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Abstract. We use Young’s raising operators to give short and uniform proofs

of several well known results about Schur polynomials and symmetric func-
tions, starting from the Jacobi-Trudi identity.

1. Introduction

One of the earliest papers to study the symmetric functions later known as the
Schur polynomials sλ is that of Jacobi [J], where the following two formulas are
found. The first is Cauchy’s definition of sλ as a quotient of determinants:

(1) sλ(x1, . . . , xn) = det(xλi+n−j
i )i,j

/

det(xn−j
i )i,j

where λ = (λ1, . . . , λn) is an integer partition with at most n non-zero parts. The
second is the Jacobi-Trudi identity

(2) sλ = det(hλi+j−i)1≤i,j≤n

which expresses sλ as a polynomial in the complete symmetric functions hr, r ≥ 0.
Nearly a century later, Littlewood [L] obtained the positive combinatorial expansion

(3) sλ(x) =
∑

T

xc(T )

where the sum is over all semistandard Young tableaux T of shape λ, and c(T )
denotes the content vector of T .

The traditional approach to the theory of Schur polynomials begins with the
classical definition (1); see for example [FH, M, Ma]. Since equation (1) is a special
case of the Weyl character formula, this method is particularly suitable for applica-
tions to representation theory. The more combinatorial treatments [Sa, Sta] use (3)
as the definition of sλ(x), and proceed from there. It is not hard to relate formulas
(1) and (3) to each other directly; see e.g. [Pr, Ste].

In this article, we take the Jacobi-Trudi formula (2) as the starting point, where
the hr represent algebraically independent variables. We avoid the use of the x
variables or ‘alphabets’ and try to prove as much as we can without them. For this
purpose, it turns out to be very useful to express (2) in the alternative form

(4) sλ =
∏

i<j

(1−Rij)hλ

where the Rij are Young’s raising operators [Y] and hλ = hλ1
hλ2

· · ·hλn
. The

equivalence of (2) and (4) follows immediately from the Vandermonde identity.

Date: December 10, 2011.
2000 Mathematics Subject Classification. Primary 05E05; Secondary 14N15.

The author was supported in part by NSF Grant DMS-0901341.

1



2 HARRY TAMVAKIS

The motivation for this approach to the subject comes from Schubert calculus.
It is well known that the algebra of Schur polynomials agrees with that of the
Schubert classes in the cohomology ring of the complex Grassmannian G(k, r),
when k and r are sufficiently large. Giambelli [G] showed that the Schubert classes
on G(k, r) satisfy the determinantal formula (2); the closely related Pieri rule [P]
had been obtained geometrically a few years earlier. Recently, with Buch and
Kresch [BKT1, BKT2], we proved analogues of the Pieri and Giambelli formulas for
the isotropic Grassmannians which are quotients of the symplectic and orthogonal
groups. Our Giambelli formulas for the Schubert classes on these spaces are not
determinantal, but rather are stated in terms of raising operators. In [T], we
used raising operators to obtain a tableau formula for the corresponding theta
polynomials, which is an analogue of Littlewood’s equation (3) in this context.
Moreover, the same methods were applied in loc. cit. to provide new proofs of
similar facts about the Hall-Littlewood functions.

Our aim here is to give a self-contained treatment of those aspects of the theory of
Schur polynomials and symmetric functions which follow naturally from the above
raising operator approach. Using (4) as the definition of Schur polynomials, we give
short proofs of the Pieri and Littlewood-Richardson rules, and follow this with a
discussion – in this setting – of the duality involution, Cauchy identities, and skew
Schur polynomials. We next introduce the variables x = (x1, x2, . . .) and study
the ring Λ of symmetric functions in x from scratch. In particular, we derive the
bialternant and tableau formulas (1) and (3) for sλ(x). See [La] for an approach
to these topics which begins with (2) but is based on alphabets and properties
of determinants such as the Binet-Cauchy formula, and [vL, Ste] for a different
treatment which employs alternating sums stemming from (1).

