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Abstract. Let X = Sp
2n/B the flag variety of the symplectic group. We

propose a theory of combinatorially explicit Schubert polynomials which rep-
resent the Schubert classes in the Borel presentation of the cohomology ring

of X. We use these polynomials to describe the arithmetic Schubert calculus
on X. Moreover, we give a method to compute the natural arithmetic Chern
numbers on X, and show that they are all rational numbers.

0. Introduction

Let X = Sp2n/B be the flag variety for the symplectic group Sp2n of rank n. The
cohomology (or Chow) ring of X has a standard presentation, due to Borel [Bo], as
a quotient ring Z[x1, . . . , xn]/In, where the variables xi come from the characters
of B and In is the ideal generated by the invariant polynomials under the action
of the Weyl group of Sp2n. On the other hand, the cohomology H∗(X, Z) is a free
abelian group with basis given by the classes of the Schubert varieties in X.

The aim of a theory of Schubert polynomials is to provide an explicit and natural
set of polynomial representatives for the Schubert classes in the above Borel presen-
tation of the cohomology ring. Using a construction of Bernstein-Gelfand-Gelfand
[BGG] and Demazure [D1, D2], one has an algorithm for obtaining a family of
polynomials which represent the Schubert classes, by applying divided difference
operators to a polynomial Tw0

representing the class of a point in X. For the usual
SLn flag varieties, Lascoux and Schützenberger [LS] observed that one special choice
of Tw0

leads to polynomials that represent the Schubert classes simultaneously for
all sufficiently large n. These type A Schubert polynomials are the most natural
ones to use from the point of view of combinatorics and of geometry; they describe
the degeneracy loci of maps of vector bundles (see [F1, BKTY, KMS]) and are the
prototype for any proposed theory of Schubert polynomials in the other Lie types.

For the purposes of the present paper, our interest in Schubert polynomials is
due to their utility in studying the deformations of the cohomology ring of X which
appear in quantum cohomology and in the extension of Arakelov theory to higher
dimensions due to Gillet and Soulé [GS1]. With this latter application in mind,
we observed in [T2, T3, T4] that a suitable theory of polynomials should provide a
lifting of the Schubert calculus from the quotient ring Z[Xn]/In to the ring Z[Xn]
of all polynomials in Xn = (x1, . . . , xn). In addition, one would like to have strong
control over which polynomials are contained in the ideal In of relations; this was
called the ideal property in [T3].
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The search for a good theory of Schubert polynomials in types B, C, and D has
received much attention in the past (see e.g. [BH, FK, F2, F3, KT1, LP1, LP2]).
The best understood theory from the combinatorial point of view appears to be
that of Billey and Haiman [BH], whose Schubert polynomials form a Z-basis for a
polynomial ring in infinitely many variables. Unfortunately, when expressed in their
most explicit form, the Billey-Haiman polynomials are not suitable for the above
mentioned applications, because the variables used are not geometrically natural.

This problem is already apparent in the case of the Lagrangian Grassmannian
LG = Sp2n/Pn, where Pn denotes the maximal parabolic subgroup associated to
the right end root in the Dynkin diagram of type Cn. The Billey-Haiman Schubert
polynomials for the Schubert classes which pull back to X from LG coincide with
the Schur Q-functions [S], but the latter are not polynomials in the Chern roots
of any homogeneous vector bundle over LG. For the geometric applications to

degeneracy loci and elsewhere, one may instead use the Q̃-polynomials of Pragacz
and Ratajski [PR]. Indeed, we showed in [T4] and [KT2] that the latter objects
control the arithmetic and quantum Schubert calculus on LG, respectively.

In the first part of this article, we introduce a new theory of symplectic Schubert
polynomials Cw(Xn), which are to the Billey-Haiman Schubert polynomials what

the Q̃-polynomials are to the Schur Q-functions. The Cw are defined as linear

combinations of products of Q̃-polynomials with type A Schubert polynomials, with
coefficients given by combinatorially explicit integers which appear in the Billey-
Haiman theory. Furthermore, the polynomials Cw extend to a Z-basis of the full
polynomial ring Z[Xn], which has the ideal property mentioned above. Although
they represent the Schubert classes in the Borel presentation of H∗(X, Z), the Cw

do not respect the divided difference operator given by the sign change, and thus
differ from the previously known type C Schubert polynomials.

In the second half of the paper, we use the polynomials Cw to describe the
arithmetic Schubert calculus on X, in its natural smooth Chevalley model over
Spec Z. Arithmetic Schubert calculus is concerned with the multiplicative structure

of the Gillet-Soulé arithmetic Chow ring ĈH(X), expressed in terms of certain
(carefully chosen!) arithmetic Schubert classes. The present study is thus a belated
sequel to [T2], which examined arithmetic intersection theory on SLn flag varieties.
As noted in the introduction to [T2], the hermitian differential geometry required
to develop the theory for Sp2n/B was available at that time; what was lacking was
the theory of Schubert polynomials which is provided here.

The arithmetic scheme X parametrizes, over any base field k, all partial flags of
subspaces

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E2n = E

with dim(Ei) = i for each i and En isotropic with respect to the skew diagonal
symplectic form on E. Let E be the trivial vector bundle of rank 2n over X

equipped with a trivial hermitian metric on E(C) compatible with the symplectic
form. The metric on E(C) induces metrics on all the subbundles Ei(C), giving a
hermitian filtration of E. For 1 ≤ i ≤ n, let Li denote the quotient line bundle
En+1−i/En−i with the induced hermitian metric on Li(C), and set x̂i = −ĉ1(Li),
where ĉ1(Li) is the arithmetic first Chern class of Li.

Let h ∈ Z[Xn] be any polynomial in the ideal In. We provide an algorithm

to compute the arithmetic intersection h(x̂1, . . . , x̂n) in ĈH(X), as the class of an
explicit Sp(2n)-invariant differential form on X(C). In particular, we show that all
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arithmetic Chern numbers on X involving the x̂i are rational numbers (Theorem

2). The key relations in the ring ĈH(X) required for this calculation involve the
Bott-Chern forms of hermitian fitrations over X. As in [T2], these differential forms
are identified with certain polynomials in the entries of the curvature matrices of
the homogeneous vector bundles over X. Using a computation of Griffiths and
Schmid [GrS], the latter entries may be expressed in terms of Sp(2n)-invariant
differential forms on Sp(2n). Finally, our main result (Theorem 3) describes the
arithmetic Schubert calculus on X using the structure constants for the product of
two symplectic Schubert polynomials Cw in the polynomial ring Z[Xn].

The paper is organized as follows. In §1 we provide some combinatorial pre-

liminaries on Q̃-polynomials and the Lascoux-Schützenberger and Billey-Haiman
Schubert polynomials. We introduce our theory of symplectic Schubert polynomi-
als in §2.2 and derive some of their basic properties in §2.3. Section 3 includes
the main facts from the hermitian differential geometry of X(C) that we require.
The Bott-Chern forms of hermitian filtrations are discussed in §3.1 and the curva-
ture of the relevant homogeneous vector bundles over X is computed in §3.2. The
arithmetic intersection theory of X is studied in §4. Our method for computing
arithmetic intersections is explained in §4.3, the arithmetic Schubert calculus is de-
scribed in §4.4, while §4.5 examines the invariant arithmetic Chow ring of X. The
theory developed in these sections can be used to compute the Faltings height of X

under its pluri-Plücker embedding in projective space; this application is given in
§4.6. Section 4.7 works out the example of Sp4/B explicitly.

The results of this article on Schubert polynomials and arithmetic intersection
theory have analogues for the orthogonal flag varieties. This theory is discussed
in detail in [T5]. Part of this project was announced at the Oberwolfach meeting
on Arakelov Geometry in September of 2005. I wish to thank the organizers Jean-
Benoit Bost, Klaus Künnemann, and Damian Roessler for making this stimulating
event possible.

