SCHUBERT POLYNOMIALS AND ARAKELOV THEORY OF
SYMPLECTIC FLAG VARIETIES

HARRY TAMVAKIS

ABSTRACT. Let X = Sp,,, /B the flag variety of the symplectic group. We
propose a theory of combinatorially explicit Schubert polynomials which rep-
resent the Schubert classes in the Borel presentation of the cohomology ring
of X. We use these polynomials to describe the arithmetic Schubert calculus
on X. Moreover, we give a method to compute the natural arithmetic Chern
numbers on X, and show that they are all rational numbers.

0. INTRODUCTION

Let X = Sp,,,/B be the flag variety for the symplectic group Sp,,, of rank n. The
cohomology (or Chow) ring of X has a standard presentation, due to Borel [Bo], as
a quotient ring Z[x1,...,X,|/I,, where the variables x; come from the characters
of B and I, is the ideal generated by the invariant polynomials under the action
of the Weyl group of Sp,,,. On the other hand, the cohomology H*(X,Z) is a free
abelian group with basis given by the classes of the Schubert varieties in X.

The aim of a theory of Schubert polynomials is to provide an explicit and natural
set of polynomial representatives for the Schubert classes in the above Borel presen-
tation of the cohomology ring. Using a construction of Bernstein-Gelfand-Gelfand
[BGG] and Demazure [D1, D2], one has an algorithm for obtaining a family of
polynomials which represent the Schubert classes, by applying divided difference
operators to a polynomial T,,, representing the class of a point in X. For the usual
SL,, flag varieties, Lascoux and Schiitzenberger [LS] observed that one special choice
of T\, leads to polynomials that represent the Schubert classes simultaneously for
all sufficiently large n. These type A Schubert polynomials are the most natural
ones to use from the point of view of combinatorics and of geometry; they describe
the degeneracy loci of maps of vector bundles (see [F1, BKTY, KMS]) and are the
prototype for any proposed theory of Schubert polynomials in the other Lie types.

For the purposes of the present paper, our interest in Schubert polynomials is
due to their utility in studying the deformations of the cohomology ring of X which
appear in quantum cohomology and in the extension of Arakelov theory to higher
dimensions due to Gillet and Soulé [GS1]. With this latter application in mind,
we observed in [T2, T3, T4] that a suitable theory of polynomials should provide a
lifting of the Schubert calculus from the quotient ring Z[X,]/I,, to the ring Z[X,]
of all polynomials in X,, = (x1,...,X,). In addition, one would like to have strong
control over which polynomials are contained in the ideal I,, of relations; this was
called the ideal property in [T3].
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The search for a good theory of Schubert polynomials in types B, C, and D has
received much attention in the past (see e.g. [BH, FK, F2, F3, KT1, LP1, LP2]).
The best understood theory from the combinatorial point of view appears to be
that of Billey and Haiman [BH], whose Schubert polynomials form a Z-basis for a
polynomial ring in infinitely many variables. Unfortunately, when expressed in their
most explicit form, the Billey-Haiman polynomials are not suitable for the above
mentioned applications, because the variables used are not geometrically natural.

This problem is already apparent in the case of the Lagrangian Grassmannian
LG = Sp,,,/Pn, where P, denotes the maximal parabolic subgroup associated to
the right end root in the Dynkin diagram of type C,,. The Billey-Haiman Schubert
polynomials for the Schubert classes which pull back to X from LG coincide with
the Schur @-functions [S], but the latter are not polynomials in the Chern roots
of any homogeneous vector bundle over LG. For the geometric applications to
degeneracy loci and elsewhere, one may instead use the @—polynomials of Pragacz
and Ratajski [PR]. Indeed, we showed in [T4] and [KT2] that the latter objects
control the arithmetic and quantum Schubert calculus on LG, respectively.

In the first part of this article, we introduce a new theory of symplectic Schubert
polynomials €,,(X,,), which are to the Billey-Haiman Schubert polynomials what
the é—polynomials are to the Schur @Q-functions. The €, are defined as linear
combinations of products of @—polynomials with type A Schubert polynomials, with
coefficients given by combinatorially explicit integers which appear in the Billey-
Haiman theory. Furthermore, the polynomials €, extend to a Z-basis of the full
polynomial ring Z[X,,], which has the ideal property mentioned above. Although
they represent the Schubert classes in the Borel presentation of H*(%X,Z), the €,
do not respect the divided difference operator given by the sign change, and thus
differ from the previously known type C Schubert polynomials.

In the second half of the paper, we use the polynomials €, to describe the
arithmetic Schubert calculus on X, in its natural smooth Chevalley model over
SpecZ. Arithmetic Schubert calculus is concerned with the multiplicative structure
of the Gillet-Soulé arithmetic Chow ring éﬁ(.’{), expressed in terms of certain
(carefully chosen!) arithmetic Schubert classes. The present study is thus a belated
sequel to [T2], which examined arithmetic intersection theory on SL,, flag varieties.
As noted in the introduction to [T2], the hermitian differential geometry required
to develop the theory for Sp,,, /B was available at that time; what was lacking was
the theory of Schubert polynomials which is provided here.

The arithmetic scheme X parametrizes, over any base field k, all partial flags of
subspaces

O=FCE, C---CE,CEy,=F

with dim(E;) = i for each ¢ and E,, isotropic with respect to the skew diagonal
symplectic form on E. Let E be the trivial vector bundle of rank 2n over X
equipped with a trivial hermitian metric on E(C) compatible with the symplectic
form. The metric on F(C) induces metrics on all the subbundles E;(C), giving a
hermitian filtration of E. For 1 < i < n, let L; denote the quotient line bundle
Eni1-i/E,_; with the induced hermitian metric on L;(C), and set 7; = —¢;(L;),
where ¢;(L;) is the arithmetic first Chern class of L;.

Let h € Z[X,] be any polynomial in the ideal I,,. We provide an algorithm
to compute the arithmetic intersection h(Z1,...,7,) in CH(X), as the class of an
explicit Sp(2n)-invariant differential form on X(C). In particular, we show that all



SCHUBERT POLYNOMIALS AND ARAKELOV THEORY 3

arithmetic Chern numbers on X involving the Z; are rational numbers (Theorem
2). The key relations in the ring @(%) required for this calculation involve the
Bott-Chern forms of hermitian fitrations over X. As in [T2], these differential forms
are identified with certain polynomials in the entries of the curvature matrices of
the homogeneous vector bundles over X. Using a computation of Griffiths and
Schmid [GrS], the latter entries may be expressed in terms of Sp(2n)-invariant
differential forms on Sp(2n). Finally, our main result (Theorem 3) describes the
arithmetic Schubert calculus on X using the structure constants for the product of
two symplectic Schubert polynomials €, in the polynomial ring Z[X,,].

