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Abstract. We prove the arithmetic Hodge index and hard Lef-
schetz conjectures for the Grassmannian G = G(2, N) parametrizing
lines in projective space, for the natural arithmetic Lefschetz opera-
tor defined via the Plücker embedding of G in projective space. The
analysis of the Hodge index inequality involves estimates on values
of certain Racah polynomials.

0. Introduction

Let X be an arithmetic variety, by which we mean a regular, projective
and flat scheme over SpecZ, of absolute dimension d + 1. Assume that
M = (M, ‖ · ‖) is a hermitian line bundle on X which is arithmetically
ample, in the sense of [Z] and [So, §5.2]. For each p > 0 the line bundle
M defines an arithmetic Lefschetz operator

L̂ : ĈH
p
(X)R −→ ĈH

p+1
(X)R

α 7−→ α · ĉ1(M).

Here ĈH
∗
(X)R is the real arithmetic Chow ring of [GS] and ĉ1(M) is the

arithmetic first Chern class of M .
In this setting, Gillet and Soulé [GS] proposed arithmetic analogues

of Grothendieck’s standard conjectures [Gr] on algebraic cycles. A more
precise version of the conjectures was formulated in [So, §5.3]; assuming
2p 6 d+ 1, the statement is

Conjecture 1. (a) (Hard Lefschetz) The map

L̂d+1−2p : ĈH
p
(X)R −→ ĈH

d+1−p
(X)R

is an isomorphism;

(b) (Hodge index) If the nonzero x ∈ ĈH
p
(X)R satisfies L̂d+2−2p(x) = 0,

then
(−1)p d̂eg(x L̂d+1−2p(x)) > 0.
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Notice that Conjecture 1 (for all p) implies that the intersection pairing

ĈH
p
(X)R ⊗ ĈH

d+1−p
(X)R −→ R

is nondegenerate. When d = 1, the Conjecture follows from the Hodge
index theorem for arithmetic surfaces due to Faltings [Fa] and Hriljac
[Hr].

We study these conjectures when X = G(r,N) is the arithmetic Grass-
mannian, parametrizing r-dimensional subspaces of an (r+N)-dimensional
vector space, over any field, and M = O(1) is the very ample line bun-
dle giving the Plücker embedding, equipped with its natural hermitian
metric. The latter is the metric induced from the standard metric on
complex affine space, so that the first Chern form c1(M) on X(C) is
U(r +N)-invariant and dual to the hyperplane class.

Our main result is that, for G(r,N) and O(1), Conjecture 1 holds
when r = 2. For projective space (r = 1) this was shown by Künnemann
[Ku]. Moreover, it is proved in [KM] and [Ta] that Conjecture 1 holds
for G(r,N) after a suitable scaling of the metric on O(1). To obtain
the precise result for G(2, N) we use the arithmetic Schubert calculus of
[T] and linear algebra to reduce the problem to combinatorial estimates.
In this case the inequality in part (b) asserts the positivity of a linear
combination of harmonic numbers with coefficients certain Racah poly-
nomials. The latter are a system of orthogonal polynomials in a discrete
variable introduced by Wilson [Wi] [AW] which generalize the classical
Racah coefficients or 6-j symbols [Ra] of quantum physics.

The results of Künnemann [Ku] show that each statement in Con-
jecture 1 (for given X, p and M) is true if and only if it holds when

ĈH
p
(X)R is replaced by the Arakelov subgroup CHp(X)R associated to

the Kähler form c1(M). We therefore restrict attention to this subgroup
throughout the paper. In Section 1 we study arithmetic Lefschetz theory
for varieties which admit a cellular decomposition and derive a cohomo-
logical criterion (Corollary 1) which we use to check Conjecture 1. This
criterion does not suffice to check the Hodge index inequality on more
general Grassmannians. In Section 2 we apply classical and arithmetic
Schubert calculus to reduce the conjecture for G(2, N) to estimates for a
class of Racah polynomials. The required bounds for these polynomials
are established in Section 3.

The authors would like to thank Christophe Soulé for suggesting this
problem to us and for general encouragement. Thanks are also due to
Klaus Künnemann, Jennifer Morse and Herb Wilf for helpful discussions,
and the anonymous referee for an improvement in the proof of Theorem
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1. Arithmetic standard conjectures on cellular spaces

We study Conjecture 1 for arithmetic varieties X which have a cellular
decomposition over SpecZ, in the sense of [Fu, Exam. 1.9.1]; the Grass-
mannian G(r,N) is a typical example. See [KM] for more information
on these spaces and an approach to a weaker version of the conjecture.
Recall that for each p the class map

cl : CHp(X)R −→ Hp,p(XR)

is an isomorphism of the real Chow ring CHp(X)R = CHp(X)⊗ZR with
the space Hp,p(XR) of real harmonic differential (p, p)-forms on X(C).
We denote by

L : CHp(X)R −→ CHp+1(X)R
α 7−→ α · c1(M)

the classical Lefschetz operator associated to an ample line bundle M
over X.