Most of the proofs in this article are streamlined versions of more involved ar-
guments contained in [BKT2], [M], and [T]. The proof we give of the Littlewood-
Richardson rule from the Pieri rule is essentially that of Remmel-Shimozono [RS]
and Gasharov [G], but expressed in the concise form adapted by Stembridge [Ste].
Each of these proofs employs the same sign reversing involution on a certain set
of Young tableaux, which originates in the work of Berenstein-Zelevinsky [BZ].
The version given here does not use formulas (1) and (3) at all, but relies on the
alternating property of the determinant (2), which serves the same purpose.

The reduction formula (22) for the number of variables in sλ(x1, . . . , xn) is clas-
sically known as a ‘branching rule’ for the characters of the general linear group
[Pr, W]. Our terminology differs because there are similar results in situations
where the connection with representation theory is not available (see [T]). We
use the reduction formula to derive (3) from (4); a different cancellation argument
relating formulas (2) and (3) to each other is due to Gessel-Viennot [GV, Sa].

We find that the short arguments in this article are quite uniform, especially
when compared to other treatments of the same material. On the other hand, much
of the theory of Schur polynomials does not readily fit into the present framework.
Missing from the discussion are the Hall inner product, the Hopf algebra structure
on Λ, the basis of power sums, the character theory of the symmetric and general
linear groups, Young tableau algorithms such as jeu de taquin, the plactic algebra,
and noncommutative symmetric functions. These topics and many more can be
added following standard references such as [F, La, M, Ma, Sa, Sta, Z], but are not
as natural from the point of view adopted here, which stems from Grassmannian
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Schubert calculus. A similar approach may be used to study the theory of Schur
Q-polynomials and more generally of Hall-Littlewood functions; some of this story
may be found in [T].

The author is indebted to his collaborators Anders Buch and Andrew Kresch for
their efforts on the related projects [BKT1, BKT2].

2. The algebra of Schur polynomials

2.1. Preliminaries. An integer sequence or integer vector is a sequence of integers
α = (α1, α2, . . .) with only finitely αi non-zero. The length of α, denoted ℓ(α), is
largest integer ℓ ≥ 0 such that αℓ 6= 0. We identify an integer sequence of length ℓ
with the vector consisting of its first ℓ terms. We let |α| =

∑

αi and write α ≥ β
if αi ≥ βi for each i. An integer sequence α is a composition if αi ≥ 0 for all i and
a partition if αi ≥ αi+1 ≥ 0 for all i.

Consider the polynomial ring A = Z[u1, u2, . . .] where the ui are countably infi-
nite commuting independent variables. We regard A as a graded ring with each ui
having graded degree i, and adopt the convention here and throughout the paper
that u0 = 1 while ur = 0 for r < 0. For each integer vector α, set uα =

∏

i uαi
;

then A has a free Z-basis consisting of the monomials uλ for all partitions λ.
For two integer sequences α, β such that |α| = |β|, we say that α dominates β

and write α � β if α1 + · · · + αi ≥ β1 + · · · + βi for each i. Given any integer
sequence α = (α1, α2, . . .) and i < j, we define

Rij(α) = (α1, . . . , αi + 1, . . . , αj − 1, . . .).

A raising operator R is any monomial in these Rij ’s. Note that we have Rα � α
for all integer sequences α. For any raising operator R, define Ruα = uRα. Here
the operator R acts on the index α, and not on the monomial uα itself. Thus, if
the components of α are a permutation of the components of β, then uα = uβ as
elements of A, but it may happen that Ruα 6= Ruβ . Formal manipulations using
these raising operators are justified carefully in the following section. Note that if
αℓ < 0 for ℓ = ℓ(α), then Ruα = 0 in A for any raising operator R.

2.2. Schur polynomials. For any integer vector α, define the Schur polynomial
Uα by the formula

(5) Uα :=
∏

i<j

(1−Rij)uα.

