ(c | t).

(ii) If type(λ) = 0 and type(µ) > 0, then i ∈ {0, 1} and

(∂0 + ∂1)Ĥλ(c | t) = Ĥµ(c | t).

(iii) If type(λ) > 0 and type(µ) = 0, then i ∈ {0, 1} and

∂0Ĥλ(c | t) = ∂1Ĥλ(c | t) = Ĥµ(c | t).

(iv) If type(λ) = type(µ) > 0, then

∂iĤλ(c | t) = Ĥµ(c | t),

if i ≥ 2, and

(∂0 + ∂1)Ĥλ(c | t) = Ĥµ(c | t),

if i ∈ {0, 1}.

Proof. We will only give the outline of the proof of claims (i)–(iv) here, as the
argument is very similar to the proof of Proposition 5, only easier, because the
relation (7) is never used. Recall the seven possible cases (a)–(g) for wλ from §3.2.

For claim (i), or claim (iv) when i ≥ 2, we must be in one among cases (a), (b),
(c), or (d1) of §3.2, and the proof is exactly as in Proposition 5. We are left with
examining the claims (ii), (iii), and (iv) when i ∈ {0, 1}. For claim (ii), we must be
in one of cases (b), (c), or (e), and we use equations (11) and (15). For claim (iii),
we are in one of cases (a), (d2), or (f), and use the computation

∂0c
1
p = ∂1c

1
p = c2p−1.

Finally, for claim (iv) we must be in case (d1) with w = (· · · 21 · · · ) and i = 1, or
in case (g) with w = (· · · 21 · · · ) and i = 0. The result follows as in claim (i), case
(d1), but now using equations (14) and (19). �
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4. The proof of Theorem 1

4.1. The geometrization map. Let

0 → E′ → E → E′′ → 0

denote the universal exact sequence of vector bundles over OG(n− k, 2n), with E
the trivial bundle of rank 2n and E′ the tautological subbundle of rank n− k. For
0 ≤ j ≤ 2n, define the subbundles Fj of E as in the introduction. Let OMn :=
ETn ×Tn OG denote the Borel mixing space for the action of the torus Tn on OG.
The Tn-equivariant vector bundles E′, E,E′′, Fj over OG induce vector bundles over
OMn, and their equivariant Chern classes in H∗(OMn,Z) = H∗Tn

(OG(n − k, 2n))

are denoted by cTp (E
′), cTp (E), cTp (E

′′), and cTp (Fj).

The class cTp (E −E′−Fj) for p ≥ 0 is defined by the total Chern class equation

cT (E − E′ − Fj) := cT (E)cT (E′)−1cT (Fj)
−1.

Let ti := −cT1 (Fn+1−i/Fn−i) for 1 ≤ i ≤ n. Following [IMN1, §10] and [T2, §7], we
define the geometrization map πn as the Z[t]-algebra homomorphism

πn : B(k)[t] → H∗Tn
(OG(n− k, 2n))

determined by setting

πn(bp) :=

{
cTp (E − E′ − Fn) if p < k,
1
2c

T
p (E − E′ − Fn) if p > k,

πn(bk) :=
1

2
(cTk (E − E′ − Fn) + cTk (En − E′)),

πn(̃bk) :=
1

2
(cTk (E − E′ − Fn)− cTk (En − E′)),

πn(ti) :=

{
ti if 1 ≤ i ≤ n,

0 if i > n.

Here En denotes a maximal isotropic subbundle of the (pullback of) E to the
complete flag variety, which is in the same family as Fn. Note that the images of

the elements bp, b̃k, cp in the ring of type D Billey-Haiman Schubert polynomials
[BH] are given in [BKT2, §5] by the power series ηp(x ; y), η′k(x ; y), ϑp(x ; y),
respectively, and, using this, the equations defining πn are derived in [T2, §7.4].
For more information on the image of the double eta polynomials Hλ(c | t) in the
ring of type D double Schubert polynomials of [IMN1], see [T3, §4.5].