Let us equip the holomorphic line bundle M(C) with a smooth posi-
tive hermitian metric, invariant under complex conjugation, to obtain a
hermitian line bundle M . As we have indicated, to check Conjecture 1

for the operator L̂(α) = α · ĉ1(M) it suffices to work with the Arakelov
Chow group CHp(X)R defined using the Kähler form c1(M). Since X
has a cellular decomposition, we have an exact sequence

(1) 0 −→ CHp−1(X)R
ã−→ CHp(X)R

ζ−→ CHp(X)R −→ 0

(see [KM, Prop. 6]). Here ã = a ◦ cl is the composite of the class map
with the natural inclusion a : Hp−1,p−1(XR) ↪→ CHp(X)R and ζ is the
projection defined in [GS, §1]. We choose a splitting

sp : CHp(X)R −→ CHp(X)R

for the sequence (1) and thus arrive at a direct sum decomposition

(2) CHp(X)R ∼= CHp(X)R ⊕ CHp−1(X)R.

for every p.
Summing (1) over all p produces a sequence

(3) 0 −→ CH∗−1(X)R
ã−→ CH∗(X)R

ζ−→ CH∗(X)R −→ 0

which is compatible with the actions of L and L̂. The splitting s :=

⊕psp of (3) does not commute with L̂ in general. Rather, the image of
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L̂ ◦ s− s ◦ L is contained in Ker(ζ), hence

(4) L̂ ◦ s− s ◦ L = ã ◦ U

for a uniquely defined degree-preserving linear operator U on CH∗(X)R.
We now give some conditions equivalent to the arithmetic hard Lef-

schetz theorem (Theorem 1). When checking these forG(2, N), we obtain
something stronger, which establishes the arithmetic Hodge index theo-
rem as well; this is quantified in Theorem 2. Recall the classical Lefschetz
decomposition on CHm(X)R ' H2m(X(C),R):

CHm(X)R =
⊕
p>0

Lm−pCHp
prim(X)R,

where the group of primitive codimension p classes is

CHp
prim(X)R = Ker(Ld+1−2p : CHp(X)R → CHd+1−p(X)R).

For m = d− p this decomposition induces a projection map

πp : CHd−p(X)R −→ CHd−p
coprim(X)R

where CHd−p
coprim(X)R = Ld−2pCHp

prim(X)R.

Theorem 1. Let X be an arithmetic variety of dimension d+1 which ad-

mits a cellular decomposition. Let L̂ be the arithmetic Lefschetz operator
associated to an ample hermitian line bundle on X. Then the following
statements are equivalent:

(i) L̂d+1−2p : CHp(X)R −→ CHd+1−p(X)R is an isomorphism for all
p.

(ii) There exists a linear map Λ̂ : CH∗(X)R −→ CH∗−1(X)R such

that for every p and α ∈ CHp(X)R we have [Λ̂, L̂]α = (d + 1 −
2p)α.

(iii) For some (equivalently, any) choice of splitting s of (3), with U
as in (4), the map

δp := πp

d−2p∑
i=0

Ld−2p−iULi : CHp
prim(X)R −→ CHd−p

coprim(X)R

is an isomorphism for all p.

Proof. The equivalence of (i) and (ii) follows from standard Lefschetz
theory; this is described e.g. in [Kl, §4]. Now consider the commutative
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diagram with exact rows

0 // CHp−1(X)R

Ld+1−2p

��

ã // CHp(X)R

L̂d+1−2p

��

ζ // CHp(X)R

Ld+1−2p

��

// 0

0 // CHd−p(X)R
ã // CHd+1−p(X)R

ζ // CHd+1−p(X)R // 0

By classical Lefschetz theory the left vertical map is injective and the
right vertical map is surjective. The snake lemma gives an exact sequence

0→ Ker(L̂d+1−2p)→ CHp
prim(X)R

δ−→ CHd−p
coprim(X)R → Coker(L̂d+1−2p)→ 0.