Although the product in (5) is infinite, if we expand it into a formal series we find
that only finitely many of the summands are nonzero; hence, Uα is well defined.
We will show that equation (5) may be written in the determinantal form

(6) Uα = det(uαi+j−i)1≤i,j≤ℓ =
∑

w∈Sℓ

(−1)wuw(α+ρℓ)−ρℓ

where ℓ denotes the length of α and ρℓ = (ℓ− 1, ℓ− 2, . . . , 1, 0).
Algebraic expressions and identities involving raising operators like the above can

be justified by viewing them as the image of a Z-linear map Z[Zℓ] → A, where Z[Zℓ]
denotes the group algebra of (Zℓ,+). We let x1, . . . , xℓ be independent variables and
identify Z[Zℓ] with Z[x1, x

−1
1 , . . . , xℓ, x

−1
ℓ ]. For any integer vector α = (α1, . . . , αℓ)

and raising operator R, set xα = xα1

1 · · ·xαℓ

ℓ and Rxα = xRα. Then if ψ : Z[Zℓ] → A
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is the Z-linear map determined by ψ(xα) = uα for each α, we have Ruα = ψ(xRα).
It follows from the Vandermonde identity

∏

1≤i<j≤ℓ

(xj − xi) = det(xj−1
i )1≤i,j≤ℓ

that
∏

1≤i<j≤ℓ

(1−Rij)x
α =

∏

1≤i<j≤ℓ

(1− xix
−1
j )xα = det(xαi+j−i

i )1≤i,j≤ℓ.

Now apply the map ψ to both ends of the above equation to obtain (6).

Example 1. We have

U(5,4,2) = (1−R12)(1−R13)(1−R23)u(5,4,2)

= (1−R12 −R13 −R23 +R12R13 +R12R23 +R13R23 −R12R13R23)u(5,4,2)

= u(5,4,2) − u(6,3,2) − u(6,4,1) − u(5,5,1) + u(7,3,1) + u(6,4,1) + u(6,5,0) − u(7,4,0)

= u5u4u2 − u6u3u2 − u25u1 + u7u3u1 + u6u5 − u7u4 =

∣

∣

∣

∣

∣

∣

u5 u6 u7
u3 u4 u5
1 u1 u2

∣

∣

∣

∣

∣

∣

.

If α = (α1, . . . , αℓ) and β = (β1, . . . , βm) are two integer vectors and r, s ∈ Z,
we let (α, r, s, β) denote the integer vector (α1, . . . , αℓ, r, s, β1, . . . , βm). The next
lemma is known as a ‘straightening law’ for the Uα.

Lemma 1. (a) Let α and β be integer vectors. Then for any r, s ∈ Z we have

U(α,r,s,β) = −U(α,s−1,r+1,β) .

(b) Let α = (α1, . . . , αℓ) be any integer vector. Then Uα = 0 unless α + ρℓ =
w(µ + ρℓ) for a (unique) permutation w ∈ Sℓ and partition µ. In the latter case,
we have Uα = (−1)wUµ.

Proof. Both parts follow immediately from (6) and the alternating property of the
determinant. �

If λ is any partition, clearly (5) implies that Uλ = uλ +
∑

µ≻λ aλµuµ where
aλµ ∈ Z and the sum is over partitions µ which strictly dominate λ. We deduce
that the Uλ for λ a partition form another Z-basis of A.

2.3. Mirror identities. We will represent a partition λ by its Young diagram of
boxes, arranged in left-justified rows, with λi boxes in row i. We write λ ⊂ µ
instead of λ ≤ µ for the containment relation between two Young diagrams; in this
case the set-theoretic difference µ r λ is the skew diagram µ/λ. A skew diagram
is a horizontal (resp. vertical) strip if it does not contain two boxes in the same

column (resp. row). We write λ
p
−→ µ if µ/λ is a horizontal strip with p boxes.