The paper is organized as follows. In §1 we provide some combinatorial pre-
liminaries on Qv-polynomials and the Lascoux-Schiitzenberger and Billey-Haiman
Schubert polynomials. We introduce our theory of symplectic Schubert polynomi-
als in §2.2 and derive some of their basic properties in §2.3. Section 3 includes
the main facts from the hermitian differential geometry of X(C) that we require.
The Bott-Chern forms of hermitian filtrations are discussed in §3.1 and the curva-
ture of the relevant homogeneous vector bundles over X is computed in §3.2. The
arithmetic intersection theory of X is studied in §4. Our method for computing
arithmetic intersections is explained in §4.3, the arithmetic Schubert calculus is de-
scribed in §4.4, while §4.5 examines the invariant arithmetic Chow ring of X. The
theory developed in these sections can be used to compute the Faltings height of X
under its pluri-Pliicker embedding in projective space; this application is given in
§4.6. Section 4.7 works out the example of Sp,/B explicitly.

The results of this article on Schubert polynomials and arithmetic intersection
theory have analogues for the orthogonal flag varieties. This theory is discussed
in detail in [T5]. Part of this project was announced at the Oberwolfach meeting
on Arakelov Geometry in September of 2005. I wish to thank the organizers Jean-
Benoit Bost, Klaus Kiinnemann, and Damian Roessler for making this stimulating
event possible.

1. PRELIMINARY DEFINITIONS

1.1. @- and @-functions. A partition A\ = (\q,...,\,) is a finite sequence of
weakly decreasing nonnegative integers; the set of all partitions is denoted II. The
sum Y \; of the parts of A is the weight |\| and the number of (nonzero) parts A;
is the length £(\) of A\. We set A, = 0 for any r > ¢()\). A partition is strict if all
its nonzero parts are distinct. Let G, = {A € IT | A\; < n} and let D, be the set of
strict partitions in G,. If A € D,,, we let A’ denote the partition in D,, whose parts
complement the parts of A in the set {1,...,n}.

Let X = (x1,X2,...) be a sequence of commuting independent variables. The
elementary symmetric functions e;, = e (X) are defined by the equation

D Xt =TT +xit).
k=0 i=1
The polynomial ring A = Z[ej,es,...] is the ring of symmetric functions in the

variables X. Following Pragacz and Ratajski [PR], for each partition A\, we define
a symmetric polynomial Q) € A as follows: initially, set Q. = e for k > 0. For i, j
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nonnegative integers, let

J
Qij = QiQ; +2 Z(—l)’"QHTQj,T.
r=1
If A is a partition of length greater than two and m is the least positive integer with
2m > £(\), then set

Qx = Pfaffian(Qx, x, )1<i<j<2m-

These Q-functions are modelled on Schur’s Q-functions [S], and enjoy the following
properties:

(a) The Q(X) for A € I form a Z-basis of A.

(b) Qr.p(X) = ex(X2) := ex(x2,x2,...) for all k.

() IEA=(A1,..., ) and AT =AU (k, k) = (M1, ...,k k,..., \) then
Qx+ = QuiQx.

(d) The coefficients of @ (X) are nonnegative integers.

Let A,, = Z[xy, . ..,%,]°" be the ring of symmetric polynomials in X,, = (xy,...,X,).
Then we have an additional property

(e) If Ay > n, then @,\(Xn) =0. The Qv,\(Xn) for A € G,, form a Z-basis of A,,.

Suppose that Y = (y1,y2,...) is a second sequence of variables and define sym-
metric functions ¢x(Y") by using the generating series

kZ:OQk(Y)tk*il;[ll_yit-

Let T' = Z[q1,q2...] and define a ring homomorphism 1 : A — T by setting
n(ex(X)) = qr(Y) for each k > 1. Jézefiak [Jo] showed that the kernel of n is
the ideal gencrated by the e, (X2) for k > 0; it follows that n(Qx) = 0 unless A
is a strict partition. Moreover, if pp(X) = x¥ + x5 + --- denotes the k-th power
sum, then we have n(px(X)) = 2pi(Y), if k is odd, and n(pr(X)) =0, if & > 0 is
even. For any strict partition A, the Schur Q-function Q(Y") may be defined as the
image of @ A(X) under n. The Q) for strict partitions A have nonnegative integer
coefficients and form a free Z-basis of T

1.2. Divided differences and type A Schubert polynomials. Let S,, denote
the symmetric group of permutations of the set {1,...,n}; the elements w of S,
are written in single-line notation as (w(1),w@(2),...,w(n)) (as usual we will write
all mappings on the left of their arguments). Now S, is the Weyl group for the root
system A,,_; and is generated by the simple transpositions s; for 1 < i < n — 1,
where s; interchanges i and ¢ + 1 and fixes all other elements of {1,...,n}.

The hyperoctahedral group W,, is the Weyl group for the root system C,,. The
elements of W,, are permutations with a sign attached to each entry, and we will
adopt the notation where a bar is written over an element with a negative sign. W,
is an extension of S;, by an element sy which acts on the right by

(u1,ug, ..., up)so = (U1, Uz, ..., Up).
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A reduced word of w € W, is a sequence a ...a, of elements in {0,1,...,n — 1}
such that w = s,, -+ - 84, and r is minimal (so equal to the length ¢(w) of w). The
elements of maximal length in S,, and W,, are

wo=(n,n—1,...,1) and wo=(1,2,...,7)

respectively.

The group W,, acts on the ring Z[X,,] of polynomials in X,;: the transposition s;
interchanges x; and x;41 for 1 <1 < n — 1, while sy replaces x; by —x; (all other
variables remain fixed). The ring of invariants Z[X,]"" is the ring of polynomials
in Z[X,] symmetric in X2 = (x3,...,x2). Following [BGG] and [D1] [D2], there
are divided difference operators 0; : Z[X,] — Z[X,]. For 1 <1i < n — 1 they are
defined by

9i(f) = (f —sif)/(xi —Xis1)
while

9o(f) = (f —sof)/(2x1),
for any f € Z[X,,]. For each w € W,,, define an operator 9,, by setting

awzaalo"'Oaar

if ay ...a, is a reduced word of w.
For every permutation w € S,,, Lascoux and Schiitzenberger [LS] defined a type
A Schubert polynomial &4 (X,,) € Z[X,] by

Gw(Xpn) = Op-1m, (x?71x372 . -Xn,l) .

This definition is stable under the natural inclusion of S,, into S,41, hence the
polynomial &,, makes sense for w € Sy, = U ;S,,. The set {&,,} for w € S
is a free Z-basis of Z[X] = Z[x1,X2,...]. Furthermore, the coefficients of &,, are
nonnegative integers with combinatorial significance (see e.g. [BJS, BKTY]).