The connecting homomorphism δ is characterized by the property that

ã ◦ δ = L̂d+1−2p ◦ s modulo the subspace ã(Ker(πp)). Note also that (4)
implies

L̂k ◦ s− s ◦ Lk = ã
k−1∑
i=0

Lk−1−iULi

for all k. We deduce that δ coincides with the map δp in (iii), and hence
that statements (i) and (iii) are equivalent. This also shows that δp does
not depend on the splitting s of (3) and the associated linear operator U
on CH∗(X)R. 2

Remark. Assuming statement (iii), it is possible to give an explicit

construction of the map Λ̂ in (ii), as follows. We first claim that there
exists a splitting s′ of (3), with associated operator U ′, such that for any
p and α ∈ CHp

prim(X)R we have

(5) U ′Liα = 0 for all i < d− 2p and U ′Ld−2pα ∈ CHd−p
coprim(X)R.

Indeed, if we let D be the linear transformation such that s′− s = ã ◦D,
then

U ′ = U + [L,D],

and it is an exercise to check that the space of transformations [L,D] is

equal to the set of operators V on CH∗(X)R satisfying πp
∑d−2p

i=0 Ld−2p−iV Li(α) =
0 for all α ∈ CHp

prim(X)R and every p.
Now choose a primitive basis for CH∗(X)R and apply s′ to get half

of a basis for CH∗(X)R. By (iii), we may apply (Ld−2p)−1πpU
′Ld−2p

to the basis elements in CHp
prim(X)R for each p to obtain another basis

for CH∗(X)R, which we view (via ã) as the other half of our basis for
CH∗(X)R. Let v ∈ CHp

prim(X)R be one of the basis elements, and let

r = d− 2p. By our conditions on s′, a subset of our basis for CH∗(X)R
consists of v̂ := s′(v), the iterates L̂i(v̂) = s′(Liv) of L̂ applied to v̂, the
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primitive element w satisfying Lr(w) = πp(U
′Lr(v)), and the iterates of

L̂ applied to w:

(6) v̂, L̂v̂, . . . , L̂rv̂, w, Lw, . . . , Lrw.

The action of L̂ is to send each element in (6) to the element on its right,

except that L̂rv̂ is sent to Lrw, and Lrw to 0. We now define Λ̂ by

Λ̂(L̂iv̂) = i(r + 2− i)L̂i−1v̂,

Λ̂(Liw) = (r + 1)L̂iv̂ + i(r − i)Li−1w.

Then Λ̂ (defined this way for every basis element v) satisfies the condition
of (ii).

Theorem 2. Suppose the arithmetic variety X and p are such that
CHp−1

prim(X)R = 0. If, for each nonzero α ∈ CHp
prim(X)R, we have

(7) (−1)p
d−2p∑
i=0

∫
X

Ld−2p−iα ∧ ULiα > 0

then the statements in the arithmetic hard Lefschetz and Hodge index
conjectures are true for that X, p and M .

Proof. Let (α, β) ∈ CHp(X)R be a nonzero element of the kernel of

L̂d+2−2p; the notation (α, β) refers to the direct sum decomposition (2),
with respect to some splitting. We claim that α must be in CHp

prim(X)R.

Indeed, L̂d+2−2p(α, β) = (Ld+2−2pα, γ) for some γ and Ld+2−2pα = 0
implies Ld+1−2pα = 0 since CHp−1

prim(X)R vanishes. Also, by the classical
hard Lefschetz theorem, α 6= 0. Now, if

〈 , 〉 : CH∗(X)R ⊗ CH∗(X)R −→ R

denotes the arithmetic intersection pairing, then we have

〈 (α, β) , L̂d+1−2p(α, β) 〉 = 〈 (α, β) , (0,
∑
i

Ld−2p−iULiα + Ld+1−2pβ) 〉

=
1

2

∑
i

∫
X

Ld−2p−iα ∧ ULiα.

Hence, assuming CHp−1
prim(X)R = 0, we have L̂d+1−2p(α, β) 6= 0 for every

nonzero (α, β) ∈ CHp(X)R. Moreover, if (α, β) is primitive, then the

pairing of (α, β) with L̂d+1−2p(α, β) has the required sign. 2

Corollary 1. Suppose X is such that, for every p,

(8) CHp
prim(X)R 6= 0 implies CHp−1

prim(X)R = 0.
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If condition (7) holds for every p and each nonzero α ∈ CHp
prim(X)R,

then both the arithmetic hard Lefschetz and Hodge index conjectures are
true for X, M .

