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1. INTRODUCTION

In this paper, we begin a systematic study of topological symmetry groups of graphs
embedded in the 3-sphere. The notion of a topological symmetry group of a graph in S®
was introduced by Simon [S], who was motivated by the Longuet-Higgins symmetry groups
of non-rigid molecules [L]. The significance of such groups in chemistry stems from the fact
that the chemical properties of a molecule depend on the symmetries of its graph model
(where the vertices represent atoms and the edges represent bonds).

The study of graphs as geometric objects necessarily involves an investigation of their
symmetries. The symmetries of an abstract graph 7 are described by the group Aut(vy)
of automorphisms of 4. The automorphism group of a graph has been the subject of
much study, with roots in the nineteenth century (see [B3] and [B4] for surveys). In
contrast, the group of those symmetries of an embedded graph in S% which are induced
by diffeomorphisms of the ambient space has received little attention.

By a graph we shall mean a finite, connected graph, such that each edge has two distinct
vertices and there is at most one edge with a given pair of vertices. An embedded graph
I is a pair (V, E) of sets of vertices V and edges E such that V is a set of points in S3,
every edge is an embedded arc in S® between two vertices, and the interior of each edge
contains no vertex and no point of any other edge. When we write h : (S3,T) — (S3,T) or
h(I') =T, we shall mean that h(V) =V and h(E) = E. The restriction of h to V' induces
an automorphism of the abstract graph v underlying I'. The topological symmetry group
TSG(T) is the subgroup of Aut(y) consisting of those automorphisms which are induced
by some diffeomorphism of ($3,T). Allowing only orientation preserving diffeomorphisms
of §3 defines the orientation preserving topological symmetry group TSG(T'). For any
embedded graph I', either TSG4(I') = TSG(I') or TSG(T") is a normal subgroup of
TSG(T") with index 2. Starting with a particular embedded graph I', we can re-embed it
by tying the same invertible chiral knot in every edge of I" to get an embedded graph I
such that TSG(I') = TSG(I") = TSG,4(I"). Thus every group which is the orientation
preserving topological symmetry group of some embedded graph is also the topological
symmetry group of some (possibly different) embedded graph.
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Frucht [Fr] showed that any finite group is the automorphism group of some connected
graph; moreover, restricting to k-connected graphs for a fixed k£ > 2 does not affect the
conclusion [Sa| (a graph is k-connected if at least k vertices together with their incident
edges must be removed in order to disconnect the graph or reduce it to a single vertex).
Since every graph admits an embedding in S3, it is natural to ask whether every finite
group can be realized as TSG(I'") (or TSG4(T")) for some embedded graph I'. Using the
terminology of [B3], the question becomes whether the class of embedded graphs and their
topological symmetry groups is universal for finite groups. We show that the answer is
negative, and we characterize the class of all orientation preserving topological symmetry
groups for 3-connected graphs.

In general, TSG(T") will depend on the particular embedding of the abstract graph
underlying I" in S3. For example, consider 6,, consisting of two vertices of valence n > 2
which are joined together by n edges. Since 6,, is not a graph, we add a vertex of valence
2 to each edge to get a graph =, (see Figure 1). Starting with the image of a planar
embedding of ~,, we add identical non-invertible knots to each of the arcs to obtain an
embedded graph T',, such that TSG, (T',) is the symmetric group S,. On the other hand,
if I is an embedded graph obtained from the image of a planar embedding of ,, by tying
distinct non-invertible knots in each edge, then TSG, (I")) is trivial.

FIGURE 1. 7,

Given any finite abelian group H, we can construct an embedded graph I' such that
TSG,(T') = H. For example, the embedded graph I" which is illustrated in Figure 2 has
TSG4(T') = Zo x Z3 x Z4. If H contains more than one factor of a given Z,, we can
add knots on the spokes of the “wheels”, so that no diffeomorphism takes one “wheel” to
another “wheel”.

N

FIGURE 2. TSG(T') =Zo X Z3 X Z4

Another source of topological symmetry groups comes from planar embeddings. For a
planar graph v realized as an embedded graph I via the natural inclusion of §? in S3, it can
be shown using results of [Ma] and [D, Thm 4.3.1] that TSG(I") = TSG(T") = Aut(y).
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The automorphism groups of planar graphs have been characterized by Mani [M] and
Babai [B1] [B2]. In particular, these groups do not exhaust all finite groups, and for 3-
connected planar graphs the automorphism groups are precisely the finite subgroups of
O(3). In contrast to the case of planar embeddings, for an arbitrary embedded graph I"
it can happen that TSG; (') # Aut(v). In fact, it was shown in [F1] that for n > 6, no
matter how the complete graph K, is embedded in S3, the cycle automorphism (1234) of
K,, cannot be induced by a diffeomorphism of $3. Thus for any embedded graph I' which
has underlying abstract graph K,, with n > 6, TSG(T") is a proper subgroup of Aut(K,).

In general, it is not possible to induce each element of TSG (") by a finite order diffeo-
morphism of §3. For example, consider the graph I',, with n > 4 described above whose un-
derlying abstract graph =, is illustrated in Figure 1. Then as seen above, TSG, (T';,) = Sy;
however, many of the diffeomorphisms which induce the elements of TSG. (I") cannot be
of finite order. Indeed, it follows from the proof of the Smith Conjecture [MB] that no
finite order diffeomorphism of (S3,T,,) can interchange two vertices of valence two and fix
the remaining vertices, since the fixed point set of such a diffeomorphism would include a
non-trivial knot.

In fact, there exist 3-connected embedded graphs I' such that some element of TSG(T")
cannot be induced by any finite order diffeomorphism of $3. An example of such a graph
is illustrated in Figure 3. There is no order 3 diffeomorphism of S® which takes a figure
eight knot to itself ([Ha] and [Mu]). Hence the automorphism (123)(456) is induced by a
diffeomorphism of $? (by sliding the graph along itself), but cannot be induced by a finite
order diffecomorphism of S3.

F1GURE 3. (123)(456) cannot be induced by a finite order diffeomorphism of
93

The above examples indicate that a priori, the classification of all possible topological
symmetry groups could be rather complicated. The three main theorems which follow help
to clarify the situation.

Theorem 1. Let I' be an embedded graph.

a) If TSG4(T) is a simple group, then it is either the alternating group As or a cyclic
group of prime order.

b) In general, the sequence of quotient groups in any composition series for TSG4(T)
contains only alternating groups A, with n > 5 and cyclic groups of prime order.
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We note that the same conclusion holds for the automorphism groups of planar graphs;
in fact Theorem 1 implies the corresponding results in [B2]. However, there exist embedded
graphs I" such that TSG4 (T") is not isomorphic to the automorphism group of any planar
graph (see Section 2).