1. Preliminary definitions

1.1. Q̃- and Q-functions. A partition λ = (λ1, . . . , λr) is a finite sequence of
weakly decreasing nonnegative integers; the set of all partitions is denoted Π. The
sum

∑
λi of the parts of λ is the weight |λ| and the number of (nonzero) parts λi

is the length ℓ(λ) of λ. We set λr = 0 for any r > ℓ(λ). A partition is strict if all
its nonzero parts are distinct. Let Gn = {λ ∈ Π | λ1 ≤ n} and let Dn be the set of
strict partitions in Gn. If λ ∈ Dn, we let λ′ denote the partition in Dn whose parts
complement the parts of λ in the set {1, . . . , n}.

Let X = (x1, x2, . . .) be a sequence of commuting independent variables. The
elementary symmetric functions ek = ek(X) are defined by the equation

∞∑

k=0

ek(X)tk =

∞∏

i=1

(1 + xit).

The polynomial ring Λ = Z[e1, e2, . . .] is the ring of symmetric functions in the
variables X. Following Pragacz and Ratajski [PR], for each partition λ, we define

a symmetric polynomial Q̃λ ∈ Λ as follows: initially, set Q̃k = ek for k ≥ 0. For i, j
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nonnegative integers, let

Q̃i,j = Q̃iQ̃j + 2

j∑

r=1

(−1)rQ̃i+rQ̃j−r.

If λ is a partition of length greater than two and m is the least positive integer with
2m ≥ ℓ(λ), then set

Q̃λ = Pfaffian(Q̃λi,λj
)1≤i<j≤2m.

These Q̃-functions are modelled on Schur’s Q-functions [S], and enjoy the following
properties:

(a) The Q̃λ(X) for λ ∈ Π form a Z-basis of Λ.

(b) Q̃k,k(X) = ek(X2) := ek(x2
1, x

2
2, . . .) for all k.

(c) If λ = (λ1, . . . , λr) and λ+ = λ ∪ (k, k) = (λ1, . . . , k, k, . . . , λr) then

Q̃λ+ = Q̃k,kQ̃λ.

(d) The coefficients of Q̃λ(X) are nonnegative integers.

Let Λn = Z[x1, . . . , xn]Sn be the ring of symmetric polynomials in Xn = (x1, . . . , xn).
Then we have an additional property

(e) If λ1 > n, then Q̃λ(Xn) = 0. The Q̃λ(Xn) for λ ∈ Gn form a Z-basis of Λn.

Suppose that Y = (y1, y2, . . .) is a second sequence of variables and define sym-
metric functions qk(Y ) by using the generating series

∞∑

k=0

qk(Y )tk =

∞∏

i=1

1 + yit

1 − yit
.

Let Γ = Z[q1, q2 . . .] and define a ring homomorphism η : Λ → Γ by setting
η(ek(X)) = qk(Y ) for each k ≥ 1. Józefiak [Jo] showed that the kernel of η is

the ideal generated by the ek(X2) for k > 0; it follows that η(Q̃λ) = 0 unless λ
is a strict partition. Moreover, if pk(X) = xk

1 + xk
2 + · · · denotes the k-th power

sum, then we have η(pk(X)) = 2 pk(Y ), if k is odd, and η(pk(X)) = 0, if k > 0 is
even. For any strict partition λ, the Schur Q-function Qλ(Y ) may be defined as the

image of Q̃λ(X) under η. The Qλ for strict partitions λ have nonnegative integer
coefficients and form a free Z-basis of Γ.

1.2. Divided differences and type A Schubert polynomials. Let Sn denote
the symmetric group of permutations of the set {1, . . . , n}; the elements ̟ of Sn

are written in single-line notation as (̟(1),̟(2), . . . ,̟(n)) (as usual we will write
all mappings on the left of their arguments). Now Sn is the Weyl group for the root
system An−1 and is generated by the simple transpositions si for 1 ≤ i ≤ n − 1,
where si interchanges i and i + 1 and fixes all other elements of {1, . . . , n}.

The hyperoctahedral group Wn is the Weyl group for the root system Cn. The
elements of Wn are permutations with a sign attached to each entry, and we will
adopt the notation where a bar is written over an element with a negative sign. Wn

is an extension of Sn by an element s0 which acts on the right by

(u1, u2, . . . , un)s0 = (u1, u2, . . . , un).
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A reduced word of w ∈ Wn is a sequence a1 . . . ar of elements in {0, 1, . . . , n − 1}
such that w = sa1

· · · sar
and r is minimal (so equal to the length ℓ(w) of w). The

elements of maximal length in Sn and Wn are

̟0 = (n, n − 1, . . . , 1) and w0 = (1, 2, . . . , n)

respectively.
The group Wn acts on the ring Z[Xn] of polynomials in Xn: the transposition si

interchanges xi and xi+1 for 1 ≤ i ≤ n − 1, while s0 replaces x1 by −x1 (all other
variables remain fixed). The ring of invariants Z[Xn]Wn is the ring of polynomials
in Z[Xn] symmetric in X2

n = (x2
1, . . . , x

2
n). Following [BGG] and [D1] [D2], there

are divided difference operators ∂i : Z[Xn] → Z[Xn]. For 1 ≤ i ≤ n − 1 they are
defined by

∂i(f) = (f − sif)/(xi − xi+1)

while
∂0(f) = (f − s0f)/(2x1),

for any f ∈ Z[Xn]. For each w ∈ Wn, define an operator ∂w by setting

∂w = ∂a1
◦ · · · ◦ ∂ar

if a1 . . . ar is a reduced word of w.
For every permutation ̟ ∈ Sn, Lascoux and Schützenberger [LS] defined a type

A Schubert polynomial S̟(Xn) ∈ Z[Xn] by

S̟(Xn) = ∂̟−1̟0

(
xn−1
1 xn−2

2 · · · xn−1

)
.

This definition is stable under the natural inclusion of Sn into Sn+1, hence the
polynomial Sw makes sense for w ∈ S∞ = ∪∞

n=1Sn. The set {Sw} for w ∈ S∞

is a free Z-basis of Z[X] = Z[x1, x2, . . .]. Furthermore, the coefficients of Sw are
nonnegative integers with combinatorial significance (see e.g. [BJS, BKTY]).

1.3. Billey-Haiman Schubert polynomials. We regard Wn as a subgroup of
Wn+1 in the obvious way and let W∞ denote the union ∪∞

n=1Wn. Let Z =
(z1, z2, . . .) be a third sequence of commuting variables. In their fundamental pa-
per [BH], Billey and Haiman defined a family {Cw}w∈W∞

of Schubert polynomials
of type C, which are a free Z-basis of the ring Γ[Z]. The expansion coefficients
for a product CuCv in the basis of Schubert polynomials agree with the Schubert
structure constants on symplectic flag varieties for sufficiently large n. For every
w ∈ Wn there is a unique expression

(1) Cw =
∑

λ strict

̟∈Sn

ew
λ,̟Qλ(Y )S̟(Z)

where the coefficients ew
λ,̟ are nonnegative integers. We proceed to give a combi-

natorial interpretation of these numbers.
A sequence a = (a1, . . . , am) is called unimodal if for some r with 0 ≤ r ≤ m, we

have
a1 > a2 > · · · > ar < ar+1 < · · · < am.

Let w ∈ Wn and λ be a Young diagram with r rows such that |λ| = ℓ(w). A
Kraśkiewicz tableau for w of shape λ is a filling T of the boxes of λ with nonnegative
integers in such a way that

a) If ti is the sequence of entries in the i-th row of T , reading from left to right,
then the row word tr . . . t1 is a reduced word for w.
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b) For each i, ti is a unimodal subsequence of maximum length in tr . . . ti+1ti.

Example 1. Let λ ∈ Dn, ℓ = ℓ(λ), and k = n−ℓ = ℓ(λ′). The barred permutation

wλ = (λ1, . . . , λℓ, λ
′
k, . . . , λ′

1)

is the maximal Grassmannian element of Wn corresponding to λ. There is a unique
Kraśkiewicz tableau for wλ, which has shape λ, and is given as in the following
example, for λ = (7, 4, 3):

6 5 4 3 2 1 0
3 2 1 0
2 1 0.