1.3. Billey-Haiman Schubert polynomials. We regard W,, as a subgroup of
Whp+1 in the obvious way and let W, denote the union U2, W,. Let Z =
(21, 22,-..) be a third sequence of commuting variables. In their fundamental pa-
per [BH], Billey and Haiman defined a family {C,, }wew., of Schubert polynomials
of type C, which are a free Z-basis of the ring I'[Z]. The expansion coefficients
for a product C,C, in the basis of Schubert polynomials agree with the Schubert
structure constants on symplectic flag varieties for sufficiently large n. For every
w € W, there is a unique expression

(1) Cow = Z e")’\}’wQ)\(Y)Gw(Z)

A strict
wESn

where the coefficients e}  are nonnegative integers. We proceed to give a combi-
natorial interpretation of these numbers.

A sequence a = (aq, ..., ay) is called unimodal if for some r with 0 < r < m, we
have

ap >ag > > < Qpygpg < 00 < Q-

Let w € W,, and A be a Young diagram with r rows such that |A| = ¢(w). A
Kraskiewicz tableau for w of shape A is a filling T of the boxes of A with nonnegative
integers in such a way that

a) If ¢; is the sequence of entries in the i-th row of T, reading from left to right,
then the row word ¢, ...t; is a reduced word for w.
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b) For each ¢, t; is a unimodal subsequence of maximum length in ¢, ... ¢;41¢;.
Example 1. Let A € D,,, £ = {()\), and k =n—£ = £(\'). The barred permutation
wy = (Xl,...,Xg, %,,)\/1)

is the maximal Grassmannian element of W,, corresponding to A\. There is a unique
Kragkiewicz tableau for w)y, which has shape A, and is given as in the following
example, for A = (7,4, 3):

6543210

3210

210.

According to [BH, Theorem 3], the polynomial C,, satisfies
Cw = Z Fu(Y)Gv(Z)7

summed over all reduced factorizations uv = w in W, (i.e., such that £(u) +£(v) =
{(w)) with v € Ss. The left factors F,(Y') are type C Stanley symmetric functions
of [BH, FK, La]. In addition, Lam [La] has shown that for any u € W,

F(Y) =3t QaY)
A
where c} equals the number of Kraskiewicz tableaux for u of shape A. By combining
these two facts, we deduce the next result.

Proposition 1 (BH, La). For every w € W, the coefficient € o in (1) is equal to
the number of Kraskiewicz tableauz for ww =" of shape \, if {(ww ™) = £(w)—L(w),
and equal to zero otherwise.

2. SYMPLECTIC SCHUBERT POLYNOMIALS

2.1. Isotropic flags and Schubert varieties. Consider the vector space C2"
with its canonical basis {e;}?"; of unit coordinate vectors. We define the skew
diagonal symplectic form [ , ] on C?" by setting [e;,e;] = 0 for i +j # 2n + 1
and [e;, ean41—¢] = 1 for 1 <4 < n. The symplectic group Sps,, (C) is the group of
linear automorphisms of C2" preserving the symplectic form. The upper triangular
matrices in Sp,,, form a Borel subgroup B.

An n-dimensional subspace ¥ of C2" is called Lagrangian if the restriction of the
symplectic form to 3 vanishes. Let X = Sp,,,/B be the variety parametrizing flags
of subspaces

0=FEyCE C-CE,CEy=C"
with dim E; = ¢ and F,, Lagrangian. Each such flag can be extended to a complete
flag E, in C2" by letting E,; = Ei- , for 1 < i < n; we will call such a flag a
complete isotropic flag. The same notation is used to denote the tautological flag
E, of vector bundles over X.
There is a group monomorphism ¢ : W,, < S5, with image

d(Wp) ={w € San | w(i) +w(2n+1—4i)=2n+1, foralli}.
The map ¢ is determined by setting, for each w = (w1,...,wy,) € Wy and 1 <i < n,

N | n+1—wyyi-; if wpg1—; is unbarred,
¢(w)(i) = { N+ Wpa1—i otherwise.
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Let F, be a fixed complete isotropic flag. For every w € W,, define the Schubert
variety X,,(F,) C X as the locus of F, € X such that

dim(E, NFy) > #{i<r|¢(w)(i) >2n—s} for 1<r<n,1<s<2n.

The Schubert class o, in H%(“’)(.’{, Z) is the cohomology class which is Poincaré
dual to the homology class determined by X, (F,).
According to Borel [Bo], the cohomology ring H* (X, Z) is presented as a quotient

(2) H*(X,Z) 2 Z[x1,...,xu)/In

where I, is the ideal generated by all positive degree W, -invariants in Z[X,,], that
is, I, = (e;(X2), 1 <i < n). The inverse of the isomorphism (2) sends the class of
x; t0 —¢1(Ept1—i/Fn—;) for each i with 1 < i <mn.

2.2. Symplectic Schubert classes and Schubert polynomials. For every A €
Gn and w € S, define the polynomial €, o = €, - (X,) by

O = A (Xn)Sw(—Xp) = (1) QA (Xn) S (X0).

The products @A(XH)GW(XH) for A € D,, and @ € S, form a basis for the poly-
nomial ring Z[X,] as a Z[X,,]""-module, which was introduced and studied by
Lascoux and Pragacz [LP1]. We observe here that the € »(X,,) for A € G,, and
w € S, form a basis of Z[xy, ..., X,] as an abelian group. Moreover, properties (b)
and (c) of Q-polynomials ensure that for A € G,, . D, we have Crw(Xy) € I,

Definition 1. For w € W, define the symplectic Schubert polynomial €, =
Cy(Xy) by

(3) ¢y = Z eK”w(‘:)\,w(Xn)

AEDn
wESn

where the coefficients e}  are the same as in (1) and Proposition 1.

Theorem 1. The symplectic Schubert polynomial €,,(X,) is the unique Z-linear
combination of the € (X,,) for A\ € D,, and w € S, which represents the Schubert
class 0., in the Borel presentation (2).

Proof. For each w € W,,, the Billey-Haiman polynomial C,, represents the Schubert
class o, in the Borel presentation after a certain change of variables. Recall that a
partition is odd if all its non-zero parts are odd integers. For each partition u, let
Pu = [ I; Pu;» where p, denotes the r-th power sum. The p,(Y) for u odd form a
Q-basis of I' ®7 Q. We therefore have a unique expression

(4) Co= Y alimpu(Y)6x(2)

wodd
wESp

in the ring T'[Z] ®7 Q.

Let podda = (p1,P3,D5,--.). Define a polynomial Cy,(poda(X), X,—1) in the vari-
ables pg := pr(X) for k odd and xy,...,x,_1 by substituting px(Y) with pg(X)/2
and z; with —x; in (4). It is shown in [BH, §2] that the polynomial C,(X,) :=
Cuw(Podd(Xn), Xp—1) obtained by setting x; = 0 for all i > n in Cy(Podd(X), Xn-1)
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represents the Schubert class oy, in the Borel presentation (2). Using Jézefiak’s
homomorphism 7 from §1.1, we see that

Z e;ﬁwék (X)Gw(*xn)

A strict
wESn

differs from Cy (podda(X), Xn—1) by an element in the ideal of A[X,,_1] generated by
the e;(X?) for i > 0. Since the ideal I, is generated by the polynomials e;(X2), and
@,\(Xn) = 0 whenever \; > n, it follows that €, represents the Schubert class o,
in the presentation (2), as required.