The above equations imply that πn(cp) = cTp (E − E′ − Fn) for all p ≥ 0. Since
t1 . . . , tr are the (equivariant) Chern roots of Fn+r/Fn for 1 ≤ r ≤ n, it follows
that

(36) πn(c
r
p) =

p∑

j=0

cTp−j(E − E′ − Fn)h
r
j(−t) = cTp (E − E′ − Fn+r)

for −n ≤ r ≤ n. Equation (36) can be extended to any r ∈ Z if we set Fj = F2n = E
for j > 2n and Fj = 0 for j < 0. Moreover, for s := p− k > 0, we have

πn(ĉ
−s
p ) = πn(c

−s
p + (2fk − ck)e

s
s(−t)) = cTp (E − E′ − Fn−s)± eT (E′, Fn−s),
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where the sign depends on the choice of fk ∈ {bk, b̃k}, as above, and the equivariant
Euler class eT (E′, Fn−s) is given by

eT (E′, Fn−s) := cTp (En/E
′ + Fn/Fn−s) = cTk (En − E′)cTs (Fn − Fn−s).

The embedding of W̃n into W̃n+1 defined in the introduction induces maps of
equivariant cohomology rings H∗Tn+1

(OG(n+1− k, 2n+2)) → H∗Tn
(OG(n− k, 2n))

which are compatible with the morphisms πn. We therefore obtain an induced
Z[t]-algebra homomorphism

π : B(k)[t] → HT (OGk).

The above map π is the one that appears in Theorem 1, and we proceed to show
that it has the properties listed there.

4.2. Proof of Theorem 1. The argument is similar to the one found in [TW,
§6.3], but we include the details here for completeness. Fix a rank n and let

λ0 := (n+ k − 1, n+ k − 2, . . . , 2k)

be the typed k-strict partition associated to the k-Grassmannian element of maxi-

mal length in W̃n. Definition 1 gives

(37) Hλ0
(c | t) = 2k−n Rλ0

n−k ⋆ c
(1−n,2−n,...,−k)
λ0

where

Rλ0

n−k :=
∏

1≤i<j≤n−k

1−Rij

1 +Rij

.

Using (37) and the equations of §4.1, one checks that πn(Hλ0
(c | t)) agrees with a

known formula of Kazarian [Ka] for the cohomology class of the degeneracy locus
which correponds to [Xλ0

]Tn . Although the final result in [Ka, App. D] is expressed
as a Pfaffian, this is not required for the application here. (The equivalence of the
two formulas is a consequence of some formal Pfaffian algebra from [Ka, Kn]; for a
detailed discussion of this, see [AF, App. A]). It follows that

(38) πn(Hλ0
(c | t)) = [Xλ0

]Tn .

We have shown in Proposition 4 that the Hλ(c | t) for λ a typed k-strict partition

form a Z[t]-basis of B(k)[t]. Let P̃(k, n) denote the set of all typed k-strict partitions
whose diagrams fit inside a rectangle of size (n − k) × (n + k − 1). The elements

of P̃(k, n) correspond to the k-Grassmannian elements of W̃n under the bijection

described in the introduction. Let wλ denote the element of W̃n associated to λ
under this bijection.

Following [TW, §6.3], for any typed k-strict partition λ ∈ P̃(k, n), write wλwλ0
=

sa1
· · · sar

as a product of simple reflections saj
in W̃n, with r = |λ0| − |λ|. Since

w2
λ0

= 1, Proposition 5 implies that

(39) Hλ(c | t) = ∂a1
◦ · · · ◦ ∂ar

(Hλ0
(c | t))

holds in B(k)[t].
The left divided differences δi on H∗Tn

(OG(n − k, 2n)) from [IMN1, §2.5] corre-

spond to the operators ∂i on B(k)[t], and are compatible with the geometrization
map πn : B(k)[t] → H∗Tn

(OG(n − k, 2n)). Moreover, it is known by [IMN1, Prop.
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2.3] that δi([Xλ]
Tn) = [Xµ]

Tn whenever |λ| = |µ|+1 and wλ = siwµ for some simple
reflection si. It follows from this and equations (38) and (39) that

πn(Hλ(c | t)) = [Xλ]
Tn .