According to [BH, Theorem 3], the polynomial Cw satisfies

Cw =
∑

uv=w

Fu(Y )Sv(Z),

summed over all reduced factorizations uv = w in W∞ (i.e., such that ℓ(u)+ ℓ(v) =
ℓ(w)) with v ∈ S∞. The left factors Fu(Y ) are type C Stanley symmetric functions
of [BH, FK, La]. In addition, Lam [La] has shown that for any u ∈ W∞,

Fu(Y ) =
∑

λ

cu
λ Qλ(Y )

where cu
λ equals the number of Kraśkiewicz tableaux for u of shape λ. By combining

these two facts, we deduce the next result.

Proposition 1 (BH, La). For every w ∈ W∞, the coefficient ew
λ,̟ in (1) is equal to

the number of Kraśkiewicz tableaux for w̟−1 of shape λ, if ℓ(w̟−1) = ℓ(w)−ℓ(̟),
and equal to zero otherwise.

2. Symplectic Schubert polynomials

2.1. Isotropic flags and Schubert varieties. Consider the vector space C2n

with its canonical basis {ei}
2n
i=1 of unit coordinate vectors. We define the skew

diagonal symplectic form [ , ] on C2n by setting [ei, ej ] = 0 for i + j 6= 2n + 1
and [ei, e2n+1−i] = 1 for 1 ≤ i ≤ n. The symplectic group Sp2n(C) is the group of
linear automorphisms of C2n preserving the symplectic form. The upper triangular
matrices in Sp2n form a Borel subgroup B.

An n-dimensional subspace Σ of C2n is called Lagrangian if the restriction of the
symplectic form to Σ vanishes. Let X = Sp2n/B be the variety parametrizing flags
of subspaces

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E2n = C2n

with dim Ei = i and En Lagrangian. Each such flag can be extended to a complete
flag E• in C2n by letting En+i = E⊥

n−i for 1 ≤ i ≤ n; we will call such a flag a
complete isotropic flag. The same notation is used to denote the tautological flag
E• of vector bundles over X.

There is a group monomorphism φ : Wn →֒ S2n with image

φ(Wn) = {̟ ∈ S2n | ̟(i) + ̟(2n + 1 − i) = 2n + 1, for all i }.

The map φ is determined by setting, for each w = (w1, . . . , wn) ∈ Wn and 1 ≤ i ≤ n,

φ(w)(i) =

{
n + 1 − wn+1−i if wn+1−i is unbarred,

n + wn+1−i otherwise.
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Let F• be a fixed complete isotropic flag. For every w ∈ Wn define the Schubert

variety Xw(F•) ⊂ X as the locus of E• ∈ X such that

dim(Er ∩ Fs) ≥ # { i ≤ r | φ(w)(i) > 2n − s } for 1 ≤ r ≤ n, 1 ≤ s ≤ 2n.

The Schubert class σw in H2ℓ(w)(X, Z) is the cohomology class which is Poincaré
dual to the homology class determined by Xw(F•).

According to Borel [Bo], the cohomology ring H∗(X, Z) is presented as a quotient

(2) H∗(X, Z) ∼= Z[x1, . . . , xn]/In

where In is the ideal generated by all positive degree Wn-invariants in Z[Xn], that
is, In = 〈ei(X

2
n), 1 ≤ i ≤ n〉. The inverse of the isomorphism (2) sends the class of

xi to −c1(En+1−i/En−i) for each i with 1 ≤ i ≤ n.

2.2. Symplectic Schubert classes and Schubert polynomials. For every λ ∈
Gn and ̟ ∈ Sn, define the polynomial Cλ,̟ = Cλ,̟(Xn) by

Cλ,̟ = Q̃λ(Xn)S̟(−Xn) = (−1)ℓ(̟)Q̃λ(Xn)S̟(Xn).

The products Q̃λ(Xn)S̟(Xn) for λ ∈ Dn and ̟ ∈ Sn form a basis for the poly-
nomial ring Z[Xn] as a Z[Xn]Wn-module, which was introduced and studied by
Lascoux and Pragacz [LP1]. We observe here that the Cλ,̟(Xn) for λ ∈ Gn and
̟ ∈ Sn form a basis of Z[x1, . . . , xn] as an abelian group. Moreover, properties (b)

and (c) of Q̃-polynomials ensure that for λ ∈ Gn r Dn, we have Cλ,̟(Xn) ∈ In.

Definition 1. For w ∈ Wn, define the symplectic Schubert polynomial Cw =
Cw(Xn) by

(3) Cw =
∑

λ∈Dn
̟∈Sn

ew
λ,̟Cλ,̟(Xn)

where the coefficients ew
λ,̟ are the same as in (1) and Proposition 1.

Theorem 1. The symplectic Schubert polynomial Cw(Xn) is the unique Z-linear

combination of the Cλ,̟(Xn) for λ ∈ Dn and ̟ ∈ Sn which represents the Schubert

class σw in the Borel presentation (2).

Proof. For each w ∈ Wn, the Billey-Haiman polynomial Cw represents the Schubert
class σw in the Borel presentation after a certain change of variables. Recall that a
partition is odd if all its non-zero parts are odd integers. For each partition µ, let
pµ =

∏
i pµi

, where pr denotes the r-th power sum. The pµ(Y ) for µ odd form a
Q-basis of Γ ⊗Z Q. We therefore have a unique expression

(4) Cw =
∑

µ odd

̟∈Sn

aw
µ,̟ pµ(Y )S̟(Z)

in the ring Γ[Z] ⊗Z Q.
Let podd = (p1, p3, p5, . . .). Define a polynomial Cw(podd(X),Xn−1) in the vari-

ables pk := pk(X) for k odd and x1, . . . , xn−1 by substituting pk(Y ) with pk(X)/2
and zi with −xi in (4). It is shown in [BH, §2] that the polynomial Cw(Xn) :=
Cw(podd(Xn),Xn−1) obtained by setting xi = 0 for all i > n in Cw(podd(X),Xn−1)



8 HARRY TAMVAKIS

represents the Schubert class σw in the Borel presentation (2). Using Józefiak’s
homomorphism η from §1.1, we see that

∑

λ strict

̟∈Sn

ew
λ,̟Q̃λ(X)S̟(−Xn)

differs from Cw(podd(X),Xn−1) by an element in the ideal of Λ[Xn−1] generated by
the ei(X

2) for i > 0. Since the ideal In is generated by the polynomials ei(X
2
n), and

Q̃λ(Xn) = 0 whenever λ1 > n, it follows that Cw represents the Schubert class σw

in the presentation (2), as required.
We claim that the Cλ,̟ for λ ∈ Gn r Dn and ̟ ∈ Sn form a free Z-basis of In.

To see this, note that if h is an element of In then h(Xn) =
∑

i ei(X
2
n)fi(Xn) for

some polynomials fi ∈ Z[Xn]. Now each fi is a unique Z-linear combination of the
Cµ,̟ for µ ∈ Gn and ̟ ∈ Sn, and properties (b) and (c) of §1.1 give

ei(X
2
n)Cµ,̟(Xn) = Q̃i,i(Xn)Cµ,̟(Xn) = Cµ∪(i,i),̟(Xn).

We deduce that any h ∈ In lies in the Z-linear span of the Cλ,̟ for λ ∈ Gn r Dn

and ̟ ∈ Sn. Since the Cλ,̟ for λ ∈ Gn and ̟ ∈ Sn are linearly independent, this
proves the claim and the uniqueness assertion in the theorem. �

We remark that the statement of Theorem 1 may serve as an alternative defini-
tion of the symplectic Schubert polynomials Cw(Xn).