Proof. If CHp−1
prim(X)R = 0 then the conjectures hold for X, M and p

by Theorem 2. Assume now that CHp−1
prim(X)R 6= 0. It suffices to prove

the Hodge index inequality for a nonzero x ∈ CHp(X)R in the kernel

of L̂d+2−2p. Since, by hypothesis, we have CHp
prim(X)R = 0, it follows

that x = L̂(y) + ã(η) for some η ∈ CHp−1(X)R and y ∈ CHp−1(X)R,

with y 6= 0 and L̂d+4−2p(y) = 0. Moreover, the condition L̂d+2−2p(x) = 0

implies L̂d+2−2p(ã(η)) = −L̂d+3−2p(y). Now we find

〈x, L̂d+1−2p(x) 〉 = −〈 y, L̂d+3−2p(y) 〉,
and the required Hodge index inequality is a consequence of the degree
p− 1 case of Theorem 2. 2

Example. We illustrate the previous results for projective space Pn and
the canonical hermitian line bundle O(1) (compare [Ku, §4]). In this case
we choose the splitting

CH∗(Pn)R =
n⊕
i=0

R · ω̂i ⊕
n⊕
i=0

R · ωi

where ω̂i = ĉ1(O(1))i and ωi = ã(c1(O(1))i). Then the sequence (6) is
given by

1̂, ω̂, . . . , ω̂n, τn, τnω, . . . , τnω
n.

Here τn =
∑n

k=1Hk, where each Hk = 1 + 1
2

+ · · · + 1
k

is a harmonic
number. The Remark after Theorem 1 exhibits an explicit adjoint map

Λ̂ for the arithmetic Lefschetz operator L̂(x) = ω̂ · x; in our example it
is given by

Λ̂(ω̂i) = i(n+ 2− i) ω̂i−1,

Λ̂(ωi) =
n+ 1

τn
ω̂i + i(n− i)ωi−1.

Observe that the nonzero primitive elements of CH∗(Pn)R are multiples
of 1 ∈ CH0(Pn)R; hence Pn satisfies (8). The operator U is given by
U(ωi) = δi,nτnω

n, and condition (7) for p = 0, α = 1 becomes

(9)
n∑
i=0

∫
Pn

ωn−i ∧ U(ωi) = τn

∫
Pn

ωn =
n∑
k=1

Hk > 0.

The arithmetic Hodge index conjecture for Pn and O(1) follows by ap-
plying Corollary 1.
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A hermitian line bundle M = (M, ‖ · ‖) on an arithmetic variety X is
arithmetically ample if M is an ample invertible sheaf on X such that the
first Chern form c1(M(C)) is nonnegative on X(C) and for all nonempty
irreducible closed subsets Y ⊂ X the height hM(Y ) is positive [So, §5.2].
We say that M is a limit for arithmetic ampleness if (i) (M, t ‖ · ‖) is
arithmetically ample for all positive scalars t < 1, and (ii) hM(Y ) = 0
for some (nonempty) irreducible closed Y ⊂ X.

The line bundle O(1) on Pn considered above is a limit for arithmetic
ampleness. Indeed, if Y ∈ Z1(Pn) is the cycle attached to the rational
point [1 : 0 : · · · : 0], then hO(1)(Y ) = 0 (see for instance [BGS, (3.1.6)]).

Furthermore, property (i) for O(1) follows from the argument in [BGS,
Prop. 3.2.4]. On the other hand, one sees that the arithmetic Hodge
index inequality (9) does not fail when the natural metric on O(1) is
scaled by a factor t ∈ (1− ε, 1 + ε) for small ε > 0 (see also [BGS, Prop.
3.2.2]). Observe however that (9) becomes sharp at t = 1 if we insist that
it should hold for any positive real constants Hk (following the point of
view in [T, §6]). Further evidence for this statement on more general
Grassmannians is given in Section 3.

2. The arithmetic Grassmannian G(2, N)

In this section we study Conjecture 1 for the Grassmannian of lines in
projective space. For computational purposes we will work with the iso-
morphic Grassmannian G = G(N, 2) parametrizing N -planes in (N + 2)-
space throughout. Note that d = dimCG(C) = 2N . There is a universal
exact sequence of vector bundles

0 −→ S −→ E −→ Q −→ 0

over G; the complex points of E and Q are metrized by giving the trivial
bundle E(C) the trivial hermitian metric and the quotient bundle Q(C)
the induced metric. The hermitian vector bundles that result are denoted
E and Q.