Lemma 2. Let λ be a partition and p ≥ 0 be an integer. Then we have

(7)
∑

α≥0, |α|=p

Uλ+α =
∑

λ
p
−→µ

Uµ and
∑

α≥0, |α|=p

Uλ−α =
∑

µ
p
−→λ

Uµ

where the sums are over compositions α ≥ 0 with |α| = p and partitions µ ⊃ λ

(respectively µ ⊂ λ) such that λ
p
−→ µ (respectively, µ

p
−→ λ). Moreover, for every

n ≥ ℓ(λ), the identities (7) remain true if the sums are taken over α and µ of length
at most n.
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Proof. The proofs of the two identities are very similar, so we will only discuss the
second. Let us rewrite the sum

∑

α≥0 Uλ−α as
∑

ν≤λ Uν , where the latter sum is

over integer sequences ν such that νi ≤ λi for each i and |ν| = |λ| − p. Call any
such sequence ν bad if there exists a j ≥ 1 such that νj < λj+1, and let X be the
set of all bad sequences. Define an involution ι : X → X as follows: for ν ∈ X,
choose j minimal such that νj < λj+1, and set

ι(ν) = (ν1, . . . , νj−1, νj+1 − 1, νj + 1, νj+2, . . .).

Lemma 1(a) implies that Uν +Uι(ν) = 0 for every ν ∈ X. Therefore all bad indices
may be omitted from the sum

∑

ν≤λ Uν , and this completes the proof. Moreover,

to evaluate
∑

ν≤λ Uν in the situation where νj = 0 for all j > n, notice that if the
minimal j such that νj < λj+1 is j = n, then νn < 0 and therefore Uν = 0. �

2.4. The Pieri rule. For any d ≥ 1 define the operator Rd by

Rd =
∏

1≤i<j≤d

(1−Rij).

For p > 0 and any partition λ of length ℓ, we compute

up · Uλ = up ·R
ℓ uλ = Rℓ u(λ,p) = Rℓ+1 ·

ℓ
∏

i=1

(1−Ri,ℓ+1)
−1 u(λ,p)

= Rℓ+1 ·

ℓ
∏

i=1

(1 +Ri,ℓ+1 +R2
i,ℓ+1 + · · · )u(λ,p) =

∑

α≥0

Uλ+α,

where the sum is over all compositions α such that |α| = p and αj = 0 for j > ℓ+1.
Applying Lemma 2, we arrive at the Pieri rule

(8) up · Uλ =
∑

λ
p
−→µ

Uµ.

Conversely, suppose that we are given a family {Xλ} of elements of A, one for
each partition λ, such that Xp = up for every integer p ≥ 0 and the Xλ satisfy the
Pieri rule Xp ·Xλ =

∑

λ
p
−→µ

Xµ. We claim then that

Xλ = Uλ =
∏

i<j

(1−Rij)uλ

for every partition λ. To see this, note that the Pieri rule implies that

(9) Uλ +
∑

µ≻λ

aλµ Uµ = uλ1
· · ·uλℓ

= Xλ +
∑

µ≻λ

aλµXµ

for some constants aλµ ∈ Z. The claim now follows by induction on λ.

Example 2. We have

u2 · U(3,3,1) = U(5,3,1) + U(4,3,2) + U(4,3,1,1) + U(3,3,3) + U(3,3,2,1).
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2.5. Kostka numbers. A (semistandard) tableau T on the skew shape λ/µ is a
filling of the boxes of λ/µ with positive integers, so that the entries are weakly in-
creasing along each row from left to right and strictly increasing down each column.
We can identify such a tableau T with a sequence of partitions

µ = λ0
c1−→ λ1

c2−→ · · ·
cr−→ λr = λ

such that for 1 ≤ i ≤ r the horizontal strip λi/λi−1 consists of the ci boxes in T
with entry i. The composition c(T ) = (c1, . . . , cr) is called the content of T .