It follows from Theorem 1 that the class of orientation preserving topological symmetry
groups of embedded graphs is not universal for finite groups. Furthermore, if TSG(T) is
a simple group then TSG, (I') = TSG(T'), and hence the class of topological symmetry
groups is also not universal.

Theorem 2. Let I' be an embedded 3-connected graph. Then TSG, (T') is isomorphic to
a finite subgroup of the group Diff , (S3) of orientation preserving diffeomorphisms of S3.

Thus the topological symmetry groups for 3-connected graphs are very special (see be-
low). This stands in contrast with the fact that every finite abelian group is the orientation
preserving topological symmetry group of some embedded graph that is not 3-connected,
as we saw in Figure 2.

In Section 5, we study when a graph v may be embedded in S® in such a way that a
given subgroup of Aut(v) is induced by an isomorphic subgroup of Diff | (§3). We also
prove the following converse to Theorem 2.

Theorem 3. For every finite subgroup G of Diff | (S3), there is an embedded 3-connected
graph T such that G = TSG(T'). Moreover, T' can be chosen to be a complete bipartite
graph K, ,, for some n.

The finite subgroups of Diff ; (S?®) consist of the finite subgroups of SO(4), possibly
together with the Milnor groups Q(8k, m,n) in the case where the subgroup acts freely on
53 (see [DV] for the finite subgroups of SO(4), and [Mi] and [Z] for groups that could act
freely on S3). We note that Thurston’s geometrization program [Th] would imply that the
groups Q(8k,m,n) do not occur.

We deduce from Theorems 2 and 3 that the set of orientation preserving topological
symmetry groups of 3-connected embedded graphs in S? is exactly the set of finite sub-
groups of Diff , (8%). The proofs of Theorems 1 and 2 follow from two propositions. We
start with the proofs of these theorems in Section 2, and then we prove the propositions in
Sections 3 and 4. The heart of the argument lies in the proof of Proposition 1 in Section
3, which uses the Characteristic Submanifold Theorem of Jaco-Shalen [JS] and Johannson
[Jo] and Thurston’s Hyperbolization Theorem [Th|, in the context of pared manifolds.
These results were applied in a similar fashion in [F2]. In the case of a 3-connected em-
bedded graph T', the strategy is to re-embed I" in a “nicer” way as A such that TSG(T')
is a subgroup of TSG, (A) and TSG, (A) is induced by a finite subgroup of Diff, (53).
Finally, in Section 5, Theorem 3 is proved by a direct construction.

The first and fourth named authors first met and began collaborating on this project
in the fall of 2000 during a visit to the Institut des Hautes Etudes Scientifiques. It is a
pleasure to thank the Institut for its hospitality. The second author wishes to thank the
California Institute of Technology for its hospitality during his sabbatical in the spring of
2002.
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2. PROOFS OF THEOREMS 1 AND 2

Let I be a graph embedded in S®. We shall use spheres and pinched spheres to decom-
pose I' into smaller pieces. We begin with several definitions.

Definition 1. Let X be a 2-sphere embedded in S3. If ¥ intersects I in a single vertex v
of valence more than two and each component of S? — ¥ contains part of I', then we say
that X is a type I sphere and v is a type I vertex of T'. (See Figure 4.)

e

F1GURE 4. An embedded graph with a type I sphere

Observe that removing a type I vertex from I' separates I', but not every vertex which
separates I' is a type I vertex.

Definition 2. Let ¥ be a 2-sphere embedded in S3. If ¥ intersects I' in two vertices and
the closure of no component of (S — X) NT is a single arc or a single vertex then we say
that X is a type II sphere of T'. (See Figure 5.)

Y=

F1GURE 5. An embedded graph with a type II sphere

Definition 3. Let ¥ be a 2-sphere with two points identified to a single point p. We say
that 3 is a pinched sphere and p is the pinch point. Let ¥ be a pinched sphere in 52, with
pinch point p. Suppose that p is a vertex of ', such that X NT = {p} and each component
of 83 —3 contains part of I'. Then we say that X is a type III sphere of T'. (See Figure 6.)

We remark that our definition of a type I sphere is similar to that of Suzuki [Su],
however, our definition of a type II sphere is different from his.
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=

FIGURE 6. An embedded graph with a type III sphere

Let I' be a graph embedded in S® and let G be a group of orientation preserving
diffeomorphisms of (S3,T). Let H be the image of G under the natural homomorphism
from G to TSG, (I"). Then H is said to be the subgroup of TSG, (T") induced by G.

A group H is said to be realizable if there is an embedded graph I" with TSG (") = H.
We also say that H is realized by T'.

We will use the following two propositions to prove Theorems 1 and 2. The proofs of
these propositions will be given in the next two sections.

Proposition 1. Let T be an embedded graph with no type I spheres and let H = TSG4(T).
Then either H is isomorphic to a finite subgroup of Diff . (S®), H = S, for somer, or H has
a non-trivial normal subgroup N such that both N and H/N are realizable. Furthermore,
if T' has no type II or type III spheres, then I' can be re-embedded as A such that H is a
finite subgroup of TSG(A), and H is induced on A by an isomorphic finite subgroup of
Diff, (S3).

It follows from Proposition 1 that if T" has no type I spheres and TSG, (T') is a simple
group then TSG (T') is isomorphic to a finite subgroup of Diff (S3).

Proposition 2. Let T' be an embedded graph which has at least one type I sphere, and let
H = TSG(T"). Then either H is realizable by a graph with no type I spheres, H = S,
for some r, or H has a non-trivial normal subgroup N such that both N and H/N are
realizable.

If H= S, and H is simple, then H = Z,. Hence H is realized by the graph consisting of
a single edge. Thus it follows from Proposition 2 that any simple group which is realizable,
is realizable by an embedded graph with no type I spheres.

We now prove Theorems 1 and 2.

Theorem 1. Let I' be an embedded graph.

a) If TSG4 (') is a simple group, then it is either the alternating group As or a cyclic
group of prime order.

b) In general, the sequence of quotient groups in any composition series for TSG4(T)
contains only alternating groups A, with n > 5 and cyclic groups of prime order.
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Proof. To prove part (a), we observe that by Proposition 2, there is an embedded graph A
with no type I spheres such that TSG(I') = TSG4(A). Then by Proposition 1, TSG1(A)
is isomorphic to a finite subgroup of Diff | (S3). However, it is shown in [Z, Thm. 1] that
the alternating group As is the only non-abelian finite simple group which acts faithfully
by diffeomorphisms on a homology 3-sphere. The result follows.