The real vector space CH∗(G)R ∼= H2∗(G(C),R) decomposes as

CH∗(G)R =
⊕
a,b

R · sa,b(Q),

summed over all partitions λ = (a, b) with a 6 N , i.e., whose Young
diagrams are contained in the 2×N rectangle (N,N). Moreover sλ(Q) =
sa,b(Q) is the characteristic class coming from the Schur polynomial sa,b in
the Chern roots of Q; this is dual to the class of a codimension |λ| = a+b
Schubert variety in G. In the following s1 denotes the Schur polynomial
s1,0 and is thus just the first elementary symmetric function.
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The line bundleM = det(Q) giving the Plücker embedding has c1(M) =
s1(Q); let L : CHp(G)R → CHp+1(G)R be the associated classical Lef-
schetz operator. Further for all p let ∗ : CHp(G)R → CH2N−p(G)R
denote the Hodge star operator induced by the Kähler form s1(Q). We
then have

Proposition 1. The space CHp
prim(G)R is nonzero if and only if p =

2k 6 N . In the latter case it is one dimensional and spanned by the
class

αk =
k∑
j=0

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)
s2k−j,j(Q).

Proof. By computing the Betti numbers for G one sees that

dimCHp(G)R − dimCHp−1(G)R > 0

if and only if p = 2k 6 N , and in this case the above difference equals 1.
For such p we have
(10)

Ker(L : CH2N−2k(G)R → CH2N−2k+1(G)R) = Span{
k∑
j=0

(−1)jsN−j,N−2k+j(Q)}.

One checks (10) easily using the Pieri rule:

L(sa,b(Q)) = sa+1,b(Q) + sa,b+1(Q)

where it is understood that sc,c′(Q) = 0 if c < c′ or c > N .
From [KT] we know the action of the Hodge star operator on CH∗(G)R

is given by

(11) ∗ sa,b(Q) =
(a+ 1)! b!

(N − a)! (N − b+ 1)!
sN−b,N−a(Q).

Since

CH2k
prim(G)R = ∗Ker

(
L : CH2N−2k(G)R → CH2N−2k+1(G)R

)
,

the proof is completed by applying (11) to (10) and noting that the result
is proportional to αk. 2

We now pass to the arithmetic setting, where we use the arithmetic
Schubert calculus of [T, §3,4]. The real Arakelov Chow group CHp(G)R
decomposes as

(12) CHp(G)R =
⊕
a+b=p

R · ŝa,b(Q) ⊕
⊕

a′+b′=p−1

R · sa′,b′(Q).

Here the indexing sets satisfy N > a > b > 0, ŝa,b(Q) is an arithmetic
characteristic class and we identify the harmonic differential form sa′,b′(Q)
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with its image in CHp(G)R. The decomposition (12) is induced by the
splitting map sa,b(Q) 7−→ ŝa,b(Q) which agrees with the one used in [T].

The hermitian line bundle M has ĉ1(M) = ŝ1(Q) and is a limit for
arithmetic ampleness; the latter property follows as in the remarks at
the end of Section 1. We now apply the arithmetic Pieri rule of [T, §4] to

compute the action of the arithmetic Lefschetz operator L̂(x) = ŝ1(Q) ·x
on the above basis elements. The induced operator U : CH∗(G)R →
CH∗(G)R of (4) satisfies U(sa,b) = 0 for a < N and

(13) U(sN,b) =
(N+1∑
i=0

Hi

)
sN,b −

b(N−b)/2c∑
i=0

(HN−b+1−i −Hi)sN−i,b+i.

Here and in the rest of this section sa,b will denote the Schubert class
sa,b(Q) ∈ CHa+b(G)R and Hi is a harmonic number; by convention H0 =
0. Recall that the classical intersection pairing on CH∗(G)R satisfies

〈sa,b, sa′,b′〉 =

∫
G

sa,b ∧ sa′,b′ = δ(a,b),(N−b′,N−a′).

The sequence of Betti numbers for G shows that G satisfies condition
(8) of Corollary 1. We proceed to check the inequality (7) for all even
p = 2k; this will establish Conjecture 1 for G(N, 2). In our case (7) may
be written as

Σ(N, k) :=

∫
G

N−2k∑
b=0

LN−2k−bαk ∧ ULN−2k+bαk > 0.

To compute iterates of the classical Lefschetz operator L on the Schu-
bert basis, note that

(14) Lrsµ =
∑
λ⊃µ

|λ|=|µ|+r

fλ/µsλ.

When λ = (λ1, λ2) and µ = (µ1, µ2) are partitions with at most two parts
the skew f -number in (14) satisfies

(15) fλ/µ =

(
|λ| − |µ|
λ1 − µ1

)
−
(
|λ| − |µ|

λ1 − µ2 + 1

)
.