Let µ be a partition and α any integer vector. The equation

uα Uµ =
∑

λ

Kλ/µ,α Uλ

summed over partitions λ such that λ ⊃ µ defines the Kostka numbers Kλ/µ,α. If
α is not a composition such that |α| = |λ/µ| then we have Kλ/µ,α = 0. Otherwise,
iteration of the Pieri rule shows that Kλ/µ,α equals the number of tableaux T of
shape λ/µ and content vector c(T ) = α. We deduce from equation (9) that the
Kostka matrix K = {Kλ,µ}, whose rows and columns are indexed by partitions, is
lower unitriangular with respect to the dominance order.

2.6. The Littlewood-Richardson rule. Define the Littlewood-Richardson coef-
ficients to be the structure constants cλµν in the equation

(10) Uµ · Uν =
∑

λ

cλµν Uλ.

If ℓ = ℓ(ν), we compute that

Uµ · Uν =
∑

w∈Sℓ

(−1)wuw(ν+ρℓ)−ρℓ
Uµ

=
∑

λ

∑

w∈Sℓ

(−1)wKλ/µ,w(ν+ρℓ)−ρℓ
Uλ

from which we deduce that

(11) cλµν =
∑

(w,T )

(−1)w

where the sum is over all pairs (w, T ) such that w ∈ Sℓ and T is a tableau on λ/µ
with c(T )+ρℓ = w(ν+ρℓ). Observe that c(T ) is a partition if and only if c(T )+ρℓ
is a strict partition, in which case c(T ) + ρℓ = w(ν + ρℓ) implies that w = 1.

For any tableau T , let T≥r denote the subtableau of T formed by the entries in
columns r and higher, and define T>r and T<r similarly. We say that a pair (w, T )
is bad if c(T≥r) is not a partition for some r. Let Y denote the set of bad pairs
indexing the sum (11), and define a sign reversing involution ι : Y → Y as follows.
Given (w, T ) ∈ Y , choose r maximal such that c(T≥r) is not a partition, and let j
be minimal such that cj(T≥r) < cj+1(T≥r). Call an entry j (resp. j + 1) in T free
if there is no j+1 (resp. j) in its column. Let T ′ denote the filling of λ/µ obtained
from T by replacing all free j’s (resp. (j +1)’s) that lie in T<r with (j +1)’s (resp.
j’s), and then arranging the entries of each row in weakly increasing order. Since
c(T>r) is a partition, we deduce that T contains a single entry j + 1 in column r,
and no j in column r, while cj(T≥r)+1 = cj+1(T≥r). It follows easily from this that
T ′ is a tableau. We define ι(w, T ) = (ǫjw, T

′), where ǫj denotes the transposition
(j, j + 1). Since ǫjc(T<r) = c(T ′

<r) and ǫj(c(T≥r) + ρℓ) = c(T≥r) + ρℓ, while T≥r
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coincides with T ′
≥r, it follows that ǫj(c(T ) + ρℓ) = c(T ′) + ρℓ and ι(w, T ) ∈ Y . We

conclude that the bad pairs can be cancelled from the sum (11).
The above argument proves that cλµν is equal to the number of tableaux T of

shape λ/µ and content ν such that T≥r is a partition for each r. This is one among
many equivalent forms of the Littlewood-Richardson rule.

2.7. Duality involution. Let vr = U(1r) for r ≥ 1, v0 = 1, and vr = 0 for r < 0.
By expanding the determinant U(1r) = det(u1+j−i)1≤i,j≤r along the first row, we
obtain the identity

(12) vr − u1vr−1 + u2vr−2 − · · ·+ (−1)rur = 0.

Define a ring homomorphism ω : A → A by setting ω(ur) = vr for every integer r.
For any integer sequence α, let vα =

∏

i vαi
, and for any partition λ, set

Vλ = ω(Uλ) =
∏

i<j

(1−Rij) vλ.

We deduce from (8) that the Vλ satisfy the Pieri rule

(13) vp · Vλ =
∑

λ
p
−→µ

Vµ.