To prove part (b), we use induction on the number of elements in H = TSG, (T"). Let
|H| = k and assume the result is true for all realizable groups with fewer than k elements.
If H is simple, then we are done by part (a). Otherwise Propositions 1 and 2 imply that
H is a finite subgroup of Diff ; (S3) or H = §,., in which case the result follows from [Z,
Thm. 2] , or H has a normal subgroup N such that both N and H/N are realizable. In
the latter case, we know by induction that both N and H/N have composition series with
all simple quotients either alternating or cyclic, and putting these two series together gives
a composition series for H with the same property. The Jordan-Hoélder theorem implies
that this also holds for any other composition series for H. [

By a similar argument, we can prove that for any realizable group H, the number of
quotients in a composition series for H which are isomorphic to Z, is at least as large as
the number of quotients which are isomorphic to any A, with » > 6. To see this, observe
that if H is a finite subgroup of Diff, (§3) or H = S,., then the result follows; otherwise,
the proof uses induction on the order of H, as above. A complete characterization of all
realizable groups may be possible, working along the lines of [B2].

According to [B2, Cor. 9.15], the group G = A5 X Zs is not the automorphism group
of any planar graph. However, G is realizable. To see this, recall from [M] that As is the
automorphism group of a 3-connected planar graph which can be realized as the 1-skeleton
X of a convex polytope P in R3, such that all abstract automorphisms of X are induced
by isometries of P. Let I'; be obtained from X by connecting each vertex to a fixed point
v1 in the interior of P. Now let I's be the 1-skeleton of a tetrahedron disjoint from P, and
tie a non-invertible knot to each of the the three edges of I'y which do not emanate from a
particular vertex vo, all oriented in the same way. Finally, form I" by connecting v; to vs
by a line segment which does not meet the rest of I'y and I'y. Then TSG4(T') = A5 X Zs.
Thus there exist realizable groups which are not the automorphism group of any planar
graph.

Theorem 2. Let I' be an embedded 3-connected graph. Then TSG, (T') is isomorphic to
a finite subgroup of Diff ; (S3).

Proof. Let I' be an embedded graph. If I' has a type I or III sphere then I' can be
disconnected be removing a single vertex and the edges incident to it. If I' has a type II
sphere then I' can be disconnected by removing two vertices and the edges incident to
them. Thus if I' is 3-connected, I has no type I, II, or III spheres. So the result follows
by Proposition 1. [

We also use Proposition 1 to prove the following strengthening of Theorem 2.
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Proposition 3. Let H = TSG,(T') for some embedded 3-connected graph T'. Then T can
be re-embedded as A such that H is a subgroup of TSG4(A) and TSG(A) is induced by
an isomorphic subgroup of Diff ; (S3).

Proof. Let Hy = TSG(I"). Then, as above, I' has no type I, II or III spheres. Hence by
Proposition 1 we can re-embed T" as T'y such that H; is a subgroup of TSG(T'1), and H; is
induced by an isomorphic subgroup K of Diff , (S3). If TSG, (T'y) = Hj, then we are done
by letting A =T'y. If H; is a proper subgroup of TSG, (I'1), we let Hy = TSG(I';) and
again apply Proposition 1 to the 3-connected embedded graph I'y. Continue this process.
Let v denote the underlying abstract graph of I'. Then for each i, TSG,(I';) is a subgroup
of the finite group Aut(y). Hence this process cannot go on indefinitely. [

3. PROOF OF PROPOSITION 1

We begin with some notation that we will use throughout the rest of the paper. Let V
denote the set of embedded vertices of an embedded graph T', and let £ denote the set of
embedded edges of I'. We shall construct a closed regular neighborhood N(T') as the union
of two sets, N(V) and N(E), which have disjoint interiors. For each vertex v € V, let
N (v) denote a small ball around v, and let N (V') denote the union of all of these balls. For
each embedded edge ¢ € E, let N(¢) denote a tube D? x I whose core is ¢ — N(V), such
that N(g) contains no other part of I', and N (&) meets N (V') in a pair of disks. Observe
that € is not contained in N(g). Let N(E) denote the union of all the tubes N(g). Let
N(T') = N(V)U N(E). Throughout the paper we shall use 9’ N(¢) to denote the annulus
ON(T') N N(e) in order to distinguish it from the sphere ON(¢).

We will use ¢l to denote the closure of a set and int to denote the interior of a set.
Finally, by a chain of length n we shall mean an arc in I' containing n vertices of valence
two and no vertices of higher valence in its interior such that neither endpoint of the arc
has valence two.

We assume the reader is familiar with standard 3-manifold topology. However, we will
need to to use some terminology and results about pared manifolds which we give below.

Definition 4. A pared 3-manifold (M, P) is an orientable 3-manifold M together with a
family P of disjoint incompressible annuli and tori in M.

A pared manifold is a special case of a manifold with boundary patterns in the sense
of Johannson [Jo] or a 3-manifold pair in the sense of Jaco-Shalen [JS]. The following
definitions agree with those of [Jo] and [JS].

Definition 5. A pared manifold (M, P) is said to be simple if it satisfies the following
three conditions:

1) M is irreducible and OM — P is incompressible

2) Every incompressible torus in M is parallel to a torus component of P

3) any annulus A in M with OA contained in 9M — P is either compressible or parallel to
an annulus A’ in OM with A’ = A and such that A’ N P consists of zero or one annular
component of P.
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Definition 6. A pared manifold (M, P) is said to be Seifert fibered if there is a Seifert
fibration of M for which P is a union of fibers. A pared manifold (M, P) is said to be

I-fibered if there is an I-bundle map of M over a surface B such that P is in the preimage
of OB.

We will use the following results about pared manifolds.

Characteristic Submanifold Theorem for Pared Manifolds. ([JS] and [Jo|) Let
(X, P) be a pared manifold with X irreducible and 0X — P incompressible. Then, up to
an isotopy of (X, P), there is a unique family ) of disjoint incompressible tori and annuli
with 0Q) contained in 0X — P such that the following two conditions hold:

1) If W is the closure of a component of X — €, then the pared manifold (W, W N (PUQ))
is either simple, Seifert fibered, or I-fibered.

2) There is no family Q' with fewer components than Q2 which satisfies the above.

Thurston’s Theorem for Pared Manifolds. [Th] If (M, P) is simple, M is connected,
and OM is non-empty, then either M — P admits a finite volume complete hyperbolic metric
with totally geodesic boundary, or (M, P) is Seifert fibered or I-fibered.