We claim that the €y  for A € G, \ D,, and @w € S,, form a free Z-basis of I,,.
To see this, note that if & is an element of I,, then h(X,) = >, ;(X2) f;(X,,) for
some polynomials f; € Z[X,]. Now each f; is a unique Z-linear combination of the
¢, for p € G, and w € S,, and properties (b) and (c) of §1.1 give

ei(X2) € o (Xn) = Qi.i(Xn) € (Xn) = Cuisiiviy oo (Xan)-

We deduce that any h € I, lies in the Z-linear span of the €, , for A € G, \ D,
and w € S,,. Since the €, 5 for A € G,, and w € ), are linearly independent, this
proves the claim and the uniqueness assertion in the theorem. O

We remark that the statement of Theorem 1 may serve as an alternative defini-
tion of the symplectic Schubert polynomials €, (X,,).

2.3. Properties of symplectic Schubert polynomials. We give below some
basic properties of the polynomials €,,(X,,).

(a) The set
{€p |lweW,tU{& o | A€G, Dy, we Sy}

is a free Z-basis of the polynomial ring Z[x1, ...,x,]. The €,  for A € G, \D,, and
@ € S, span the ideal I, of Z[x1,...,x,] generated by the ¢;(X2) for 1 < i < n.

(b) For every u,v € W, we have an equation

A
(5) ¢, ¢, = E Copy Cop + E o o
weW,, AEGn~Dn
wESn
in the ring Z[xy, ..., x,]. The coefficients ¢!, are nonnegative integers, which vanish

unless /(w) = £(u) + ¢(v), and agree with the structure constants in the equation

of Schubert classes
w
Oy - Oy = g Cooy O
n

which holds in H*(X,Z). The coefficients c¢,@ are integers, some of which may be

negative. Equation (5) provides the sought for lifting of the Schubert calculus from
the cohomology ring H*(%,Z) to Z[xy,. .., x,] discussed in the Introduction.

(c) Stability property: For each m < n let i = iy, , : Wy, — W, be the natural
embedding using the first m components. Then for any w € W,,, we have

Tmp1="=Tp=0

(d) For a maximal Grassmannian element wy € W,,, we have €,,(X,,) = Qx(X,,).



SCHUBERT POLYNOMIALS AND ARAKELOV THEORY 9

(e) For w € S,, and w € W,,, we have

D€, = {(1)l(w) Covw If l(ww) = b(w) — l(w),

0 otherwise.
(f) Let vo = wowo = (m,n — 1,...,1). Then for every w € S, we have
CvoW(Xn) = Qpn (Xn)GW(_Xn),
where p, = (n,n — 1,...,1). In particular, for the element wy € W,, of longest

length we have

oo (Xn) = @pn (Xn) Gy (—Xn) = (_1)7l(n_1)/2x71171X72172 o 'anlépn (Xn)-

Thus €, (X,,) agrees with the symplectic Schubert polynomial of Lascoux, Pragacz,
and Ratajski [LP1, Appendix A] indexed by wy. However these two families of
polynomials do not coincide, because unlike the Schubert polynomials of loc. cit.,
the €, do not respect the divided difference operator d.

(g) To any w € W,, we associate a strict partition p whose parts are the absolute
values of the negative entries of w. Let v € S, be the permutation of maximal
length such that there exists a factorization w = wv with ¢(w) = £(u) 4+ £(v) for

w

some u € W,,. Then €, , is the unique homogeneous summand ey &, o of €, in
equation (3) with the weight |A| as small as possible.

(h) Lascoux and Pragacz [LP1, §1] define a Z[X,,]""-linear scalar product
() Z0Xa] X Z[Xa] — Z[K ]
by

(f,9) = (=1)"""D20,,(fg)
for any f,g € Z[X,]. The set of symplectic Schubert polynomials {€,,(X,)}wew,
and the polynomials {€x - (X,)}rep, wes, form two bases for the polynomial ring
Z[X,] as a Z[X2]-module. If A\, u € D, and p,7 € S, are such that £(p) + £(7) <
n(n —1)/2, then we have the orthogonality relation

©) @ urh = {
Furthermore, if u,v € W,, are such that £(u) + ¢(v) < n?, then we have

|1 i v =wou,
(7) (Cu, &) = { 0 otherwise.

1 if w=X and 7= wgp,
0 otherwise.

The proof of Theorem 1 established that the € o, for A € G, \D,, and w € 5,
form a basis of I,. The remaining statements in properties (a) and (b) follow
because the €, for w € W,, form a basis of Z[X,,]/I,. Properties (c), (d), (e), (g)
may be derived from the corresponding properties of the Billey-Haiman Schubert
polynomials, and (f) is a consequence of (e).

Equation (6) is proved by factoring the divided difference operator 0y, = Oy, 0wy,
where vy = wowg, noting that

<¢)\7P(Xn)7 €M77T(Xn)> = (_1)n(n_1)/2avo(@A(Xn)éu(xn))awo(6p(_Xn)67r(_Xn))a

and using the corresponding properties of the inner products defined by 0,, and
Ow,, which are derived in [LP1, (10)] and [M, (5.4)], respectively. The relation (7)
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may be deduced from (6) and property (g) above, or by using the fact that the
Schubert classes o, = €,(X,,) and o, = €,(X,,) satisfy

/ Oy " Oy = 5u,w0'u~
x

Example 2. The list of all symplectic Schubert polynomials &, for w € Ws is
given in Table 1. These polynomials are displayed according to the eight orbits
of the symmetric group S3 on W3. The Schubert polynomials in each orbit are
easily computed from the unique one of highest degree by applying type A divided
difference operators, using property (e). The reader should compare this table with
[BH, Table 2] and [LP1, Appendix A].

Example 3. Let n = 6 and consider the (non-maximal) Grassmannian element
w = 126543. The symplectic Schubert polynomial for w is given by

Cw = Qos1 S1a5236 — (é65 + @641) S245136 — Qo5 S146235
+ (@64 + ésu) S345126 + Qoa Saa6135 — Q54 Sza6125-
The corresponding Billey-Haiman Schubert polynomial is given by

Cw = Qs71 + (Qs7 + Qs61) S124356 + (Qs6 + Qs51) 134256 + (Qs6 + Q761) S125346
+ (Qs5 + Qs41) G234156 + (Qss5 + Q751 + Q76) S135246 + Q76 S126345
+ (@84 + Q75 + Qra1) Ga35146 + (Q75 + Qo51) S145236 + Q75 S136245
+ (Q74 + Qo5 + Qoa1) G245136 + Q74 G236145 + Qo5 S146235
+ (Qo4 + Q541) G3a5126 + Qo1 S246135 + Q54 S346125-

3. HERMITIAN DIFFERENTIAL GEOMETRY

3.1. Bott-Chern forms. In this section X denotes a complex manifold, and
AP9(X) is the space of C-valued smooth differential forms of type (p,q) on X. Let
A(X) = P, APP(X) and A'(X) C A(X) be the set of forms ¢ in A(X) which can be
written as ¢ = 9+ 01’ for some smooth forms 7, 7', Define A(X) = A(X)/A'(X).
Observe that the operator dd¢ : A(X) — A(X) is well defined, as is the cup product
Aw : E(X) — Z(X) for any closed form w in A(X).