On the other hand, the Littlewood-Richardson rule easily implies that

(14) U(1p) · Uλ =
∑

µ

Uµ

summed over all partitions µ ⊃ λ such that µ/λ is a vertical p-strip. It follows
from (13), (14), and induction on λ that Vλ = Uλ′ for each λ. Here λ′ denotes the
partition which is conjugate to λ, i.e. such that λ′i = #{j | λj ≥ i} for all i. In
particular, the equality ω(Uλ) = Uλ′ proves that ω is an involution of A, a fact that
can also be deduced from (12).

2.8. Cauchy identities and skew Schur polynomials. Define a new Z-basis tλ
of A by the transition equations

(15) Uλ =
∑

µ

Kλ,µ tµ.

In other words, the transition matrix M(U, t) between the bases Uλ and tλ of A is
defined to be the lower unitriangular Kostka matrix K. Then A :=M(t, U) = K−1

and B :=M(u, U) = Kt. We have
∑

λ

tλ ⊗ uλ =
∑

λ,µ,ν

AλµBλν Uµ ⊗ Uν

=
∑

λ,µ,ν

At
µλBλν Uµ ⊗ Uν =

∑

µ

Uµ ⊗ Uµ

in A⊗ZA, where the above sums are either formal or restricted to run over partitions
of a fixed integer n. We deduce the Cauchy identity

(16)
∑

λ

Uλ ⊗ Uλ =
∑

λ

tλ ⊗ uλ
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and, by applying the automorphism 1⊗ ω to (16), the dual Cauchy identity

(17)
∑

λ

Uλ ⊗ Vλ =
∑

λ

tλ ⊗ vλ.

For any skew diagram λ/µ, define the skew Schur polynomial Uλ/µ by generalizing
equation (15):

Uλ/µ :=
∑

ν

Kλ/µ,ν tν .

We have the following computation in the ring A⊗Z A⊗Z A.
∑

µ,ν

Uµ ⊗ Uν ⊗ UµUν =
∑

µ,ν

Uµ ⊗ tν ⊗ Uµuν =
∑

λ,µ,ν

Uµ ⊗ tν ⊗Kλ/µ,νUλ

=
∑

λ,µ

Uµ ⊗ Uλ/µ ⊗ Uλ.

By comparing the coefficient of Uµ⊗Uν⊗Uλ on either end of the previous equation,
we obtain

(18) Uλ/µ =
∑

ν

cλµν Uν

where the coefficients cλµν are the same as the ones in (10). Since ω(Uλ) = Uλ′

implies the identity cλµν = cλ
′

µ′ν′ , we deduce from (18) that

(19) ω(Uλ/µ) = Uλ′/µ′ .

3. Symmetric functions

3.1. Initial definitions. Let x = (x1, x2, . . .) be an infinite sequence of commuting
variables. For any composition α we set xα =

∏

i x
αi

i . Given k ≥ 0, let Λk denote
the abelian group of all formal power series

∑

|α|=k cαx
α ∈ Z[[x1, x2, . . .]] which are

invariant under any permutation of the variables xi. The elements of Λk are called
homogeneous symmetric functions of degree k, and the graded ring Λ =

⊕

k≥0 Λ
k

is the ring of symmetric functions.
For each partition λ of k, we obtain an element mλ ∈ Λk by symmetrizing

the monomial xλ. In other words, mλ(x) =
∑

α x
α where the sum is over all

distinct permutations α = (α1, α2, . . . ) of λ = (λ1, λ2, . . .). We call mλ a monomial
symmetric function. The definition implies that if f =

∑

α cαx
α ∈ Λk, then f =

∑

λ cλmλ. It follows that the mλ for all partitions λ of k (respectively, for all
partitions λ) form a Z-basis of Λk (respectively, of Λ).

Let hr = hr(x) denote the r-th complete symmetric function, defined by

hr(x) =
∑

λ : |λ|=r

mλ(x) =
∑

i1≤···≤ir

xi1 · · ·xir .