2.3. Properties of symplectic Schubert polynomials. We give below some
basic properties of the polynomials Cw(Xn).

(a) The set

{Cw | w ∈ Wn} ∪ {Cλ,̟ | λ ∈ Gn r Dn, ̟ ∈ Sn}

is a free Z-basis of the polynomial ring Z[x1, . . . , xn]. The Cλ,̟ for λ ∈ Gn rDn and
̟ ∈ Sn span the ideal In of Z[x1, . . . , xn] generated by the ei(X

2
n) for 1 ≤ i ≤ n.

(b) For every u, v ∈ Wn, we have an equation

(5) Cu · Cv =
∑

w∈Wn

cw
uv Cw +

∑

λ∈GnrDn
̟∈Sn

cλ̟
uv Cλ,̟

in the ring Z[x1, . . . , xn]. The coefficients cw
uv are nonnegative integers, which vanish

unless ℓ(w) = ℓ(u) + ℓ(v), and agree with the structure constants in the equation
of Schubert classes

σu · σv =
∑

w∈Wn

cw
uv σw,

which holds in H∗(X, Z). The coefficients cλ̟
uv are integers, some of which may be

negative. Equation (5) provides the sought for lifting of the Schubert calculus from
the cohomology ring H∗(X, Z) to Z[x1, . . . , xn] discussed in the Introduction.

(c) Stability property: For each m < n let i = im,n : Wm → Wn be the natural
embedding using the first m components. Then for any w ∈ Wm we have

Ci(w)(Xn)
∣∣
xm+1=···=xn=0

= Cw(Xm).

(d) For a maximal Grassmannian element wλ ∈ Wn, we have Cw(Xn) = Q̃λ(Xn).
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(e) For ̟ ∈ Sn and w ∈ Wn, we have

∂̟Cw =

{
(−1)ℓ(̟) Cw̟ if ℓ(w̟) = ℓ(w) − ℓ(̟),

0 otherwise.

(f) Let v0 = w0̟0 = (n, n − 1, . . . , 1). Then for every ̟ ∈ Sn, we have

Cv0̟(Xn) = Q̃ρn
(Xn)S̟(−Xn),

where ρn = (n, n − 1, . . . , 1). In particular, for the element w0 ∈ Wn of longest
length we have

Cw0
(Xn) = Q̃ρn

(Xn)S̟0
(−Xn) = (−1)n(n−1)/2xn−1

1 xn−2
2 · · · xn−1Q̃ρn

(Xn).

Thus Cw0
(Xn) agrees with the symplectic Schubert polynomial of Lascoux, Pragacz,

and Ratajski [LP1, Appendix A] indexed by w0. However these two families of
polynomials do not coincide, because unlike the Schubert polynomials of loc. cit.,
the Cw do not respect the divided difference operator ∂0.

(g) To any w ∈ Wn we associate a strict partition µ whose parts are the absolute
values of the negative entries of w. Let v ∈ Sn be the permutation of maximal
length such that there exists a factorization w = uv with ℓ(w) = ℓ(u) + ℓ(v) for
some u ∈ Wn. Then Cµ,v is the unique homogeneous summand ew

λ,̟Cλ,̟ of Cw in

equation (3) with the weight |λ| as small as possible.

(h) Lascoux and Pragacz [LP1, §1] define a Z[Xn]Wn-linear scalar product

〈 , 〉 : Z[Xn] × Z[Xn] −→ Z[Xn]Wn

by

〈f, g〉 = (−1)n(n−1)/2∂w0
(fg)

for any f, g ∈ Z[Xn]. The set of symplectic Schubert polynomials {Cw(Xn)}w∈Wn

and the polynomials {Cλ,̟(Xn)}λ∈Dn,̟∈Sn
form two bases for the polynomial ring

Z[Xn] as a Z[X2
n]-module. If λ, µ ∈ Dn and ρ, π ∈ Sn are such that ℓ(ρ) + ℓ(π) ≤

n(n − 1)/2, then we have the orthogonality relation

(6) 〈Cλ,ρ,Cµ,π〉 =

{
1 if µ = λ′ and π = ̟0ρ,
0 otherwise.

Furthermore, if u, v ∈ Wn are such that ℓ(u) + ℓ(v) ≤ n2, then we have

(7) 〈Cu,Cv〉 =

{
1 if v = w0u,
0 otherwise.

The proof of Theorem 1 established that the Cλ,̟ for λ ∈ Gn r Dn and ̟ ∈ Sn

form a basis of In. The remaining statements in properties (a) and (b) follow
because the Cw for w ∈ Wn form a basis of Z[Xn]/In. Properties (c), (d), (e), (g)
may be derived from the corresponding properties of the Billey-Haiman Schubert
polynomials, and (f) is a consequence of (e).

Equation (6) is proved by factoring the divided difference operator ∂w0
= ∂v0

∂̟0
,

where v0 = w0̟0, noting that

〈Cλ,ρ(Xn),Cµ,π(Xn)〉 = (−1)n(n−1)/2∂v0
(Q̃λ(Xn)Q̃µ(Xn))∂̟0

(Sρ(−Xn)Sπ(−Xn)),

and using the corresponding properties of the inner products defined by ∂v0
and

∂̟0
, which are derived in [LP1, (10)] and [M, (5.4)], respectively. The relation (7)
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may be deduced from (6) and property (g) above, or by using the fact that the
Schubert classes σu = Cu(Xn) and σv = Cv(Xn) satisfy

∫

X

σu · σv = δu,w0v.

Example 2. The list of all symplectic Schubert polynomials Cw for w ∈ W3 is
given in Table 1. These polynomials are displayed according to the eight orbits
of the symmetric group S3 on W3. The Schubert polynomials in each orbit are
easily computed from the unique one of highest degree by applying type A divided
difference operators, using property (e). The reader should compare this table with
[BH, Table 2] and [LP1, Appendix A].

Example 3. Let n = 6 and consider the (non-maximal) Grassmannian element
w = 126543. The symplectic Schubert polynomial for w is given by

Cw = Q̃651 S145236 − (Q̃65 + Q̃641)S245136 − Q̃65 S146235

+ (Q̃64 + Q̃541)S345126 + Q̃64 S246135 − Q̃54 S346125.

The corresponding Billey-Haiman Schubert polynomial is given by

Cw = Q871 + (Q87 + Q861)S124356 + (Q86 + Q851)S134256 + (Q86 + Q761)S125346

+ (Q85 + Q841)S234156 + (Q85 + Q751 + Q76)S135246 + Q76 S126345

+ (Q84 + Q75 + Q741)S235146 + (Q75 + Q651)S145236 + Q75 S136245

+ (Q74 + Q65 + Q641)S245136 + Q74 S236145 + Q65 S146235

+ (Q64 + Q541)S345126 + Q64 S246135 + Q54 S346125.

3. Hermitian differential geometry

3.1. Bott-Chern forms. In this section X denotes a complex manifold, and
Ap,q(X) is the space of C-valued smooth differential forms of type (p, q) on X. Let
A(X) =

⊕
p Ap,p(X) and A′(X) ⊂ A(X) be the set of forms ϕ in A(X) which can be

written as ϕ = ∂η +∂η′ for some smooth forms η, η′. Define Ã(X) = A(X)/A′(X).

Observe that the operator ddc : Ã(X) → A(X) is well defined, as is the cup product

∧ω : Ã(X) → Ã(X) for any closed form ω in A(X).
A hermitian vector bundle on X is a pair E = (E, h) consisting of a holomorphic

vector bundle E over X and a hermitian metric h on E. Let D be the hermitian
holomorphic connection of E, with curvature K = D2 ∈ A1,1(X,End(E)), and let
n denote the rank of E. For each integer k with 1 ≤ k ≤ n, there is an associ-

ated Chern form ck(E) := Tr(
∧k

( i
2π K)) ∈ Ak,k(X), defined locally by identifying

End(E) with Mn(C). We also have the total Chern form c(E) = 1 +
∑n

k=1 ck(E).
These differential forms are d and dc closed, and their classes in the de Rham
cohomology of X are the usual Chern classes of E.