Now we are ready to prove Proposition 1. Since the proof of Proposition 1 is long, we
begin with an outline. In Step 1, we will follow the proof that we gave of [F2, Thm. 1],
and use the Characteristic Submanifold Theorem ([JS] and [Jo]) to split the complement
of N(T') along a minimal family © of incompressible tori which is unique up to ambient
isotopy and such that each component is either simple or Seifert fibered. We let X denote
the component which contains ON(T"). Since I' has no type I spheres, we can then use
the Characteristic Submanifold Theorem for Pared Manifolds to split X along a minimal
family 2 of incompressible annuli which is unique up to ambient isotopy and such that as
a pared manifold each component is either simple, Seifert fibered, or I-fibered. We then
define a group G of orientation preserving diffeomorphisms of (S3,T') such that for every
g€ G, g(©®) =0 and g(Q) = Q, and every a € TSG, (T") is induced by some g, € G.

In Step 2, we cap off each annulus A; € () to obtain a sphere or pinched sphere ¥; which
meets I' in two or one points respectively. Then we choose a particular component W of
X — Q) which is setwise invariant under GG, and has the property that G permutes some of
the A;’s which meet OW or some of the components of N (V)N W. For each A; in OW,
we let B; denote the closure of the component of $2 — ¥; which does not contain W and
we let Fl = FﬂBz

In Step 3, we show that the proof can be reduced to analyzing the action that G induces
on W. In Steps 4, 5, and 6 we obtain our result in the cases where W is Seifert fibered,
I-fibered, and simple, respectively.

Proof of Proposition 1. Let T' be as given in the hypothesis of Proposition 1 and let v
denote the underlying abstract graph of I'. The result is clear if TSG, (T') is trivial so we
assume it is non-trivial. We begin by considering the special cases where I' is an arc or a
circle. In these cases, the full automorphism group Aut(vy) is either a finite cyclic group
or a dihedral group, and hence TSG, (T') is a finite subgroup of Diff ; (S3). If v is an arc
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with n vertices, then Aut(y) = Zs. In this case, we let A be a straight line segment with
n uniformly spaced vertices, then TSG, (T') & Zo. If 7 is a circle with n vertices, we let A
be a planar circle with n uniformly spaced vertices. In either of these two cases, there is a
subgroup G of Diff, (S3) such that G & H and G induces H on A.

From now on, we shall assume that v is not a simple closed curve or an arc. Hence I'
has some vertex with valence at least three. Also since I' has no type I spheres, I'" cannot
have any vertices of valence one. Let m be a number larger than the number of vertices
in I'. We will use m at several places in the proof.

Step 1. We split the complement of I' along characteristic tori and annuls.

Let M denote the closure of the complement of N(T') in S3. Since T' is a connected
graph, M is irreducible. So we can apply the Characteristic Submanifold Theorem to M
to get a minimal family of incompressible tori, ©, in M such that the closure of every
component of M — O is either simple or Seifert fibered, and © is unique up to an isotopy
fixing OM pointwise. It follows from the uniqueness of © that, for every automorphism
a € TSG, (T), there is an orientation preserving diffeomorphism g : (S3,T') — (S3,T)
which induces a, such that g(©) = ©, g(N(V)) = N(V), and g(N(E)) = N(E). Since 0M
is connected, there is a unique component of M — © which contains OM. Let X denote
this component. Then for each diffeomorphism g : (S3,T") — (S3,T) such that g(©) = ©,
we have g(X) = X. If X is Seifert fibered, then 0X is a collection of tori, and hence T is
homeomorphic to a circle, which is contrary to our assumption above. Thus X must be
simple. So every incompressible torus in X is boundary parallel. Also note that since each
torus boundary component of X is incompressible in M and M is irreducible, X must be
irreducible.

Now 0X consists of ON(T') together with a collection of tori in ©. Let P denote the
union of the annuli in & N(E) and the torus boundary components of X. Observe that
0X — P=0N(V)NO0X consists of a collection of spheres with holes.

We show as follows that 0X — P is incompressible in X. Suppose that there is a non-
trivial loop L in some component of 0. X — P which compresses in X. Then L is contained
in some ON (v)NOX and L bounds a disk D; in X. Also L bounds a disk Dy in N(v) such
that D intersects I' only in v. Now X = D U D, is a sphere, whose intersection with I"
is the vertex v. Since L is non-trivial in ON (v) N X, each component of S? — ¥ contains
part of I'. Since I' has no vertices of valence one, if the valence of v is two, we can slide X
along a path in I' until X intersects I' at a vertex with valence at least three. But this gives
us a type I sphere for I', contrary to hypothesis. Hence X — P must be incompressible in
X.

Since X is irreducible and 0X — P is incompressible in X, we can now apply the
Characteristic Submanifold Theorem for Pared Manifolds to the pair (X, P). This gives
us a minimal family € of incompressible tori and annuli in X with the boundary of each
component of €} contained in X — P, such that if W is the closure of any component
of X — €, then the pared manifold (W, W N (P UQ)) is either simple, Seifert fibered, or
I-fibered, and € is unique up to an isotopy of (X, P). Since every incompressible torus in
X is boundary parallel, and the family €2 is minimal, €2 cannot contain any tori. Thus 2 is
a (possibly empty) family of incompressible annuli in X. Furthermore, for any W, we can
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show that OW — (W N (P UK)) is incompressible in W by using an argument analogous
to our proof that 0X — P is incompressible in X.

Now let G denote the group of all orientation preserving diffeomorphisms g : (S3,T") —
(83,T), such that g(N(V)) = N(V), g(N(E)) = N(E), g(©) = © and g(Q) = Q. Observe
that P and X are each setwise invariant under G. Also by the uniqueness of each of the
sets N(V), N(FE), and ©, up to isotopy fixing I and the uniqueness of {2 up to an isotopy
of (X, P), we know that every a € TSG(I') is induced by some g, € G.

For each A in €2, the boundary of A is contained in X — P. So each component of A
is contained in some ON(v). Thus each component of A bounds a disk D in some N (v)
such that D NI = {v}. Furthermore, we can choose the collection of these disks to be
pairwise disjoint except possibly at the vertex v. For each boundary component of each
A in Q choose one such disk, and let () be the collection of all of these disks. Thus for
each A in €, there is a pair of disks D7 and Dy in () such that ¥ = AU Dy U D5 is either
a sphere meeting I' in two vertices or a pinched sphere with its pinch point at a vertex.
Observe that if ¥ is a sphere and the closure of neither component of (S% — ¥) N T is a
single arc or a single vertex, then X is a type II sphere; and if ¥ is a pinched sphere and
the closure of neither component of (S® —X)NT is single vertex then ¥ is a type III sphere.
Let A denote the collection of these spheres and pinched spheres. Since the collection () is
unique up to an isotopy of N (V') fixing both " and ON(V'), we can assume that we chose
G such that for every g € G, g(A) = A.