We have the generating function equation

(20) H(t) =

∞
∑

r=0

hr(x)t
r =

∞
∏

i=1

(1− xit)
−1.

Let hα =
∏

i hαi
for any integer sequence α.
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There is a unique ring homomorphism φ : A → Λ defined by setting φ(ur) = hr
for every r ≥ 0. For any integer sequence α, the Schur function sα is defined by
sα = φ(Uα). We have

sα =
∏

i<j

(1−Rij)hα = det(hαi+j−i)i,j .

3.2. Reduction and tableau formulas. Let y = (y1, y2, . . .) be a second sequence
of variables, choose n ≥ 1, and set x(n) = (x1, . . . , xn). It follows easily from
equation (20) that for any integer p,

hp(x
(n), y) =

p
∑

i=0

hi(xn)hp−i(x
(n−1), y).

Therefore, for any integer vector ν, we have

hν(x
(n), y) =

∑

α≥0

hα(xn)hν−α(x
(n−1), y) =

∑

α≥0

x|α|n hν−α(x
(n−1), y)

summed over all compositions α. If R denotes any raising operator and λ is any
partition, we obtain

(21) Rhλ(x
(n), y) =

∑

α≥0

x|α|n hRλ−α(x
(n−1), y) =

∑

α≥0

x|α|n Rhλ−α(x
(n−1), y).

Since sλ =
∏

i<j(1−Rij)hλ, we deduce from (21) that

sλ(x
(n), y) =

∑

α≥0

x|α|n sλ−α(x
(n−1), y) =

∞
∑

p=0

xpn
∑

|α|=p

sλ−α(x
(n−1), y).

Applying Lemma 2, we obtain the reduction formula

(22) sλ(x
(n), y) =

∞
∑

p=0

xpn
∑

µ
p
−→λ

sµ(x
(n−1), y).

Repeated application of the reduction equation (22) results in

(23) sλ(x
(n), y) =

∑

µ⊂λ

sµ(y)
∑

T onλ/µ

xc(T )

where the first sum is over partitions µ ⊂ λ and the second over all tableau T
of shape λ/µ with entries at most n. As n is arbitrary, equation (23) holds with
x = (x1, x2, . . .) in place of x(n). It follows that

sλ(x, y) =
∑

µ⊂λ

sµ(y)
∑

T onλ/µ

xc(T )

where the second sum is over all tableau T of shape λ/µ. Substituting y = 0 proves
Littlewood’s tableau formula

(24) sλ(x) =
∑

T onλ

xc(T ) =
∑

µ

Kλ,µmµ(x).

From (24) we deduce immediately that the sλ for λ a partition form a Z-basis of
Λ, and comparing with (15) shows that φ(tλ) = mλ. It follows that the functions
hλ for λ a partition also form a Z-basis of Λ.
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3.3. Duality and Cauchy identities. Let er = er(x) denote the r-th elementary
symmetric function in the variables x, so that

er(x) = m(1r)(x) =
∑

i1<···<ir

xi1 · · ·xir .

The generating function E(t) for the er satisfies

E(t) =
∞
∑

r=0

er(x)t
r =

∞
∏

i=1

(1 + xit).

Since E(t)H(−t) = 1, we obtain

(25) er − h1er−1 + h2er−2 − · · ·+ (−1)rhr = 0

for each r ≥ 1. For any integer sequence α, we set eα =
∏

i eαi
.

By comparing equations (12) and (25), we deduce that φ(vr) = er for each r,
and hence φ(vλ) = eλ and φ(Vλ) = sλ′ . The duality involution on A transfers to
an automorphism ω : Λ → Λ which sends hλ to eλ and sλ to sλ′ , for each partition
λ. We deduce that the eλ form another Z-basis of Λ. Moreover, by applying φ to
(16) and (17), we obtain the usual form of the Cauchy identities

∑

λ

sλ(x)sλ(y) =
∑

λ

mλ(x)hλ(y) =
∏

i,j

1

1− xiyj

and
∑

λ

sλ(x)sλ′(y) =
∑

λ

mλ(x)eλ(y) =
∏

i,j

(1 + xiyj)

where the sums are taken over all partitions λ.