Let r = (1 ≤ r1 < r2 < . . . < rm = n) be an increasing sequence of natural
numbers. A hermitian filtration E of type r is a filtration

(8) E : 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E

of E by subbundles Ei with rank(Ei) = ri for 1 ≤ i ≤ m, together with a choice of
hermitian metrics on E and on each quotient bundle Qi = Ei/Ei−1. We say that
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Table 1. Symplectic Schubert polynomials for w ∈ W3

w Cw(X3) =
P

ew
λ,̟

eQλ(X3) S̟(−X3)

123 = 1 1

213 = s1
eQ1 − S213

132 = s2
eQ1 − S132

231 = s1s2
eQ2 −

eQ1 S132 + S231

312 = s2s1
eQ2 −

eQ1 S213 + S312

321 = s1s2s1
eQ3 + eQ21 −

eQ2 S213 −
eQ2 S132 + eQ1 S312 + eQ1 S231 − S321

123 = s0
eQ1

213 = s0s1
eQ2 −

eQ1 S213

132 = s0s2 2 eQ2 −
eQ1 S132

231 = s0s1s2
eQ3 −

eQ2 S132 + eQ1 S231

312 = s0s2s1
eQ3 + eQ21 − 2 eQ2 S213 + eQ1 S312

321 = s0s1s2s1
eQ31 −

eQ3 S213 −
eQ3 S132 −

eQ21 S132 + eQ2 S312 + 2 eQ2 S231 −
eQ1 S321

213 = s1s0
eQ2

123 = s1s0s1
eQ3 −

eQ2 S213

231 = s1s0s2
eQ3 + eQ21 −

eQ2 S132

132 = s1s0s1s2 −
eQ3 S132 + eQ2 S231

321 = s1s0s2s1
eQ31 −

eQ3 S213 −
eQ21 S213 + eQ2 S312

312 = s1s0s1s2s1 −
eQ31 S132 + eQ3 S312 + eQ3 S231 + eQ21 S231 −

eQ2 S321

312 = s2s1s0
eQ3

132 = s2s1s0s1 −
eQ3 S213

321 = s2s1s0s2
eQ31 −

eQ3 S132

123 = s2s1s0s1s2
eQ3 S231

231 = s2s1s0s2s1 −
eQ31 S213 + eQ3 S312

213 = s2s1s0s1s2s1
eQ31 S231 −

eQ3 S321

213 = s0s1s0
eQ21

123 = s0s1s0s1
eQ31 −

eQ21 S213

231 = s0s1s0s2
eQ31 −

eQ21 S132

132 = s0s1s0s1s2 −
eQ31 S132 + eQ21 S231

321 = s0s1s0s2s1
eQ32 −

eQ31 S213 + eQ21 S312

312 = s0s1s0s1s2s1 −
eQ32 S132 + eQ31 S312 + eQ31 S231 −

eQ21 S321

312 = s0s2s1s0
eQ31

132 = s0s2s1s0s1 −
eQ31 S213

321 = s0s2s1s0s2
eQ32 −

eQ31 S132

123 = s0s2s1s0s1s2
eQ31 S231

231 = s0s2s1s0s2s1 −
eQ32 S213 + eQ31 S312

213 = s0s2s1s0s1s2s1
eQ32 S231 −

eQ31 S321

321 = s1s0s2s1s0
eQ32

231 = s1s0s2s1s0s1 −
eQ32 S213

312 = s1s0s2s1s0s2 −
eQ32 S132

213 = s1s0s2s1s0s1s2
eQ32 S231

132 = s1s0s2s1s0s2s1
eQ32 S312

123 = s1s0s2s1s0s1s2s1 −
eQ32 S321

321 = s0s1s0s2s1s0
eQ321

231 = s0s1s0s2s1s0s1 −
eQ321 S213

312 = s0s1s0s2s1s0s2 −
eQ321 S132

213 = s0s1s0s2s1s0s1s2
eQ321 S231

132 = s0s1s0s2s1s0s2s1
eQ321 S312

123 = s0s1s0s2s1s0s1s2s1 −
eQ321 S321
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E is split if, when Ei is given the induced metric from E for each i, the sequences

E i : 0 → Ei−1 → Ei → Qi → 0

are split, for 1 ≤ i ≤ m. In this case we have an orthogonal splitting E =

m⊕

i=1

Qi.

In [T2, Theorem 1] we showed that there is a unique way to attach to every

hermitian filtration of type r a form c̃(E) in Ã(X) in such a way that:

(i) ddcc̃(E) = c(
m⊕

i=1

Qi) − c(E),

(ii) For every map f : Y → X of complex manifolds, c̃(f∗(E)) = f∗c̃(E),

(iii) If E is split, then c̃(E) = 0.

The differential form c̃(E) is called the Bott-Chern form of the hermitian filtration
E corresponding to the total Chern class. If m = 2, i.e., if the filtration E has length
two, then c̃(E) coincides with the Bott-Chern class c̃(0 → Q1 → E → Q2 → 0)
defined in [BC, GS2].

Suppose we are given a hermitian vector bundle E and a filtration E of E by
subbundles as in (8). Assume that the subbundles Ei are given metrics induced
from the hermitian metric on E and that the quotient bundles Qi are then given
the metrics induced from the exact sequences E i. Consider a local holomorphic
orthonormal frame for E such that the first ri elements generate Ei, and let K(Ei)
and K(Qi) be the curvature matrices of Ei and Qi with respect to the chosen frame.
Let KEi

= i
2π K(Ei) and KQi

= i
2π K(Qi). Then we have the following result.

Proposition 2 (T2). The Bott-Chern form c̃(E) is a polynomial in the entries of

the matrices KEi
and KQi

, 1 ≤ i ≤ m, with rational coefficients.

The polynomial in Proposition 2 may be computed by an explicit algorithm. In
fact, one has the equation

c̃(E) =
m∑

i=2

c̃(E i) ∧ c(Qi+1) ∧ · · · ∧ c(Qm)

and the Bott-Chern forms c̃(E i) can be evaluated using the formulas in [T2, §3].

In particular, we have c̃1(E) = 0 and c̃2(E) =

m∑

i=2

c̃2(E i), while c̃p(E) = 0 for

p > rank(E).
Suppose that E is flat and m = 2, so that E is equivalent to a short exact

sequence

E : 0 → E1 → E → Q1 → 0

of hermitian vector bundles, with metrics induced from E. In this situation, ac-
cording to [T1, Prop. 3], we have

(9) c̃k(E) = (−1)k−1Hk−1pk−1(Q1).

Here pr(Q1) = Tr((KQ1
)r) denotes the r-th power sum form of Q1, while H0 = 0

and Hr = 1 + 1
2 + · · · + 1

r is a harmonic number for r > 0.
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3.2. Curvature of homogeneous vector bundles. To simplify the notation in
this section, we will redefine the group Sp2n(C) using the standard symplectic form

[ , ]′ on C2n whose matrix [ei, ej ]
′
i,j on unit coordinate vectors is

(
0 Idn

−Idn 0

)
,

where Idn denotes the n×n identity matrix. Let X = Sp2n/B be the symplectic flag
variety and E• its tautological complete isotropic flag of vector bundles. We equip
the trivial vector bundle E2n = C2n

X
with the trivial hermitian metric h compatible

with the symplectic form [ , ]′ on C2n. More precisely, view the quaternion algebra
H as C⊕ jC and C2n = Cn ⊕ jCn as a right H-module. Then the metric h may be
defined by the equation h(v, w) = −[vj, w]′ (see for example [FH, §7.2]).

The metric on E induces metrics on all the subbundles Ei and the quotient
line bundles Qi = Ei/Ei−1, for 1 ≤ i ≤ n. Our goal here is to compute the
Sp(2n)-invariant curvature matrices of the homogeneous vector bundles Ei and Qi

for 1 ≤ i ≤ n. Following [GrS, §4] and [T2, §5], this may be done by pulling back
these matrices of (1, 1)-forms from X to the compact Lie group Sp(2n), where their
entries may be expressed in terms of the basic invariant forms on Sp(2n).