A hermitian vector bundle on X is a pair E = (E, h) consisting of a holomorphic
vector bundle E over X and a hermitian metric h on E. Let D be the hermitian
holomorphic connection of E, with curvature K = D? € AY1(X, End(E)), and let
n denote the rank of E. For each integer k with 1 < k < n, there is an associ-
ated Chern form cy(E) := Tr(/\k(ﬁ[()) € AR*(X), defined locally by identifying
End(E) with M, (C). We also have the total Chern form ¢(E) =1+ > ;_; cx(E).
These differential forms are d and d° closed, and their classes in the de Rham
cohomology of X are the usual Chern classes of E.

Let v =(1<7r <rg < ... <rm = n) be an increasing sequence of natural
numbers. A hermitian filtration £ of type t is a filtration
(8) E:0=FEyCcE,CE>yC---CE,,=F

of FE by subbundles F; with rank(E;) = r; for 1 < i < m, together with a choice of
hermitian metrics on E and on each quotient bundle Q; = E;/E;_1. We say that
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TABLE 1. Symplectic Schubert polynomials for w € W3
w Cuw(Xs) = 3 e @r(X3) G (—Xs)
123 =1 1
213 = S1 @1 — 6213
132 = s9 Ql G132
231 = 51892 Qz — Q1 G132 + G231
312 = 5251 N N Q2 — Q16213 + a1z
321 = 515281 Q3+ Q21 — Q2 Ga13 — Qo Giz2 + Q1 6312 + Q1 Gaz1 — G
123 = 50 Q1
213 = sos1 Q2 - Ql Go13
132 = sgs2 2 Q2 — Q1 6132

23T = 808182

312 = 8085281

32T = 50518251

513 = 8150

153 = 815081

531 = 815082

135 = 815085152

321 = 51508251

312 = 5150515251
312 = 825180

1§2 = 8285150851

321 = 828518052

12§ = 82851505152
251 = 828518085281
21§ = 828150515251
ﬁg = 505150

123 = sps15051

§3T = S0S1S0S52

132 = s9s15051 52
Sﬁ = 8051805281
312 = 805150515251
ﬁ? = S0S2S81S0

T32 = 80582515051
§2T = 80828515082
123 = s052515051 52
2371 = 808281508251
2T3 = 505281508152 51
@1 = 8150825150
231 = 515052515051
315 = 815082515052
§1§ = 81505825150S152
132 = 51505251505251
123 = 5150525150515251

321 = 505150528150

2371 = 8051S50S5251S50S51
Sﬁ = 8051S8052S5150S52
ﬁ = 8051S052S8150S51S2
@ = 80S51S5052S8150S52S51
m = 80S5150525150S5152S51

Qd - Q2 6152 + Q1 6231
QB + Q21 - 2Q2 6213 + Q1 G312
QS Sa13 — Q3 G132 — Q21 6132 + Q2 G312 + 2 Qz Ga31 —
Qz
Qs — Q2 Sais
Q3 + Qo1 — Q2 G132
_ —Qs G132 + Q2 G231
Q31 — Q3 G213 — Q21 Sa13 + Q2 G312
—Q31 6132 + Q3 G310 + Qs G231 + Q21 Goz1 —
Qs
~Qs Souz
Q31 — Q3 G132
B Qs Gas1
—Q31 6213 + Q3 G312
Qmn G231 — Qs Ssn
N Q31
QRs31 — Q21 G213
Qsl Q21 G132
—Q31 G132 + Q21 Gaa1
Q32 — Q31 G213 + Qo1 G312 N
—Q32 G132 + Qm Ga12 + Q31 G231 — Qa1 G321
~Q31
Q31623
@32 — Q31 6132
Qs Gaz1
—Q32 Go13 + Q31 G312
Q32 Ga31 — Q31 G301
~Q:«xz
—Q@32 G013
—Q32 G132
Q32 G231
Q32 G312
—Q32 G321
Qa2
—Q321 G213
—Q321 G132
Q321 G231
Q321 G312
—Q321 G321

Qa1 —

@1 6321

Q2 G301
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£ is split if, when Ej; is given the induced metric from E for each i, the sequences

Ei : 0_)Ei71 —>E7, _)Gi —0
. m o
are split, for 1 <4 < m. In this case we have an orthogonal splitting £ = @ Q;-
i=1
In [T2, Theorem 1] we showed that there is a unique way to attach to every
hermitian filtration of type t a form ¢(€) in A(X) in such a way that:

(i) dd°¢(€) = @ Q) —c(®
(ii) For every map f :Y — X of complex manifolds, ¢(f*(€)) = f*¢(€),
(iii) If € is split, then ¢(€) = 0.

The differential form ¢(€) is called the Bott-Chern form of the hermitian filtration
& corresponding to the total Chern class. If m = 2, i.e., if the filtration £ has length
two, then ¢(€) coincides with the Bott-Chern class ¢(0 — @Q; — E — Q, — 0)
defined in [BC, GS2].

Suppose we are given a hermitian vector bundle E and a filtration £ of E by
subbundles as in (8). Assume that the subbundles E; are given metrics induced
from the hermitian metric on E and that the quotient bundles @); are then given
the metrics induced from the exact sequences £;. Consider a local holomorphic
orthonormal frame for E such that the first r; elements generate E;, and let K(E;)
and K (Q;) be the curvature matrices of E; and @, with respect to the chosen frame.
Let Kp, = .= K(F;) and Kg, = 5= K(Q;). Then we have the following result.

Proposition 2 (T2). The Bott-Chern form ¢(€) is a polynomial in the entries of
the matrices Kg, and Kg,, 1 < i < m, with rational coefficients.