Step 2. We choose a component W of X — Q which is setwise invariant under G,
such that G permutes some of the elements of Q that are contained in OW or some of the
components of ON(V)NW.

If Q is empty, let W = X. Then every component of N (V') meets W. So we suppose
that €2 is non-empty.

It follows from the proof of F2, Thm. 1] (which uses the same notation that we use
here) that if T is a 3-connected graph then there is a unique component of X — Q whose
closure W has the properties that: every element of (2 is contained in W and for every
¥; € A the closure of the component of S —; which is disjoint from W meets I in an arc
if 3; is a sphere and in a single vertex if 3J; is a pinched sphere. The proof that there is
such a W is analogous if we replace the hypothesis that I" is 3-connected by the hypothesis
that T" has no type I, I1, or III spheres. Thus if I has no type I, IT or III spheres, then we
choose this W.

Since W is the only closed up component of X —  with these properties, W is set-
wise invariant under G. It follows from the above properties that for every non-trivial
a € TSG4(T"), g, induces a non-trivial permutation of either the elements of € or the
components of ON (V)N W. Thus we are done with Step 2 in the case when I' has no type
IT or III spheres.

In order to choose W when I'" does have a type II or type III sphere, we first associate
an abstract graph A to the set A of spheres and pinched spheres as follows. For each
component Y of §3 — A, let y be a vertex in ), and for every pair of components Y and Z
of S — A let there be an edge in A between the vertices y and z if and only if there is some
> € A which is contained in the boundary of both Y and Z. Observe that because every
element of A separates S3, the graph )\ is a tree. Since G takes A to itself, every g € G
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unambiguously defines an automorphism ¢’ of X\. Let G’ be the group of automorphisms
of A induced by G. Since ) is a tree, it follows from an elementary result in graph theory
that there is a vertex or an edge of A that is invariant under G’.

Claim 1: Suppose that there is no vertex of X\ which is fized by G'. Then either H = Zs
or H has a non-trivial normal subgroup N such that both N and H/N are realizable.

Proof of Claim 1: Since no vertex is fixed by G’, there is an edge e of A\ which is invariant
under G’ such that the vertices of e are interchanged by some element of G’. So there is
a Y € A which is invariant under GG, and some element g € G which interchanges the two
components of S2 — 3. The closures of the components of S% — ¥ intersect I" in subgraphs
aq and ao neither of which is a single arc.

Since ¥ is invariant under G, we can define a homomorphism ® : TSG, (') — Zs as
follows. For each a € TSG(T'), let ®(a) = 0 if a takes each «; to itself, and let ®(a) =1
if a interchanges a;; and «s. Since some a € TSG (T") interchanges a; and g, ® must be
onto.

If ker(®) is trivial then TSG(I") & Za, so we may assume ker(®) is non-trivial. We
modify I' by adding m vertices to every edge in a; without changing as. Let II denote
I' with these additional vertices. Then every a’ € TSG, (II) induces some a € TSG(T)
which does not interchange a; and as, and every such a is induced by some o’ € TSG (T).
It follows that TSG, (IT) = ker(®). Also, let II' denote the graph consisting of a single
edge, then TSG(Il') & Zy = im(®). Now N = ker(®) and H/N = im(®) are both
realizable. This proves Claim 1.

By Claim 1, we can assume there is some vertex of A which is invariant under G’, since
otherwise we would be done. Now suppose that G’ does not act trivially on A, then there is
some vertex z of X\ which is fixed by G’ and which is adjacent to a vertex of X\ which is not
fixed by G’. In this case, we choose W to be the closure of the component of X — Q which
corresponds to the vertex x of A\. Then W will be setwise invariant under G, however some
element of {2 which is contained in OW is not setwise invariant under G.

Finally, suppose that G’ acts trivially on A. Then every component of X —  is setwise
invariant under G. Since TSG (I') is not trivial, there is some vertex v of I' which is not
fixed by G. Let W be the closure of some component of X — {2 which meets N (v). Thus
we are done with Step 2.

Now we introduce some notation. Let Ay, ..., A, denote those annuli in {2 which are
contained in OW, and let 1, ..., X,, denote the spheres or pinched spheres of A associated
with Ay, ..., A, respectively. If 3; is a sphere, let ;T = {v;, w; }, and if ¥; is a pinched
sphere, let 3; NT" = {u;}. For each i, let ¢; and d; denote the boundary components of
A;, such that in the former case ¢; is on ON(v;) and d; is on ON(w;), and in the latter
case both ¢; and d; are on ON (u;). For each A; in OW, we let B; denote the closure of the
component of S% — ¥; whose interior is disjoint from W and let I'; = B; NT. Then the
sets {I'1,...,I[',} and {By,...,B,} are each setwise invariant under G, since W is setwise
invariant under G. It follows that IV = cl(I' — (I'y U--- UT,)) is setwise invariant under
G. (Note that I is not necessarily connected.)

Suppose that I has no type II or type III spheres. The conditions on W imply that if
>; is a sphere then I'; is an arc, and if 3; is a pinched sphere then I'; is a single vertex.
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Note it also follows from these conditions that for every vertex v of I' with valence at least
three, 9N (v) N W contains a disk with at least two holes (this will be used in Step 4).

Step 3. We reduce the proof of the proposition to analyzing the action that G induces
on W.

More precisely, we prove the following claim.

Claim 2: Suppose that there is some g € G and some A; C OW such that g(A;) = A;
and g does not interchange the boundary components of A;. If either I' has no type II
or III spheres or TSG,(T") is a simple group, then g induces the trivial automorphism on
I';. Furthermore, if g induces a non-trivial automorphism on I';, then H has a non-trivial
normal subgroup N such that both N and H/N are realizable.

Proof of Claim 2: Let g € G and some A; C OW such that g(4;) = A; and g does not
interchange the boundary components of A;. If I has no type II or type III spheres, then
I'; is an arc or a single vertex, hence g must induce a trivial automorphism on I';. So in
this case we are done.