This follows from the determinantal formula for fλ/µ, given for example
in [St, Corollary 7.16.3].
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We now apply Proposition 1 and (14), (15) to calculate

Lc−2kαk =
k∑
j=0

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)
Lc−2ks2k−j,j

=
k∑
j=0

∑
i>j

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)[(
c− 2k

i− j

)
−
(

c− 2k

i− 2k − 1 + j

)]
sc−i,i.

Therefore,

(16) Lc−2kαk =
∑
i,j

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)(
c− 2k

i− j

)
sc−i,i.

We use (16) with c = N + b to identify the coefficient of sN,b in the
expansion of LN+b−2kαk as〈
LN+b−2kαk, sN−b

〉
=
∑
j

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

j

)(
N + b− 2k

N − 2k + j

)
=

(
N − 2k + b

N − 2k

)∑
j

(−1)j
(
b

j

)(
N + 1− j
N − 2k

)
=

(
N + 1− b

2k + 1

)(
N − 2k + b

N − 2k

)
=: Cb.

It now follows from (13) that
(17)

ULN−2k+bαk = Cb

(N+1∑
i=0

Hi

)
sN,b −

b(N−b)/2c∑
i=0

Cb(HN−b+1−i −Hi)sN−i,b+i.

Note also that we have the identity

(18)
N−2k∑
b=0

Cb =

(
2N − 2k + 2

N + 2

)
.

Now we substitute c = N − b in (16), pair with (17) and use (18) to sum
over b and obtain

(19) Σ(N, k) = AN,k

N+1∑
i=1

Hi +
N−2k∑
b=0

b(N−b)/2c∑
i=0

C b,i
N,k,

where

AN,k =

(
N + 1

N − 2k

)(
2N − 2k + 2

N + 2

)
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and

C b,i
N,k =

∑
j

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)(
N − 2k − b

i− j

)
Cb(Hi−HN−b+1−i).

By dividing the expression for C b,i
N,k into two sums and substituting in

(19) one gets

(20) Σ(N, k) = AN,k

N+1∑
i=1

Hi +
N+1∑
i=1

Bi
N,kHi,

where

Bi
N,k =

∑
j,b

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)(
N − 2k − b

i− j

)
Cb.

(Notice that when N − b = 2r − 1 is odd, there is a missing summand
(for i = r)∑

j

(−1)j
(
N + 1− j
N − 2k

)(
N − 2k + j

N − 2k

)(
2r − 2k − 1

r − j

)
CbHr

which vanishes, as can be seen by the change of variable j 7→ 2k+ 1− j.)
At this point it is convenient to introduce the variable change

n = N − 2k and T = N + 2

and write equation (20) in the new coordinates as

(21) Σ(n, T ) = An,T

T−1∑
i=1

Hi +
T−1∑
i=1

Bi
n,THi.

Observe that

Bi
n,T =

∑
j

(−1)j
(
n+ j

n

)(
T − 1− j

n

)∑
b

(
n− b
i− j

)(
T − 1− b
n− b

)(
n+ b

n

)
=
∑
j

(−1)j
(
n+ j

n

)(
T − 1− j

n

)(
T − 1− n+ i− j

i− j

)(
T + n

n− i+ j

)
.

We now substitute r = i−j and write the resulting sum in hypergeometric
notation [Ro] [VK, Chap. 3]:

(−1)iBi
n,T =

∑
r

(−1)r
(
n+ i− r

n

)(
T − 1 + r − i

n

)(
T − 1− n+ r

r

)(
T + n

n− r

)
=

(
n+ i

n

)(
T + n

n

)(
T − 1− i

n

)
4F3

(
−n, −i, T − n, T − i
−n− i, T + 1, T − n− i

∣∣∣∣ 1

)
.
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The Whipple transformation [Wh, §10] applied to the above 4F3 gives

(22) (−1)i
Bi
n,T

An,T
= 4F3

(
−n, n+ 1, −i, i+ 1

1, 1 + T, 1− T

∣∣∣∣ 1

)
.

The hypergeometric term (22) belongs to a class of orthogonal polyno-
mials called Racah polynomials, which are studied in the next section.