The polynomial in Proposition 2 may be computed by an explicit algorithm. In
fact, one has the equation

m

&) =3 AE) Ac(@ia) A Ae(@,)

i=2
and the Bott-Chern forms ¢(€;) can be evaluated using the formulas in [T2, §3].
In particular, we have ¢;(€) = 0 and (&€ ZCQ ), while ¢,(€) = 0 for

p>rank(E). _
Suppose that E is flat and m = 2, so that £ is equivalent to a short exact
sequence
E:0—-E —-FE—Q,—0

of hermitian vector bundles, with metrics induced from E. In this situation, ac-
cording to [T1, Prop. 3], we have

(9) a(€) = (1" Mo 1pr-1(@Qy)-

Here p,(Q,) = ((

Q1
andH71+ 4+ 4

)™) denotes the r-th power sum form of @, while Hg = 0
% is a harmonic number for r > 0.
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3.2. Curvature of homogeneous vector bundles. To simplify the notation in
this section, we will redefine the group Sp,,,(C) using the standard symplectic form

-1d, 0
where Id,, denotes the n xn identity matrix. Let X = Sp,,,/B be the symplectic flag
variety and F, its tautological complete isotropic flag of vector bundles. We equip
the trivial vector bundle FEs, = (CZX" with the trivial hermitian metric h compatible
with the symplectic form [ , ]’ on C?". More precisely, view the quaternion algebra
H as C@ jC and C2"* = C" @ jC™ as a right H-module. Then the metric h may be
defined by the equation h(v,w) = —[vj,w]’ (see for example [FH, §7.2]).

The metric on F induces metrics on all the subbundles F; and the quotient
line bundles Q; = FE;/E;_1, for 1 < ¢ < n. Our goal here is to compute the
Sp(2n)-invariant curvature matrices of the homogeneous vector bundles E; and Q,
for 1 < i < n. Following [GrS, §4] and [T2, §5], this may be done by pulling back
these matrices of (1, 1)-forms from X to the compact Lie group Sp(2n), where their
entries may be expressed in terms of the basic invariant forms on Sp(2n).

The Lie algebra of Sp,,,(C) is given by

sp(2n,C) = {(A,B,C) | A,B,C € M,(C), B,C symmetric},
A B

C A

algebra sp(2n, C) with respect to the Lie algebra of Sp(2n) is given by the map 7

. . . . 0 Id
[, ]/ on C*" whose matrix [e;, e;]; ; on unit coordinate vectors is ( . ),

where (A4, B,C) denotes the matrix Complex conjugation of the

with 7(4) = —A'. The Cartan subalgebra h consists of all matrices of the form
{(diag(t1,...,tn),0,0) | t; € C}, where diag(ty,...,t,) denotes a diagonal matrix.
Consider the set of roots

and a system of positive roots
R* ={ti—tj|i<j}U{tp,+ts | p<q}
where the indices run from 1 to n. We use ij to denote a positive root in the first
set and pq for a positive root in the second. The corresponding basis vectors are
ei; = (Eij,0,0), eP? = (0, Epq + Eqp, 0) for p < g, and eP? = (0, E,p,0), where E;;
is the matrix with 1 as the i¢j-th entry and zeroes elsewhere.
Define &;; = 7(e;;), €’ = 7(eP?), and consider the linearly independent set

B = {eij, €ij, ", e | i < j, p < q}.
The adjoint representation of h on sp(2n,C) gives a root space decomposition

5p(2n,C) =h @ Y (Ce;; ©Ceyy) © > _(CeP @ Cer?),
1<y r<q

Extend B’ to a basis B of sp(2n, C) and let B* denote the dual basis of sp(2n, C)*.
Let w%, @%, Wpq, Wpq be the vectors in B* which are dual to e;j, €;;, eP9, €9, re-
spectively; we regard these elements as left invariant complex one-forms on Sp(2n).
If p > q we agree that wp, = wyp and Wy, = Wyp. Finally, define w;; = yw",
wij = V@ WPl = YWpq, and P! = ~w,,, where 7 is a constant such that v2 = %,
and set €0;; = w;; Aw;; and QP9 = WP AWPL.

If 7 : Sp(2n) — X denotes the quotient map, the pullbacks of the aforementioned
curvature matrices under 7 can now be written explicitly, following [GrS, (4.13)x]
and [T2, §5]. The result is recorded in the following proposition.
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Proposition 3. For every k with 1 < k < n we have

=D Q= > Oy - Z Qpk

i<k i>k

and Kg, = {Oap}i<a,p<k, where
n

Ous = — > _Waj ANTg; — _wF* AT

j>k p=1

Let Q = /\ Qi; A /\ QP9 Since the class of a point in X is Poincaré dual to
1<j p<q
n

. 1
H )2 =2k+1 (see e.g. [PR, Cor. 5.6]) we deduce that / Q= H ek
k=1 =1 :

4. ARITHMETIC INTERSECTION THEORY ON Sp,,,/B

4.1. Symplectic flag varieties over SpecZ. For the rest of this paper, X will
denote the Chevalley scheme over Z for the homogeneous space Sp,,, /B described in
§2.1. The scheme X parametrizes complete isotropic flags F, of a 2n-dimensional
vector space E equipped with the skew diagonal symplectic form, over any base
field. The arithmetic symplectic flag variety X is smooth over SpecZ, and has a
decomposition into Schubert cells induced by the Bruhat decomposition of Sp,,
(see e.g. [Ja, §13.3] for details).
There is a tautological complete isotropic flag of vector bundles

E,: 0=FEyCFEyC---CFEy,=F
over X. For each i with 1 <1i < 2n we let &; denote the short exact sequence
gzOHEz_lﬂEZHQiﬁo

If CH(X) is the Chow ring of algebraic cycles on X modulo rational equivalence, then

the class map induces an isomorphism CH(X) = H*(%(C),Z), following [F4, Ex.

19.1.11] and [KM, Lem. 6]. We deduce that there is a ring presentation CH(X) 2

Z[X,]/ 1. The relations e;(X2) in I,, come from the Whitney sum formula applied

to the filtration F,. This gives a Chern class equation H?Zl(l +c1(Q;)) =c¢(F) in

CH(X), which maps to the identity H?L(l —x?) =1, since E is a trivial bundle.
We have an isomorphism of abelian groups

X = P ze,(Xn)

weW,
where the polynomial €,,(X,,) represents the class of the codimension £(w) Schubert

scheme X,, in X. The latter is defined as the closure of the corresponding Schubert
cell, so that X,,(C) is given as in §2.1.

4.2. The arithmetic Chow group. For p > 0 we let (/jﬁp(.’f) denote the p-th
arithmetic Chow group of X, in the sense of Gillet and Soulé [GS1]. The elements
in ﬁp(%) are represented by arithmetic cycles (Z, gz), where Z is a codimension p
cycle on X and gz is a current of type (p—1, p—1) such that the current dd°gz +6(c)
is represented by a smooth differential form on X(C).
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We let F, be the involution of ¥(C) induced by complex conjugation. Let
APP(XR) be the subspace of APP(%(C)) generated by real forms n such that FXn =
(—1)Pn; denote by APP(Xg) the image of APP(Xg) in APP(X(C)). Let A(Xg) =
@, APP(Xg) and A(Xg) = @, AP?(XR).

Since the homogeneous space X admits a cellular decomposition, it follows as in
e.g. [KM] that for each p, there is an exact sequence

(10) 0 — AP=LP=1(xp) - CH'(X) - CHP(X) — 0,
where the maps a and ¢ are defined by
a(n)=(0,n)  and  ((Z,92) = Z.

Summing (10) over all p gives the sequence
(11) 0 — A(%Xz) % CH(X) - CH(X) — 0.