Now we suppose that I" has a type II or III sphere. We use g to define a new orientation
preserving diffeomorphism h of (S2,T) as follows. Let h|B; = g|B;. Since g is orientation
preserving and takes B; to itself without interchanging the boundary components of A;, it
follows that g|X; is orientation preserving. Hence h|Y; is orientation preserving, and thus
is isotopic to the identity on X; fixing both v; and w; or fixing u;. Let C; be a ball or a
pinched ball containing B; such that C; N I" = I'; and 0C; is parallel to ¥; in C; — B;.
Extend h within C; — B; such that h is the identity on 0C;. Then extend h to the rest of
S3 by the identity. Now let a € TSG(T') be induced by h. It follows that a|cl(T" — T) is
the identity and ¢ induces a on I';.

Let N be the set of all @ € TSG4(T') such that «|I” is the identity, and for each
Jj<n,al;) =T, and go(c;) = ¢; and g,(d;) = d;. Then N is a normal subgroup of H
containing the element a. Observe that for each o € N, g, does not permute any of the
A;’s or any of the components of N (V) N W. Thus by our choice of W, N # TSG, (T).
So if TSG, (T) is simple, then a is trivial. Thus g induces the trivial automorphism on T,
and we are done.

So we assume that a is non-trivial. Then I'; is not a single vertex and N is non-trivial.
We prove as follows that N and H/N are both realizable by constructing embedded graphs
IT and TI" with TSG, (IT) 2 N and TSG(IT") & H/N.

First we construct II. For each k such that T'y is a single vertex let I}, = I'y. If T'y is
not a single vertex, let e, be an edge in I'y which has a vertex z; in IV, and let y, be a
point in int(e). We add a chain ¢}, of length km inside N(e;) with endpoints at x;, and
Yk, such that ¢} is isotopic rel {zx, yx} to the arc in g5 from xj to yi. For each edge € in
the orbit of £ under N, there is an o € N such that ¢ = a(ex). For each such ¢, we add
the chain ¢’ = g,(¢},). For each k, let I, denote I'j, after adding this collection of chains
of length km. Then for all [ # k, I'} contains no chain of length km.

We create II by stringing the collection '}, ..., ', together with edges as follows. We
add disjoint edges 3y, (1, ..., On on the outside of By, ..., By, such that 3, is attached to
'} only at the vertex wy or uy; for each k < n, B has one vertex at vy or uy and the other
vertex at wgy1 or ug41; and B, is attached to I'), only at v, or u,. If n =1, we attach [y
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at v1 and (8 at wq if ¥4 is a sphere, and attach [y at u; if 3; is a pinched sphere. Now
each (3; is invariant under TSG (II) and for each k, the collection of chains of length km
is setwise invariant under TSG (IT). It follows that there is an isomorphism from N to
TSGL (IT). Thus N is realizable.

Now we will construct an embedded graph II" such that TSG(IT') = H/N by replac-
ing each I'; by an arc with two chains attached as follows. Without loss of generality,
let {T'q,...,T,...,T.} consist of one representative from each orbit of {I'y,...,T';,} under
TSG, (T), such that there is some g € G which interchanges the boundary components of
Ay if and only if 1 < k < s. For each k, let g be an arc properly embedded in By (or
a simple closed curve if OBy, is a pinched sphere) such that e, N 0B, = I'' N IBy, and ¢
is isotopic rel boundary to an arc in 0By. We add vertices xj and yj to int(ey), and let
a and by be the closures of the non-adjacent segments of e, — {xg,yr}. We add chains
et and €] in By, such that ¢}, is isotopic rel boundary to a; and has length km, and ¢} is
isotopic rel boundary to bx and has length km if £ < s and length km + 1 otherwise. Now
for each j such that r < j < n, there is some k < r and some a € TSG (II) such that
['j = ga(T'k). Then we add ¢; = g(e) and the chains €; = g(e},) and &7 = g(g})).

Now for every j < n, we replace I'; by I'; = ¢; Ue}; Ue}. Observe that for each j,there
is no non-trivial element of TSG, (I'}) which takes ¢; to itself and does not interchange
e; and €. Let I' = I U} U..UI,. Then I'; and I') are in the same orbit under
TSG,(I') if and only if I'; and I'y are in the same orbit under TSG, (I'); and there is
an o' € TSG(Il') which interchanges ¢/ and & if and only if there is a ¢ € G' which
interchanges the boundary components of A;.

For each o € TSG(T'), there exists g, € G such that g,(II') = II'. If another element
gl € G also induces a on I" and ¢/, (IT") = IT', then g, and ¢/, induce the same automorphism
of I'". Define ® : TSG4(T') — TSG, (II') by letting ®(«) denote the automorphism that
Jo induces on II'. Observe that N = ker(®).

To see that ® is onto, let o’ € TSG4(II"). By our construction, {I'},...,I"} } is setwise
invariant under TSG (II'). Since each I'; can be isotoped rel (I'; N 9B;) into 9B;, there
is an orientation preserving diffeomorphism ¢’ : (S3,II') — (S3,1II') inducing o’ on IT’,
such that ¢’({Bi,...,Bpn}) = {Bi,..., B,}. For every j, let C; be a ball or pinched ball
containing B; such that C;NI' =T'; and 9C} is parallel to 0B, in C; — B;. Now there is an
orientation preserving diffeomorphism ¢’ : (S® 1) — (S3,1I') inducing o’ on IT’, such that
g’({Cl, ceey Cn}) = {01, ceey Cn} Let h|53 - iIlt(Cl U..u Cn) = g/|53 - int(C’1 U...u Cn)

For each j, we define h on C; as follows. If ¢’(C;) = C; and ¢’ does not interchange
e’ and ¢7, then ¢'|0C; is isotopic to the identity fixing II' N 9C;. So we can extend
h homeomorphically within C; such that h|I'; is the identity. If ¢’(C;) = C; and ¢
does interchange ¢’ and ¢7, then there is some g € G such that g(B;) = B; and g
interchanges the boundary components of A;. Also, ¢’|0C; and ¢'|0B; are each orientation
preserving. Now define h|B; = g|B;, and extend h to a diffeomorphism of C; — B;. Finally,
if g'(Cj) = Cy, for some k+#j, then there is g € G such that g(B;) = By and g(I'}) = ¢'(I'}).
In this case, we define h|B; = g|B;, and again extend h to a diffeomorphism taking C; — B;
to Cx — Bg. Now h : (S3,T) — (83,T) and h induces some automorphism « on I'. Then
®(a) = . Hence TSG, (I') = im(®) = H/N. Thus both N and H/N are realizable, and
Claim 2 is proven.
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Because of Claim 2, from now on we assume that if ¢ € G such that g(A;) = A;
and ¢g does not interchange the boundary components of A;, then ¢ induces a trivial
automorphism on I'; since otherwise we would be done. Thus we have completed Step 3.