3. Bounds for Racah polynomials

The Racah coefficients [Ra] or 6-j symbols have long been used by
physicists as the transformation coefficients between two different cou-
pling schemes of three angular momenta; see [BL] for an exposition. In
mathematical language they are the entries of a change of basis matrix for
the tensor product of three irreducible representations of SU(2); the two
bases involved come from the associativity relation for this product (see
[VK, §8.4]). It was recognized later by Wilson [Wi] that these coefficients
are special cases of a class of orthogonal polynomials Rn(x;α, β, γ, δ),
called Racah polynomials [VK, §8.5]:

Rn(s(s+γ+δ+1);α, β, γ, δ) = 4F3

(
−n, n+ α + β + 1, −s, s+ γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣ 1

)
.

The Racah polynomials in (22) have α = β = γ + δ = 0, with γ = T ,
a positive integer. We let

Rn(s, T ) = Rn(s(s+ 1); 0, 0, T,−T ).

Observe that Rn(s, T ) is symmetric in n and s. The orthogonality con-
dition ([VK] or [AW]) reads:

(23)
T−1∑
s=0

(2s+ 1)Rn(s, T )Rm(s, T ) =
T 2

(2n+ 1)
δnm.

The arithmetic Hodge index inequality Σ(n, T ) > 0 can be rephrased
using (21) and (22) as

(24)
T−1∑
s=1

(−1)s+1Rn(s, T )Hs <

T−1∑
s=1

Hs.

We give a proof of (24) which does not depend on the precise values of
the harmonic numbers. Let us say that a sequence {Hk}k>1 of positive

real numbers (with H0 = 0) is concave increasing if Hk =
∑k

i=1 hi for
some monotone decreasing sequence {hi} of positive reals.

Theorem 3. Let {Hk} be any concave increasing sequence of real num-
bers and n, T integers with 0 6 n 6 T − 1 and T > 3. Then inequality
(24) holds.
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We believe that, in fact, (24) holds for an arbitrary sequence of positive
real numbersHk, that is, the arithmetic standard conjectures for G(2, N)
do not depend on the relative sizes of the harmonic numbers involved:

Conjecture 2. For any integers n, s with 0 6 n, s 6 T − 1 we have
|Rn(s, T )| 6 1.

In Proposition 2 we check this conjecture for some values of n near the
endpoints 0 and T − 1. Computer calculations support the validity of
Conjecture 2 for general n.

Proof of Theorem 3. We shall see that (23) implies (24) except when T is
exponentially large compared to n. For large T , the Racah polynomials
are close approximations of classical orthogonal polynomials, in this case
the Legendre polynomials, and we know how to bound these.

By Cauchy’s inequality, (23) gives(T−1∑
s=0

|Rn(s, T )|Hs

)2

6
T 2

2n+ 1

T−1∑
s=0

H2
s

2s+ 1
.

So, (24) holds whenever

(25)
T−1∑
s=0

H2
s

2s+ 1
< (2n+ 1)

(
1

T

T−1∑
s=0

Hs

)2

.

Since {Hk} is concave increasing, the average value of H0, . . ., HT−1 is

at least HT−1/2. As
∑T−1

s=1 2/(2s + 1) 6 log T , the inequality (25) holds
whenever

(26) log T < n+
1

2
.

To analyze the case where T is exponentially large compared to n, it
is convenient to introduce the change of variable

(27) x = s(s+ 1) = −1/4 + T 2(1 + t)/2

and the rescaling

pn(t) = (−1)n
n∏
i=1

T 2 − i2

T 2
Rn(x; 0, 0, T,−T ).

Let Pn(t) = P
(0,0)
n (t) denote the nth Legendre polynomial. It is known

[NSU, §3.8] that

pn(t) = Pn(t) +O(1/T 2)

where the constant in the error term depends on both n and t. For our
purposes, we demonstrate
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Lemma 1. a) Let n and T be positive integers such that 1 + 2n+ 2n2 <
T 2/10. Then

(28) |pn(t)− Pn(t)| 6 (3/2) · 4n/T 2

for all t with −1 6 t 6 1.

b) We have |pn(t)− Pn(t)| 6 1/10 whenever T > 90 and n < log T .

Proof. We have the following recurrences ([NSU]; for Pn(t) this is classi-
cal)

tPn(t) =
n+ 1

2n+ 1
Pn+1(t) +

n

2n+ 1
Pn−1(t)

(29)

tpn(t) =
n+ 1

2n+ 1
pn+1(t)− 2n2 + 2n+ 1

2T 2
pn(t) +

(
1− n2

T 2

)2 n

2n+ 1
pn−1(t)

(30)

with initial data

(31)
P0(t) = 1 ; P1(t) = t

p0(t) = 1 ; p1(t) = t+ 1/(2T 2).