3.4. Skew Schur functions. Define the skew Schur functions sλ/µ by

sλ/µ(x) = φ(Uλ/µ) =
∑

ν

Kλ/µ,ν mν(x) =
∑

T onλ/µ

xc(T ).

Equation (23) then implies that

(26) sλ(x, y) =
∑

µ⊂λ

sλ/µ(x)sµ(y) =
∑

µ⊂λ

sµ(x)sλ/µ(y).

Applying the operator
∏

i<j(1−Rij) to both sides of the equation

hλ(x, y) =
∑

α≥0

hα(x)hλ−α(y)

gives

(27) sλ(x, y) =
∑

α≥0

hα(x)sλ−α(y).

Since hα =
∑

µKµ,αsµ, comparing (26) with (27) proves that

(28) sλ/µ =
∑

α≥0

Kµ,αsλ−α.

Observe that (28) is a generalization of the second identity in Lemma 2.
Using Lemma 1(b) in (27), we obtain that

(29) sλ(x, y) =
∑

µ

sµ(y)
∑

w∈Sℓ

(−1)whλ+ρℓ−w(µ+ρℓ)(x)
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where the first sum is over all partitions µ and ℓ = ℓ(λ). Equating the coefficients
of sµ(y) in (26) and (29) proves the following generalization of the Jacobi-Trudi
identity (2):

(30) sλ/µ =
∑

w∈Sℓ

(−1)whλ+ρℓ−w(µ+ρℓ) = det(hλi−µj+j−i)i,j .

By applying the involution ω to (30) and using (19), we derive the dual equation

sλ′/µ′ = det(eλi−µj+j−i)i,j .

3.5. The classical definition of Schur polynomials. In this section we fix n,
the number of variables, and work with integer vectors and partitions in Z

n. Let
x = (x1, . . . , xn) and set ρ = ρn = (n− 1, . . . , 1, 0). For each α ∈ Z

n, define

Aα =
∑

w∈Sn

(−1)wxw(α) = det(x
αj

i )1≤i,j≤n

and set s̃α(x) = Aα+ρ/Aρ. Consider the Z-linear map A → Z[x1, . . . , xn] sending
Uλ to Aλ+ρ for any partition λ with ℓ(λ) ≤ n, and to zero, if ℓ(λ) > n. It follows
from Lemma 1(b) that this map sends Uα to Aα+ρ for any composition α ∈ Z

n.
Lemma 2 therefore implies that for any partition λ ∈ Z

n and integer r ≥ 0, we have

(31)
∑

α≥0

Aλ+α+ρ =
∑

λ
r
−→µ

Aµ+ρ

where the sums are over compositions α ≥ 0 with |α| = r and ℓ(α) ≤ n and

partitions µ with λ
r
−→ µ and ℓ(µ) ≤ n. Furthermore, we have

Aλ+ρ hr(x) =
∑

w∈Sn

(−1)w
∑

α≥0 : |α|=r

xw(λ+ρ)+α

=
∑

w∈Sn

(−1)w
∑

α≥0 : |α|=r

xw(λ+ρ)+w(α)

=
∑

α≥0 : |α|=r

Aλ+α+ρ =
∑

λ
r
−→µ

Aµ+ρ,

by (31). Now divide by Aρ to deduce that

(32) s̃λ(x)hr(x) =
∑

λ
r
−→µ

s̃µ(x).

Applying (32) with λ = 0 gives s̃r(x) = hr(x), for every r ≥ 1. Since the s̃λ(x)
satisfy the Pieri rule, it follows by induction on λ as in §2.4 that

s̃λ(x) =
∏

i<j

(1−Rij)hλ(x) = sλ(x)

for each partition λ of length at most n. We have thus proved equation (1).
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