Recall from Step 1 that the pared manifold (W, W N (P UQ)) is either Seifert fibered,
I-fibered, or simple. We shall consider each of these cases in a separate step, making use
of the above assumption.

Step 4. We prove the proposition when (W, W N (P US)) is Seifert fibered.

Since there is only one component of OW that meets ON(T"), we know this component
is a torus.

Recall from the end of Step 2 that if T has no type II or III spheres, then ON (V) N W
contains a disk with at least two holes. Thus in this case, the component of W which
meets ON (I') could not be a torus, and thus (W, W N (PUQ)) could not be Seifert fibered.
So we focus the case where I' has some type II or III sphere.

Claim 8: Let T be the boundary component of W which meets ON (). If T is a torus, then
TSG,(T) is a subgroup of a dihedral group.

Proof of Claim 3: Let {x1,...,x,} denote those vertices of I" such that ON(x;) meets WW.
Let the components of ON(V)NW be Ji, ..., J;. (Note that for a given vertex x;, the set
ON(z;) N W may have more than one component, so we may have ¢ > r.) Now each J; is
a sphere with holes, and each boundary component of J; is either a boundary component
of &' N(e) for some edge ¢, or a boundary component of some A;.

We saw in Step 1, that OW — (W N (PUQ)) is incompressible in W. Thus for each i, J;
is incompressible in W, and hence each boundary component of J; is essential in 7. Thus,
since 7' is a torus, every J; has exactly two boundary components.

Recall from Step 2 that G permutes some of the A;’s or some components of ON (V)NW.
Thus W must contain at least two A;’s or at least two J;’s. In either case, ¢ > 1 and T’

is made up of alternating annuli Ry, ..., R, (which are each either A,’s or components
of '’ N(FE)), and spheres with two holes, Ji, ..., J,. Also, G leaves {J1,...,J,;} and
{R1,-.., Ry} setwise invariant. It follows that the group of automorphisms that G induces

on the set {Jy,...,J4, R1,...,R,} is a subgroup of the dihedral group D,.

Define @ : TSG,(I') — D, by letting ®(a) denote the automorphism that g, induces
on the set {J1,...,Jy, R1,..., Ry}. We see that ® is well-defined as follows. Suppose that
ga and g/, are both elements of G which induce a on I". Then g, and g/, induce the same
permutation on the set of the components of 9N (V'), on the set of annuli {Ay,...,A,},
on the set of circles {c1,ds,...,cn,d,}, and on the set of components of &' N(E). Thus g,
and g/, both induce the same permutation on {J1,...,Jy, R1,..., R;}. Therefore, ® is a
well-defined homomorphism.

We show as follows that @ is one-to-one. Suppose that ®(a) is the identity. Then for
eachi=1, ..., q, we have g,(J;) = J; and g,(R;) = R;. Hence a(z;) = z; for each vertex
x; such that ON(z;) meets W. Let v be a vertex of I' such that v ¢ {z1,...,2,}. Then
for some j, the vertex v is in I';, and A; is one of the R;. Also since 1" contains more
than one J; and g, does not permute the J;, the boundaries of A; cannot be interchanged
by go. In particular, g,(c;) = ¢; and g4(d;) = d;. Thus by our assumption at the end of
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Step 3, a|T'; is the identity. In particular, a(v) = v, so ® is one-to-one. Hence TSG, (T") is
a subgroup of D,. This completes the proof of Claim 3.

Thus if the component of W that meets ON(T') is a torus, then TSG (T') is isomorphic
to a finite subgroup of SO(4) and hence of Diff | (S3), so we are done. In particular, if
(W, (W N (PUQ)) is Seifert fibered then we are done.

From now on we shall assume that the boundary component of W which meets ON(I)
is not a torus. Since OW — (W N (PUQ)) is incompressible in W, the boundary component
of W which meets N (T') is also not a sphere. Hence the boundary component of W which
meets ON (I") has genus at least three. It follows that there is some vertex v of I' such that
ON(v) N W contains a sphere with at least three holes. We will need this fact in the proof
of Claim 5 in Step 6.

Step 5. We prove the proposition when (W, W N (P US)) is I-fibered.

Since W is an I-fibered subspace of S3, W =Y x I where Y is a surface with holes.
Furthermore, since the pared manifold (W, W N (P U )) is I-fibered, by definition W N
(P UQ) is contained in 9Y x I. Thus Y x {0} must be contained in some component of
ON(V)NW, and thus Y must be a sphere with holes. Since the boundary of W has only one
component, X = cl($%—N(T')). Also, there are vertices vy and v1 (not necessarily distinct)
in T such that either vg # vy, and Y x {0} = ON(vg) "W and Y x {1} = ON(vy) N W, or
vo=v1 and Y x {0} and Y x {1} are the components of ON (vg) N W.

Suppose that Y has only one boundary component. Then Y x I is compressible in W,
so OW contains no elements of €2, and hence ON(I') = OW. This implies that T" is a tree.
But this is impossible since I'" has no vertices of valence one. We deduce that dY has at
least two components.

If 9Y has exactly two components then OW would be a torus, contrary to our assumption
at the end of Step 5. Hence Y has at least three components. Let by, ... , b, denote the
boundary components of Y, let Yy = Y x {0} and Y; =Y x {1}, and for each i, let C;
denote the annulus b; x I. Every g € G restricts to a map of the pair (W, W N (P UQ)).
So for every g € G, g({Yo,Y1}) = {Yo, Y1} and g({C4,...,C}) = {C4,...,C}. Then
for each 7, let F; denote the sphere or pinched sphere obtained from C; by adding disks
containing vy and v1 within N(vg) and N (v1) respectively, such that the disks are disjoint
from I' and from each other except possibly at vy and v;. Let E; denote the closure of
the component of S — F; which is disjoint from W, and let v; = I' N\ E;. Then for each 1,
either v; =T'; for some j, or v; isan arc of I', and I' = y; U - - - U 7y,

Suppose vy = v1 and some T’y is a single vertex. Let b denote one boundary component
of Ag. Then b bounds disks Dy and D; in ON(vg) such that Yy C Dy and Y; C Dy, and
every boundary component of Yy bounds a disk in Dy. By Step 1, Y} is incompressible in
X = cl(83 — N(I')), so each such disk must meet I'. It follows that 'y, is the only ; which
is a single vertex. In particular, since r > 2, if vg = v1, then some F} is a type III sphere.