The Lie algebra of Sp2n(C) is given by

sp(2n, C) = {(A,B,C) | A,B,C ∈ Mn(C), B,C symmetric},

where (A,B,C) denotes the matrix

(
A B
C −At

)
. Complex conjugation of the

algebra sp(2n, C) with respect to the Lie algebra of Sp(2n) is given by the map τ

with τ(A) = −A
t
. The Cartan subalgebra h consists of all matrices of the form

{(diag(t1, . . . , tn), 0, 0) | ti ∈ C}, where diag(t1, . . . , tn) denotes a diagonal matrix.
Consider the set of roots

R = {±ti ± tj | i 6= j} ∪ {±2ti} ⊂ h∗

and a system of positive roots

R+ = {ti − tj | i < j} ∪ {tp + tq | p ≤ q},

where the indices run from 1 to n. We use ij to denote a positive root in the first
set and pq for a positive root in the second. The corresponding basis vectors are
eij = (Eij , 0, 0), epq = (0, Epq + Eqp, 0) for p < q, and epp = (0, Epp, 0), where Eij

is the matrix with 1 as the ij-th entry and zeroes elsewhere.
Define eij = τ(eij), epq = τ(epq), and consider the linearly independent set

B′ = {eij , eij , epq, epq | i < j, p ≤ q}.

The adjoint representation of h on sp(2n, C) gives a root space decomposition

sp(2n, C) = h ⊕
∑

i<j

(C eij ⊕ C eij) ⊕
∑

p≤q

(C epq ⊕ C epq).

Extend B′ to a basis B of sp(2n, C) and let B∗ denote the dual basis of sp(2n, C)∗.
Let ωij , ωij , ωpq, ωpq be the vectors in B∗ which are dual to eij , eij , epq, epq, re-
spectively; we regard these elements as left invariant complex one-forms on Sp(2n).
If p > q we agree that ωpq = ωqp and ωpq = ωqp. Finally, define ωij = γωij ,
ωij = γωij , ωpq = γωpq, and ωpq = γωpq, where γ is a constant such that γ2 = i

2π ,
and set Ωij = ωij ∧ ωij and Ωpq = ωpq ∧ ωpq.

If π : Sp(2n) → X denotes the quotient map, the pullbacks of the aforementioned
curvature matrices under π can now be written explicitly, following [GrS, (4.13)X ]
and [T2, §5]. The result is recorded in the following proposition.
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Proposition 3. For every k with 1 ≤ k ≤ n we have

c1(Qk) =
∑

i<k

Ωik −
∑

j>k

Ωkj −

n∑

p=1

Ωpk

and KEk
= {Θαβ}1≤α,β≤k, where

Θαβ = −
∑

j>k

ωαj ∧ ωβj −
n∑

p=1

ωpα ∧ ωpβ .

Let Ω =
∧

i<j

Ωij ∧
∧

p≤q

Ωpq. Since the class of a point in X is Poincaré dual to

n∏

k=1

c1(Q
∗

k)2n−2k+1 (see e.g. [PR, Cor. 5.6]) we deduce that

∫

X

Ω =

n∏

k=1

1

(2k − 1)!
.

4. Arithmetic intersection theory on Sp2n/B

4.1. Symplectic flag varieties over Spec Z. For the rest of this paper, X will
denote the Chevalley scheme over Z for the homogeneous space Sp2n/B described in
§2.1. The scheme X parametrizes complete isotropic flags E• of a 2n-dimensional
vector space E equipped with the skew diagonal symplectic form, over any base
field. The arithmetic symplectic flag variety X is smooth over Spec Z, and has a
decomposition into Schubert cells induced by the Bruhat decomposition of Sp2n

(see e.g. [Ja, §13.3] for details).
There is a tautological complete isotropic flag of vector bundles

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ E2n = E

over X. For each i with 1 ≤ i ≤ 2n we let Ei denote the short exact sequence

Ei : 0 → Ei−1 → Ei → Qi → 0.

If CH(X) is the Chow ring of algebraic cycles on X modulo rational equivalence, then
the class map induces an isomorphism CH(X) ∼= H∗(X(C), Z), following [F4, Ex.
19.1.11] and [KM, Lem. 6]. We deduce that there is a ring presentation CH(X) ∼=
Z[Xn]/In. The relations ei(X

2
n) in In come from the Whitney sum formula applied

to the filtration E•. This gives a Chern class equation
∏2n

i=1(1 + c1(Qi)) = c(E) in

CH(X), which maps to the identity
∏2n

i=1(1 − x2
i ) = 1, since E is a trivial bundle.

We have an isomorphism of abelian groups

CH(X) ∼=
⊕

w∈Wn

Z Cw(Xn)

where the polynomial Cw(Xn) represents the class of the codimension ℓ(w) Schubert
scheme Xw in X. The latter is defined as the closure of the corresponding Schubert
cell, so that Xw(C) is given as in §2.1.

4.2. The arithmetic Chow group. For p ≥ 0 we let ĈH
p
(X) denote the p-th

arithmetic Chow group of X, in the sense of Gillet and Soulé [GS1]. The elements

in ĈH
p
(X) are represented by arithmetic cycles (Z, gZ), where Z is a codimension p

cycle on X and gZ is a current of type (p−1, p−1) such that the current ddcgZ+δZ(C)

is represented by a smooth differential form on X(C).
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We let F∞ be the involution of X(C) induced by complex conjugation. Let
Ap,p(XR) be the subspace of Ap,p(X(C)) generated by real forms η such that F ∗

∞η =

(−1)pη; denote by Ãp,p(XR) the image of Ap,p(XR) in Ãp,p(X(C)). Let A(XR) =⊕
p Ap,p(XR) and Ã(XR) =

⊕
p Ãp,p(XR).

Since the homogeneous space X admits a cellular decomposition, it follows as in
e.g. [KM] that for each p, there is an exact sequence

(10) 0 −→ Ãp−1,p−1(XR)
a

−→ ĈH
p
(X)

ζ
−→ CHp(X) −→ 0,

where the maps a and ζ are defined by

a(η) = (0, η) and ζ(Z, gZ) = Z.

Summing (10) over all p gives the sequence

(11) 0 −→ Ã(XR)
a

−→ ĈH(X)
ζ

−→ CH(X) −→ 0.

We equip E(C) with the trivial hermitian metric compatible with the skew di-
agonal symplectic form [ , ] on C2n. This metric induces metrics on (the complex
points of) all the vector bundles Ei and the line bundles Li = En+1−i/En−i, for
1 ≤ i ≤ n. We thus obtain hermitian vector bundles Ei and line bundles Li, to-

gether with their arithmetic Chern classes ĉk(Ei) ∈ ĈH
k
(X) and ĉ1(Li) ∈ ĈH

1
(X),

according to [GS2]. Set x̂i = −ĉ1(Li) and for any w ∈ Wn, define

Ĉw := Cw(x̂1, . . . , x̂n) ∈ ĈH
ℓ(w)

(X).

The unique map of abelian groups

(12) ǫ : CH(X) → ĈH(X)

sending the Schubert class Cw(Xn) to Ĉw for all w ∈ Wn is then a splitting of (11).
We thus obtain an isomorphism of abelian groups

(13) ĈH(X) ∼= CH(X) ⊕ Ã(XR).

4.3. Computing arithmetic intersections. We now describe an effective pro-
cedure for computing arithmetic Chern numbers on the symplectic flag variety X,
parallel to [T2, §7]. Let ck(Ei) and c1(Li) be the Chern forms of Ei(C) and Li(C),

respectively. In the sequel we will identify these with their images in ĈH(X) under
the inclusion a. Let xi = −c1(Li) for 1 ≤ i ≤ n.