We equip FE(C) with the trivial hermitian metric compatible with the skew di-
agonal symplectic form [ , ] on C?*. This metric induces metrics on (the complex
points of) all the vector bundles E; and the line bundles L; = E,1_;/E,—;, for
1 < ¢ < n. We thus obtain hermitian vector bundles E; and line bundles L;, to-

——k 1
gether with their arithmetic Chern classes ¢, (E;) € CH (X) and ¢;(L;) € CH (%),

according to [GS2]. Set #; = —¢;(L;) and for any w € W,,, define
~ —Ll(w
G, = Cu(@1,... 7)€ CH (%),

The unique map of abelian groups

(12) e : CH(X) — CH(X)

sending the Schubert class €,,(X,,) to Ew for all w € W, is then a splitting of (11).
We thus obtain an isomorphism of abelian groups

(13) CH(X) = CH(X) & A(Xp).

4.3. Computing arithmetic intersections. We now describe an effective pro-
cedure for computing arithmetic Chern numbers on the symplectic flag variety X,

parallel to [T2, §7]. Let cx(E;) and ¢;(L;) be the Chern forms of E;(C) and L;(C),

_—

respectively. In the sequel we will identify these with their images in CH(X) under

the inclusion a. Let x; = —c1(L;) for 1 <i < n.
We begin with the short exact sequence

SLg - O—>En—>E—>EZ—>O

where E,, denotes the tautological Lagrangian subbundle of E over X. By [GS2,
Theorem 4.8(ii)], we have an equation

(14) A(Bn)e(E,) =1+ Era)
in éﬁ(f{) Consider the hermitian filtration
£ :0=EyCE,C---CE,.

According to [T2, Theorem 2], we have an equation

n

(15) [[-2)=2E.) +2E).

i=1
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If &(&) = 32, i with a; € A¥(Xg) for each i, then define &(E) = 32,(~1)"*'a.
We obtain the dual equation
n
(16) [[a+2)=2E,)+eE).
i=1
The abelian group A(Xg) = Ker( is an ideal of (/Jﬁ(%) such that for any hermit-
ian vector bundle F over X and 1,7’ € A(Xg), we have

(17) (F) n=ce(F)An and  n-n'=(ddn) An.
We now multiply (15) with (16) and combine the result with (14) to obtain
(18) [[a-2)=1+cE &),
i=1
where
(19) &, &) =&Erc) + &) Ne(E,) +EE) A e(Ey) + (ddE(E)) NEE).

Using (9) and Proposition 2, we can express the differential form ¢(£,€") as a
polynomial in the entries of the matrices Kg, and K, with rational coefficients.
On the other hand, Proposition 3 gives explicit formulas for all these curvature
matrices in terms of Sp(2n)-invariant differential forms on X(C). Note that since
we are using the skew diagonal symplectic form to define the Lie groups in this
section, the formulas in §3.2 have to be modified accordingly. For the matrix
realization of the Lie algebra sp(2n,C) in this case, one may consult e.g. [GW,
§1.2, §2.3], while the basis elements of h should be ordered as in [BH, (2.20)]. The
indices (4, j) and (p,q) in Proposition 3 are then replaced by (n +1—j,n+1—1)
and (n+1—g¢,n+1—p), respectively. Recalling that L, = E,,+1_;/E,_;, we have
the identities

1 =—0Q1p— Q3 — - = Qp, + Q"+ QP - 4 Q7
o= Qp—Qoz—- = Qg + QP+ QP ... 4 Q"

Tn= Qo+ Qop -t Qoorn + Q"+ O 4 Q7
in AL (Xg). We also deduce the next result.

— =%

Proposition 4. We have ¢1(€) = ¢1(E,€ ) =0, () = — ZQU’ and

1<j

BEE)=-2) Q;—-2) Q- o
1<j p<q p=1
Proof. We have ¢3(€) = Z ¢2(€;), where &; is the short exact sequence
i=2

gi : 00— Ei,1 — Ei — ZnJrl,i — 0.

Ki, | Ki
K5 = (a5
K21 K22

For each ¢, write
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where Kil is an (i —1) x (i — 1) submatrix. According to [T1, Cor. 1], we then
have ¢3(&;) = c¢1(E;_1) — Tr K},. Therefore

n n—1
EQ(E) = Z (Cl(Ei—l) - TI‘K{l) = Cl(El) - TI‘K{Ll + ZTI‘K%Q
=2 =2

Using Proposition 3, we obtain

n

Cl(El) = —Zan — ngn’

Jj<n p=1
n n—1
T K =) ) qpntta
p=1q=1

and

n
Tr K2i2 - _ Z Qi1 jmiii— Z Qpntl—i
§>i p=1
for 2 < i < n— 1. The claimed computation of ¢3(£) follows by adding these
equations. We deduce from (9) that & (Erg) = —Hipi(E,) = ¢1(E,), while clearly

G(E) = (E) =0 and &(E") = &(€). Therefore, equation (19) gives
(8,8 = 5%(ELe) +26(8) = c1(BEy) + 26:(E).

Finally, ¢;(F,,) = Tr Kg, , and the latter is computed using Proposition 3 again. O

Let h(X,) be a homogeneous polynomial in the ideal I,, of §2.1. We give an
effective algorithm to compute the arithmetic intersection h(Z1,...,Z,) as a class

in A(Xg). First, we decompose h as a sum h(X,) = >, ei(X2) fi(X,,) for some
polynomials f;. Equation (18) implies that

(20) ei(@2,...,72) = (-1)'u(E,E)

n

for 1 <4 < n. Using this and (17) we see that

n

(21) h(Z1, B, Bn) = D (1) @i(E,E) A filar, 22, .., )

i=1

in éﬁ(%) Now, thanks to the previous analysis, we can write the right hand side of
(21) as a polynomial in the z; and the entries of the matrices K, for 1 < i < n, with
rational coefficients, which is (the class of) an explicit Sp(2n)-invariant differential
form in A(Xg).

In particular, if k; are nonnegative integers with > k; = dimX = n? + 1, the
monomial x}' - - x® lies in the ideal I,,. If x* .. xkn = 3" ¢;(X2) f;(X,), then

n
we have
n

BYES B = (1) (€ E) A filan, ).
i=1

Now if the top invariant form 2 is defined as in §3.2, we have shown that

i ENVN fi(we, . wn) =1 Q
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for some rational number r;. Therefore the arithmetic degree [GS1] of the above
monomial satisfies

— 1 )
deg(@ ek - 2%) = 23 (1), /
2 ; ()

We deduce the following analogue of [T2, Theorem 4].

n

1~ 1 ;
0= §gm2(_1) Ty

i=1

Theorem 2. For any nonnegative integers ki, ..., k, with Y. k; = n? + 1, the

arithmetic Chern number deg(ZV' @52 - k) is a rational number.