The vanishing property for equivariant Schubert classes (see, for example, [IMN1,

Prop. 7.7]) now implies that πn(Hλ(c | t)) = 0 whenever λ /∈ P̃(k, n) (or equivalently

wλ /∈ W̃n). The induced map π : B(k)[t] → HT (OGk) satisfies π(Hλ(c | t)) = τλ
for all typed k-strict partitions λ, and is a Z[t]-algebra isomorphism because the
Hλ(c | t) and τλ for λ k-strict and typed form Z[t]-bases of the respective algebras.

4.3. A splitting theorem for Hλ(c | t). In this subsection, following [TW, Cor.
2], we apply Theorem 1 to compare the double eta polynomials Hλ(c | t) of the
present paper with the general degeneracy locus formulas of [T1, §6].

The symmetric group Sn is the subgroup of W̃n generated by the transpositions

si for 1 ≤ i ≤ n − 1; we let S∞ := ∪nSn be the corresponding subgroup of W̃∞.
For every permutation u ∈ S∞, let Su(t) denote the type A Schubert polynomial
of Lascoux and Schützenberger [LS] indexed by u (our notation follows [T2, §5]).
The Su(t) for u ∈ S∞ form a free Z-basis of the polynomial Z[t]. We deduce from
Proposition 4 that the products Hµ(c)Su(−t) where µ ranges over all typed k-strict

partitions and u ∈ S∞ form a free Z-basis of B(k)[t]. The following result gives the
unique expansion of (the class of) the double eta polynomial Hλ(c | t) in B(k)[t] as
a Z-linear combination of this product basis.

We say that a factorization wλ = uv in W̃∞ is reduced if ℓ(wλ) = ℓ(u) + ℓ(v).
In any such factorization, the right factor v = wµ is also k-Grassmannian for some
typed k-strict partition µ.

Corollary 1. Let λ be any typed k-strict partition. Then we have

(40) Hλ(c | t) =
∑

uwµ=wλ

Hµ(c)Su−1(−t)

in the ring B(k)[t], where the sum is over all reduced factorizations uwµ = wλ with

u ∈ S∞.

Proof. As a special case of the splitting and degeneracy locus formulas of [T1, §6],
we deduce that the polynomial on right hand side of (40) represents the stable
equivariant Schubert class τλ in HT (OGk) under the geometrization map π. The
result is therefore a direct consequence of Theorem 1. �

It is tempting to view Corollary 1 as a separation of the variables b and t in
Hλ(c | t). However equation (40) does not hold in the polynomial ring Z[b, t] for a
general λ, as it depends on the relations (6) and (7) among the bp.

4.4. The Grassmannian OG(n, 2n). We conclude this paper with a short dis-
cussion of the situation when k = 0, so that OG = OG(n, 2n) parametrizes one
connected component of the space of all isotropic subspaces of C

2n of maximal
dimension n. One knows that this variety is isomorphic (in fact, projectively equiv-
alent) to the odd orthogonal Grassmannian OG(n− 1, 2n− 1). Moreover, one can
arrange that this isomorphism is torus-equivariant, and hence induces an isomor-
phism of equivariant cohomology rings (see e.g. [IMN2, §3.5]). It follows that the
double theta polynomials Θλ(c | t) of [TW] times the appropriate negative power of
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2, which represent the equivariant Schubert classes on OG(n−1, 2n−1), also serve
as equivariant Giambelli polynomials for OG(n, 2n) (compare with [IMN2]).
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