We begin with the short exact sequence

ELG : 0 → En → E → E
∗

n → 0

where En denotes the tautological Lagrangian subbundle of E over X. By [GS2,
Theorem 4.8(ii)], we have an equation

(14) ĉ(En) ĉ(E
∗

n) = 1 + c̃(ELG)

in ĈH(X). Consider the hermitian filtration

E : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En.

According to [T2, Theorem 2], we have an equation

(15)

n∏

i=1

(1 − x̂i) = ĉ(En) + c̃(E).
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If c̃(E) =
∑

i αi with αi ∈ Ãi,i(XR) for each i, then define c̃(E
∗
) =

∑
i(−1)i+1αi.

We obtain the dual equation

(16)
n∏

i=1

(1 + x̂i) = ĉ(E
∗

n) + c̃(E
∗
).

The abelian group Ã(XR) = Kerζ is an ideal of ĈH(X) such that for any hermit-

ian vector bundle F over X and η, η′ ∈ Ã(XR), we have

(17) ĉk(F ) · η = ck(F ) ∧ η and η · η′ = (ddcη) ∧ η′.

We now multiply (15) with (16) and combine the result with (14) to obtain

(18)
n∏

i=1

(1 − x̂2
i ) = 1 + c̃(E , E

∗
),

where

(19) c̃(E , E
∗
) = c̃(ELG) + c̃(E) ∧ c(E

∗

n) + c̃(E
∗
) ∧ c(En) + (ddcc̃(E)) ∧ c̃(E

∗
).

Using (9) and Proposition 2, we can express the differential form c̃(E , E
∗
) as a

polynomial in the entries of the matrices KEi
and KLi

with rational coefficients.
On the other hand, Proposition 3 gives explicit formulas for all these curvature
matrices in terms of Sp(2n)-invariant differential forms on X(C). Note that since
we are using the skew diagonal symplectic form to define the Lie groups in this
section, the formulas in §3.2 have to be modified accordingly. For the matrix
realization of the Lie algebra sp(2n, C) in this case, one may consult e.g. [GW,
§1.2, §2.3], while the basis elements of h should be ordered as in [BH, (2.20)]. The
indices (i, j) and (p, q) in Proposition 3 are then replaced by (n + 1 − j, n + 1 − i)
and (n + 1− q, n + 1− p), respectively. Recalling that Li = En+1−i/En−i, we have
the identities

x1 = −Ω12 − Ω13 − · · · − Ω1n + Ω11 + Ω12 + · · · + Ω1n

x2 = Ω12 − Ω23 − · · · − Ω2n + Ω12 + Ω22 + · · · + Ω2n

...
...

...

xn = Ω1n + Ω2n + · · · + Ωn−1,n + Ω1n + Ω2n + · · · + Ωnn

in A1,1(XR). We also deduce the next result.

Proposition 4. We have c̃1(E) = c̃1(E , E
∗
) = 0, c̃2(E) = −

∑

i<j

Ωij, and

c̃2(E , E
∗
) = −2

∑

i<j

Ωij − 2
∑

p<q

Ωpq −

n∑

p=1

Ωpp.

Proof. We have c̃2(E) =

n∑

i=2

c̃2(E i), where E i is the short exact sequence

E i : 0 → Ei−1 → Ei → Ln+1−i → 0.

For each i, write

KEi
=

(
Ki

11 Ki
12

Ki
21 Ki

22

)
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where Ki
11 is an (i − 1) × (i − 1) submatrix. According to [T1, Cor. 1], we then

have c̃2(E i) = c1(Ei−1) − Tr Ki
11. Therefore

c̃2(E) =
n∑

i=2

(
c1(Ei−1) − TrKi

11

)
= c1(E1) − Tr Kn

11 +
n−1∑

i=2

Tr Ki
22.

Using Proposition 3, we obtain

c1(E1) = −
∑

j<n

Ωjn −

n∑

p=1

Ωpn,

−TrKn
11 =

n∑

p=1

n−1∑

q=1

Ωp,n+1−q

and

TrKi
22 = −

∑

j>i

Ωn+1−j,n+1−i −

n∑

p=1

Ωp,n+1−i

for 2 ≤ i ≤ n − 1. The claimed computation of c̃2(E) follows by adding these

equations. We deduce from (9) that c̃2(ELG) = −H1p1(E
∗

n) = c1(En), while clearly

c̃1(E
∗
) = c̃1(E) = 0 and c̃2(E

∗
) = c̃2(E). Therefore, equation (19) gives

c̃2(E , E
∗
) = c̃2(ELG) + 2 c̃2(E) = c1(En) + 2 c̃2(E).

Finally, c1(En) = TrKEn
, and the latter is computed using Proposition 3 again. �

Let h(Xn) be a homogeneous polynomial in the ideal In of §2.1. We give an
effective algorithm to compute the arithmetic intersection h(x̂1, . . . , x̂n) as a class

in Ã(XR). First, we decompose h as a sum h(Xn) =
∑

i ei(X
2
n)fi(Xn) for some

polynomials fi. Equation (18) implies that

(20) ei(x̂
2
1, . . . , x̂

2
n) = (−1)i c̃2i(E , E

∗
)

for 1 ≤ i ≤ n. Using this and (17) we see that

(21) h(x̂1, x̂2, . . . x̂n) =

n∑

i=1

(−1)i c̃2i(E , E
∗
) ∧ fi(x1, x2, . . . , xn)

in ĈH(X). Now, thanks to the previous analysis, we can write the right hand side of
(21) as a polynomial in the xi and the entries of the matrices KEi

for 1 ≤ i ≤ n, with
rational coefficients, which is (the class of) an explicit Sp(2n)-invariant differential

form in Ã(XR).
In particular, if ki are nonnegative integers with

∑
ki = dim X = n2 + 1, the

monomial xk1

1 · · · xkn
n lies in the ideal In. If xk1

1 · · · xkn
n =

∑n
i=1 ei(X

2
n)fi(Xn), then

we have

x̂k1

1 x̂k2

2 · · · x̂kn
n =

n∑

i=1

(−1)i c̃2i(E , E
∗
) ∧ fi(x1, . . . , xn).

Now if the top invariant form Ω is defined as in §3.2, we have shown that

c̃2i(E , E
∗
) ∧ fi(x1, . . . , xn) = ri Ω
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for some rational number ri. Therefore the arithmetic degree [GS1] of the above
monomial satisfies

d̂eg(x̂k1

1 x̂k2

2 · · · x̂kn
n ) =

1

2

n∑

i=1

(−1)i ri

∫

X(C)

Ω =
1

2

n∏

k=1

1

(2k − 1)!

n∑

i=1

(−1)i ri.

We deduce the following analogue of [T2, Theorem 4].

Theorem 2. For any nonnegative integers k1, . . . , kn with
∑

ki = n2 + 1, the

arithmetic Chern number d̂eg(x̂k1

1 x̂k2

2 · · · x̂kn
n ) is a rational number.

4.4. Arithmetic Schubert calculus. For any partition λ ∈ Gn and ̟ ∈ Sn,
define

Ĉλ,̟ = Cλ,̟(x̂1, . . . , x̂n).

If λ ∈ Gn r Dn, let rλ be the largest repeated part of λ, and let λ be the par-
tition obtained from λ by deleting two of the parts rλ. For instance, if λ =
(8, 7, 7, 7, 6, 3, 3, 2), then λ = (8, 7, 6, 3, 3, 2).

If λ ∈ Gn r Dn, then properties (b), (c) in §1.1, (17), and (20) imply that

Ĉλ,̟ = Ĉλ,̟Q̃rλ,rλ
(x̂2

1, . . . , x̂
2
n) = (−1)rλCλ,̟(x1, . . . , xn) ∧ c̃2rλ

(E , E
∗
).

Since Ĉλ,̟ ∈ a(Ã(XR)) whenever λ ∈ Gn rDn, we will denote these classes by C̃λ,̟.

The next theorem computes arbitrary arithmetic intersections in ĈH(X) with
respect to the splitting (13) induced by (12), using the basis of symplectic Schubert
polynomials.