Subtracting (29) from (30) leads to a recurrence in pn(t) − Pn(t). Then
(28) follows by induction on n, using the known bound |Pn(t)| 6 1 for all
n and all t with −1 6 t 6 1. The statement (b) is a corollary of (a). 2

Proposition 2. We have |Rn(s, T )| 6 1 when n 6 3 or n = T − 1.

Proof. For n = 0 we have R0(s, T ) = 1. When n = 1, we see from
(31) that p1(t) is a increasing linear function in t, attaining minimum
when s = 0, giving R1(0, T ) = 1, and maximum when s = T − 1, giving
R1(T−1, T ) = (1−T )/(1+T ), hence the inequality holds. For n = T−1
the Pfaff-Saalschütz identity [Ro] [VK, §8.3.3] gives

RT−1(s, T ) =
∑
j

(−1)j
T

T + j

(
s

j

)(
s+ j

j

)
= 3F2

(
−s, s+ 1, T

1, T + 1

∣∣∣∣ 1

)
=

(1− T )(2− T ) · · · (s− T )

(1 + T )(2 + T ) · · · (s+ T )

so the inequality is clear.
When n = 2 or n = 3, pn(t) is a quadratic or cubic polynomial, and

it is a calculus exercise to check that |Rn(s, T )| 6 1 for every integer s
with 0 6 s 6 T − 1. In fact, the integrality condition on s is required
only when n = 3, T = 4. 2
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Lemma 2. a) We have |Pn(t)| 6 3/4 for t ∈ R, |t| 6 0.9 and n > 2.

b) For T > 10, we have |t| 6 0.9 in (27) whenever
√

5/10 6 s/T 6 4/5.

c) Assume T > 90 and n < log T . Then
1

T 2n

n∏
i=1

(T 2 − i2) > 40/41.

Proof. The indicated bound on Legendre polynomials is evident for n =
2, and for larger n it follows from the inequality

(32)
√

sin θ |Pn(cos θ)| <
√

2

πn
, 0 6 θ 6 π.

One obtains (32) by using the transformed differential equation for
√

sin θ Pn(cos θ)
[Sz, (4.24.2)]; this is indicated in [Ho, Chap. 5, Exer. 15–16]. The proofs
of (b) and (c) are routine; for the latter, one may use the inequality

− log(T−2n

n∏
i=1

(T 2 − i2)) 6
2

T 2

n∑
i=1

i2.

2

To complete the proof of Theorem 3, assume that (26) fails, so that
n < log T − 1/2. If T 6 90 then n 6 3 and (24) follows from Proposition
2 (note that the inequality in the proposition is strict unless n = 0 or
s = 0). When T > 90 we combine Lemma 1(b) with Lemma 2 to deduce
the inequality (24). Indeed, (40/41)|Rn(s, T )| is bounded by 1 + 1/10 for
every s, and by 3/4 + 1/10 over the middle half of the summation range.
By pairing terms Hs with HT−1−s and using the fact that Hs +HT−1−s
is monotone increasing for 0 6 s 6 (T − 1)/2, we obtain (24). 2
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[Sz] G. Szegö : Orthogonal Polynomials, Fourth edition, Amer. Math. Soc., Collo-
quium Publications, Vol. XXIII, Providence, 1975.

[Ta] Y. Takeda : A relation between standard conjectures and their arithmetic ana-
logues, Kodai Math. J. 21 (1998), no. 3, 249–258.

[T] H. Tamvakis : Schubert calculus on the arithmetic Grassmannian, Duke Math.
J. 98 (1999), no. 3, 421–443.

[VK] N. J. Vilenkin and A. U. Klimyk : Representation of Lie groups and Special
Functions, Vol. 1: Simplest Lie Groups, Special Functions and Integral Trans-
forms, transl. V. A. Groza and A. A. Groza, Mathematics and its Applications
(Soviet Series) 72, Kluwer Acad. Publ., Dordrecht, 1991.

[Wh] F. J. W. Whipple : Well-poised series and other generalized hypergeometric
series, Proc. Lond. Math. Soc. (2) 25 (1926), 525–544.

[Wi] J. A. Wilson : Hypergeometric series, recurrence relations and some new or-
thogonal functions, Ph. D. thesis, University of Wisconsin, Madison, 1978.

[Z] S. Zhang : Positive line bundles on arithmetic varieties, J. Amer. Math. Soc.
8 (1995), no. 1, 187–221.

Department of Mathematics, University of Pennsylvania, 209 South

33rd Street, Philadelphia, PA 19104, USA

E-mail address: kresch@math.upenn.edu, harryt@math.upenn.edu