4.4. Arithmetic Schubert calculus. For any partition A € G,, and @w € S,
define R
Crw =Chw(Z1,...,Tn).
If A\ € G, ~ Dy, let ry be the largest repeated part of A, and let X\ be the par-
tition obtained from A by deleting two of the parts r). For instance, if A\ =
(8,7,7,7,6,3,3,2), then A = (8,7,6,3,3,2).
If X € G, \ Dy, then properties (b), (c) in §1.1, (17), and (20) imply that

e =85 Qo (1, 32) = (1) (@1, ., 20) A, (E,E).

Since E,\@, € a(A(Xgr)) whenever A € G,, \D,,, we will denote these classes by E,\,w.

The next theorem computes arbitrary arithmetic intersections in Gﬁ(ae) with
respect to the splitting (13) induced by (12), using the basis of symplectic Schubert
polynomials.

Theorem 3. Any element of the arithmetic Chow ring C/'E(f{) can be expressed
uniquely in the form Z aw &y + 1, where a, € Z and n € A(XR). For u,v € W,

weW,
we have
~ o~ w o e
(22) ¢, ¢, = E Cuv <y + § Cuv Qz)\flﬂa
weW, AEGn~Dn
€S

Cu-n=Culmr,...,x)An, and n-n' = (dd°n) A1,

w Ao

where n, 1’ € A(Xg) and the integers ¢¥,, X% are as in (5).

Proof. The first statement is a consequence of the splitting (13). Equation (22)

follows from the formal identity (5) and our definitions of €, and €, . The
remaining assertions are derived immediately from the structure equations (17). O

4.5. The invariant arithmetic Chow ring. The arithmetic Chow group éﬁ(f{)
is not finitely generated, as it contains the infinite dimensional real vector space
Z(%R) as a subgroup. Following [T2, §6], we can work equally well with a finite
dimensional variant of Gﬁ(ae), obtained by replacing the space A(Xg) by a certain
subspace of the space of all Sp(2n)-invariant differential forms on %(C).

Recall the notation introduced in §3.2 and §4.2. Let Inv(Xg) denote the ring of
Sp(2n)-invariant forms in the R-subalgebra of A(X(C)) generated by the differential
forms wy A @y for all wi,ws in the set {w;;, wP? | i < j, p < ¢}. Define IH;I(XR) C
A(Xg) to be the image of Inv(Xg) in A(Xg).

Definition 2. The invariant arithmetic Chow ring Eﬁinv(.’{) is the subring of
CH(X) generated by e(CH(X)) and a(Inv(Xg)), where € is the splitting map (12).
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There is an exact sequence of abelian groups
0 — Tnv(Xg) % CHiny (X) > CH(X) — 0
which splits under ¢, giving an isomorphism of abelian groups
CHipny (X) ~ CH(X) @ Inv(Xg).
Theorem 3 ‘may be refined to an analogous statement for the invariant arithmetic
Chow ring CHjy,y (X), by replacing the group A(Xg) with Inv(Xg) throughout.

4.6. Height computation. The flag variety X has a natural pluri-Pliicker embed-
ding j in projective space. The morphism j may be defined as a composite

X — FSL <L> PN
where Fg, = SLo, /P denotes the variety parametrizing all partial flags
O=FEyCFEiC---CFE,CFEy,=F

with dim(E;) = i for each i, and ¢ is a composition of a product of Pliicker embed-
dings followed by a Segre embedding. Observe that j is the embedding given by the
line bundle Q@ = @, det(E/E;). Let O(1) denote the canonical line bundle over
the projective space PV, equipped with its canonical metric (so that ¢; (O(1)) is the
Fubini-Study form). The Faltings height of X relative to O(1) (see [GS1, Fa, BoGS])
is given by

oy (%) = deg ((0(1)" | %)

The pullback j*(O(1)) = Q is an isometry when Q(C) is equipped with the canon-
ical metric given by tensoring the induced metrics on the determinants of the quo-
tient bundles E/E; for 1 <4 < n. The short exact sequences

E +0—Ei1—E —Lyy1-;—0

satisfy ¢1(£;) = 0, and hence ¢, (E;) = ¢1(F;_1) — Zny1_4. It follows by induction

that ¢1(E;) = —Tp41—i — -+ — T, for 1 <i < n. We deduce that
FEOW) =a@) = - S aE) =Y iw
i=1 i=1

and therefore

n n“+1
(23) I (Span/B) = dog (2,(Q)"" | X) = dog (Z%>

i=1

We conclude from Theorem 2 and (23) that the height hg ) (Spy,,/B) is a rational
number. One may also derive this fact from the height formula in [KK].

4.7. An example: Sp,/B. In this section we compute the arithmetic intersec-
tion numbers for the classes Z; in CH(X) when n = 2, so that X is the variety
parametrizing partial flags 0 C E; C Fy C E4 = E with Ey Lagrangian.
Consider the differential forms
& =c(B,) = +202 + 0
and
52 — CQ(E;) _ 911922 + 2911912 + 2Q12Q22,
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Notice that £2 = 2&,. Over X we have the filtrations of hermitian vector bundles
EL(;,ZOCEQCE and g:OCE1CE2.
Equation (9) gives
c(Erc) = p1(E2) + Hsps(E2) = c1(E2) + Hs (¢} (E2) — 3c1(Ea)cz(E2))
1, 11 11
=G -htghh="a+t-a&
and therefore
HEra) = - — 202 — 02 4 110101202,
On the other hand, Proposition 4 gives ¢(&) = ¢(&") = —Qy5. Using the Maurer-

Cartan structure equations for Sp,, (C), we find that

= 1
dwis = Owia = — (W AT + W' ATH)
Y

dwis = 0wy = —%(w” A2 w2 ATt
and hence
dd®(Q12) = ¥200(wi2 AW12) = v (wia A 0w12) = QP2 (QMN 4 022).
We deduce from the above calculations and (19) that
GE,E) = =61 — 205 — 2012 & + 11QMQ120%2 1+ 01,0120 + 02?)
= £ — 2055 —20,0M0% — 30,0102 — 30,0207 + 110101202
Let a and b be nonnegative integers with a+b = 5. The Bott-Chern form ¢(&, f*)

is the key to computing any arithmetic intersection 274, following the algorithm
of §4.3. The result will be a multiple of the class of = Q1201012022 in the

——5
arithmetic Chow group CH (X). For instance, we compute that

D22 =7) - ea(32,72) = (—Qua + QM + Q) A (E,ET) = 169,

while
BT =T - e2(33,72) = (M2 + Q2+ ) AEGEE) =69
We similarly find
=10Q, 2T, =-8Q, T73=269Q, z5=0.
For the Faltings height of X, we conclude that
houﬂaa/B)ai(@n+2§gﬂ&ga&ma)gxtémng%?.

Kaiser and Kohler have proved a cohomological formula for the height of generalized
flag varieties [KK, Thm. 8.1]. One can check that in the case of Sp, /B, their result
agrees with the above computation.
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