Theorem 3. Any element of the arithmetic Chow ring ĈH(X) can be expressed

uniquely in the form
∑

w∈Wn

awĈw + η, where aw ∈ Z and η ∈ Ã(XR). For u, v ∈ Wn

we have

(22) Ĉu · Ĉv =
∑

w∈Wn

cw
uv Ĉw +

∑

λ∈GnrDn
̟∈Sn

cλ̟
uv C̃λ,̟,

Ĉu · η = Cu(x1, . . . , xn) ∧ η, and η · η′ = (ddcη) ∧ η′,

where η, η′ ∈ Ã(XR) and the integers cw
uv, cλ̟

uv are as in (5).

Proof. The first statement is a consequence of the splitting (13). Equation (22)

follows from the formal identity (5) and our definitions of Ĉw and C̃λ,̟. The
remaining assertions are derived immediately from the structure equations (17). �

4.5. The invariant arithmetic Chow ring. The arithmetic Chow group ĈH(X)
is not finitely generated, as it contains the infinite dimensional real vector space

Ã(XR) as a subgroup. Following [T2, §6], we can work equally well with a finite

dimensional variant of ĈH(X), obtained by replacing the space A(XR) by a certain
subspace of the space of all Sp(2n)-invariant differential forms on X(C).

Recall the notation introduced in §3.2 and §4.2. Let Inv(XR) denote the ring of
Sp(2n)-invariant forms in the R-subalgebra of A(X(C)) generated by the differential

forms ω1 ∧ ω2 for all ω1, ω2 in the set {ωij , ωpq | i < j, p ≤ q}. Define Ĩnv(XR) ⊂

Ã(XR) to be the image of Inv(XR) in Ã(XR).

Definition 2. The invariant arithmetic Chow ring ĈHinv(X) is the subring of

ĈH(X) generated by ǫ(CH(X)) and a(Ĩnv(XR)), where ǫ is the splitting map (12).
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There is an exact sequence of abelian groups

0 −→ Ĩnv(XR)
a

−→ ĈHinv(X)
ζ

−→ CH(X) −→ 0

which splits under ǫ, giving an isomorphism of abelian groups

ĈHinv(X) ≃ CH(X) ⊕ Ĩnv(XR).

Theorem 3 may be refined to an analogous statement for the invariant arithmetic

Chow ring ĈHinv(X), by replacing the group Ã(XR) with Ĩnv(XR) throughout.

4.6. Height computation. The flag variety X has a natural pluri-Plücker embed-
ding j in projective space. The morphism j may be defined as a composite

X −֒→ FSL
ι

−֒→ PN

where FSL = SL2n/P denotes the variety parametrizing all partial flags

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E2n = E

with dim(Ei) = i for each i, and ι is a composition of a product of Plücker embed-
dings followed by a Segre embedding. Observe that j is the embedding given by the
line bundle Q =

⊗n
i=1 det(E/Ei). Let O(1) denote the canonical line bundle over

the projective space PN , equipped with its canonical metric (so that c1(O(1)) is the
Fubini-Study form). The Faltings height of X relative to O(1) (see [GS1, Fa, BoGS])
is given by

hO(1)(X) = d̂eg
(
ĉ1(O(1))n2+1| X

)
.

The pullback j∗(O(1)) = Q is an isometry when Q(C) is equipped with the canon-
ical metric given by tensoring the induced metrics on the determinants of the quo-
tient bundles E/Ei for 1 ≤ i ≤ n. The short exact sequences

E i : 0 → Ei−1 → Ei → Ln+1−i → 0

satisfy c̃1(E i) = 0, and hence ĉ1(Ei) = ĉ1(Ei−1) − x̂n+1−i. It follows by induction
that ĉ1(Ei) = −x̂n+1−i − · · · − x̂n, for 1 ≤ i ≤ n. We deduce that

j∗(ĉ1(O(1))) = ĉ1(Q) = −

n∑

i=1

ĉ1(Ei) =

n∑

i=1

i x̂i

and therefore

(23) hO(1)(Sp2n/B) = d̂eg
(
ĉ1(Q)n2+1| X

)
= d̂eg



(

n∑

i=1

i x̂i

)n2+1

 .

We conclude from Theorem 2 and (23) that the height hO(1)(Sp2n/B) is a rational

number. One may also derive this fact from the height formula in [KK].

4.7. An example: Sp4/B. In this section we compute the arithmetic intersec-

tion numbers for the classes x̂i in ĈH(X) when n = 2, so that X is the variety
parametrizing partial flags 0 ⊂ E1 ⊂ E2 ⊂ E4 = E with E2 Lagrangian.

Consider the differential forms

ξ1 = c1(E
∗

2) = Ω11 + 2Ω12 + Ω22

and

ξ2 = c2(E
∗

2) = Ω11Ω22 + 2Ω11Ω12 + 2Ω12Ω22.
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Notice that ξ2
1 = 2 ξ2. Over X we have the filtrations of hermitian vector bundles

ELG : 0 ⊂ E2 ⊂ E and E : 0 ⊂ E1 ⊂ E2.

Equation (9) gives

c̃(ELG) = p1(E2) + H3 p3(E2) = c1(E2) + H3

(
c3
1(E2) − 3c1(E2)c2(E2)

)

= −ξ1 −
11

6
ξ3
1 +

11

2
ξ1ξ2 = −ξ1 +

11

6
ξ1ξ2

and therefore

c̃(ELG) = −Ω11 − 2Ω12 − Ω22 + 11Ω11Ω12Ω22.

On the other hand, Proposition 4 gives c̃(E) = c̃(E
∗
) = −Ω12. Using the Maurer-

Cartan structure equations for Sp2n(C), we find that

dω12 = ∂ω12 =
1

γ
(ω11 ∧ ω12 + ω12 ∧ ω22)

dω12 = ∂ω12 = −
1

γ
(ω22 ∧ ω12 + ω12 ∧ ω11)

and hence

ddc(Ω12) = γ2∂∂(ω12 ∧ ω12) = γ2(∂ω12 ∧ ∂ω12) = Ω12(Ω11 + Ω22).

We deduce from the above calculations and (19) that

c̃(E , E
∗
) = −ξ1 − 2Ω12 − 2Ω12 ξ2 + 11Ω11Ω12Ω22 + Ω12Ω

12(Ω11 + Ω22)

= −ξ1 − 2Ω12 − 2Ω12Ω
11Ω22 − 3Ω12Ω

11Ω12 − 3Ω12Ω
12Ω22 + 11Ω11Ω12Ω22.

Let a and b be nonnegative integers with a+b = 5. The Bott-Chern form c̃(E , E
∗
)

is the key to computing any arithmetic intersection x̂a
1 x̂b

2, following the algorithm
of §4.3. The result will be a multiple of the class of Ω = Ω12Ω

11Ω12Ω22 in the

arithmetic Chow group ĈH
5
(X). For instance, we compute that

x̂3
1x̂

2
2 = x̂1 · e2(x̂

2
1, x̂

2
2) = (−Ω12 + Ω11 + Ω12) ∧ c̃4(E , E

∗
) = −16Ω,

while

x̂2
1x̂

3
2 = x̂2 · e2(x̂

2
1, x̂

2
2) = (Ω12 + Ω12 + Ω22) ∧ c̃4(E , E

∗
) = 6Ω.

We similarly find

x̂5
1 = 10Ω, x̂4

1x̂2 = −8Ω, x̂1x̂
4
2 = 26Ω, x̂5

2 = 0.

For the Faltings height of X, we conclude that

hO(1)(Sp4/B) = d̂eg
(
(x̂1 + 2x̂2)

5
)

= d̂eg(1850Ω) = 925

∫

X(C)

Ω =
925

6
.

Kaiser and Köhler have proved a cohomological formula for the height of generalized
flag varieties [KK, Thm. 8.1]. One can check that in the case of Sp4/B, their result
agrees with the above computation.
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groupes de Lie compacts, Ann. of Math. 57 (1953), 115–207.
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