Suppose that I" has no type II or I1I spheres. Then vg#wv;. Hence, by Step 2, every ~; is
an arc. For the sake of contradiction suppose that 9Y has at least four components. Let ¢
be a simple closed curve on Y x {0} which separates two of the boundary components of Y’
from the rest of the boundary components of Y. Let A denote the annulus ¢ x I in Y x I.
Now ¢ x {0} bounds a disk Dy in N(vg) such that DoNT = {vg} and ¢ x {1} bounds a disk
Dy in N(vy) such that D1 NT' = {v1}. Let ¥ = AU Do U D;. Then X is a type II sphere,
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contrary to our hypothesis. Thus r = 3. It follows that I' is a theta graph 63 with some
additional vertices of valence 2 and Aut(f3) = S5 x Zy. Thus TSG,(T") is a subgroup of
the dihedral group Dg 22 S5 X Zs and hence is isomorphic to a finite subgroup of SO(4) and
hence of Diff . (S3). Furthermore, we can re-embed I' as A in S? such that the vertices of
A of valence three are at the poles of the sphere, and the components of S? — A are three
identical wedges. Because of the symmetry of this embedding TSG (A) = Aut(y). Now
TSG (A) is induced by an isomorphic finite subgroup K of SO(4) and hence of Diff , (S3).
Thus the subgroup H = TSG(T") is induced on A by an isomorphic subgroup of K. So
if I' has no type II or III spheres, then we are done.

Now suppose that there is some g € G which interchanges Yy and Y;. Let @ :
TSGL(I') — Zsy be defined as follows. For each a € TSG(T'), let ®(a) be the permu-
tation that g, induces on the set {Yj,Y1}. Then @ is onto. If ker(®) is trivial then it
follows that TSG(I") & Z,. Hence in this case we are done.

If N = ker(®) is non-trivial, then we construct an embedded graph II as follows. Let &1
be an edge of I' containing v, such that its other vertex is not v;. Let {e1,...,e5} denote
the orbit of £; under N. For each &; we add a vertex z; in the interior of ¢; and add a
new edge (3; attached only at z;. Let II denote the embedded graph obtained from I" in
this way. Now the set {f1,..., 85} is setwise invariant under TSG, (II). It follows that
TSG (IT) 2 ker(®). Hence both N and H/N = im(®) = Z, are realizable.

Thus from now on we assume that for every g € G we have g(Yy) = Yj and g(Y7) = V3.

Claim 4:
a) If a € TSGL(T") such that a(~;) = ~; with i # j, then there exists a’ € TSG(T') such
that a’'(v;) = ~; and a’|T" — (y; U~y,) is the identity.

b) If a € TSG(T') such that a(vy;) = v; for some j, then alv; is the identity.

Proof of Claim 4:

a) Let a € TSG4(T") such that a(y;) = v; with ¢ # j. We will define an element g € G
as follows. Let g|E; = g,|E; and g|E; = g;!|E;. Then g interchanges E; and E;. Let b
denote a simple closed curve in Y which separates b; and b; from all the other boundary
components of Y. Let F' denote the disk with two holes in Y bounded by the three curves
bi, b;j, and b. Extend g homeomorphically to F x I such that g[(b x I) is the identity.
Now extend g to S% — ((F x I) U N(vp) U N(vy) by the identity. Finally, extend g within
N(vp) and N (v1) such that g(T') =T. Now g: (S%,T) — (S3,T) and g|T — (y; U~;) is the
identity. Let a’ denote the automorphism of T" induced by g. Then a’ interchanges ~; and
7v;, and @' |T" — (y; U~y;) is the identity.

b) Now suppose that a € TSG (") such that a(vy,) = y; for some j. If C; = A;, for some
A;, then v, =Ty, go(A:;) = A, ga(ci) = ¢; and go(d;) = d;. Hence by the end of Step 3,
aly; is the identity. If C; ¢ €, then v, is an arc if vy # v1 and a simple closed curve if
vo = v1. In either case, since g,(Yp) = Yy and g,(Y7) = Y1, we again conclude that a|y; is
the identity. Thus we have proven Claim 4.

It follows from Claim 4b) that for every non-trivial a € TSG, (I"), there is some ; such
that a(;) # ;. Because TSG.(I') is non-trivial, without loss of generality we can assume
that 7y is not setwise invariant under TSG4(T"). Let {v1,...,74} be the orbit of 7; under
TSG(T).
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Now define ® : TSG4(I') — S, by letting ®(a) be the permutation that g, induces on
the set {C1,...,Cy}. Then ® is well-defined. We prove as follows that ® is onto. Let (ij)
be any transposition in the symmetric group S,. Since {71, ...,7,} is the orbit of v;, there
is some a € TSG ('), such that a(v;) = ;. Now by Claim 4a), there exists a’ € TSG, (T")
such that a/(y;) = v; and &/|I' — (y; U~y;) is the identity. Hence ®(a’) = (ij). Thus @ is
onto. If ker(®) is trivial then TSG(I") = S, and we are done with Step 5.

If N = ker(®) is non-trivial, then there is some 7, with k£ > ¢ such that a(+x)#~,. There
is at most one edge of I' containing both vy and v;. Let 1 be an edge of ~; containing
vo. Since a(yx) # Yk, the other vertex of €1 is not vy. Let {1, ...,65} denote the orbit of
e1 under N. We obtain II from I' as follows. First remove 7, ..., 74 from I'. Then, add
a vertex x; in the interior of each &; and add a new edge (3; attached only at x;. Let II
be the embedded graph we obtain in this way. Now the set {1, ..., 85} is setwise invariant
under TSG (IT). It follows that TSG4 (II) = N.

Let I’ denote the graph consisting of ¢ edges joined together at a single vertex. Then
TSGL(I") = S, = im(®) = H/N. Hence both N and H/N are realizable. Thus we are
done in the case where (W, W N (P UQ)) is I-fibered.

Step 6. We prove the proposition when (W, W N (P US)) is simple.

Note the argument in the beginning of this step will be similar to the analogous part of
the proof of Theorem 1 in [F2].

We begin by applying Thurston’s Hyperbolization Theorem for Pared Manifolds [Th]
to (W, W N (PUQ)) to conclude that W — (W N (PUQ)) admits a finite volume complete
hyperbolic metric with totally geodesic boundary. Recall that every g € G restricts to
a map of (W,WW N (PUQ)). Let D denote the double of W — (W N (P U)) along its
boundary. Then D is a finite volume hyperbolic manifold. For every a € TSG, (T'), the
diffeomorphism g, induces a diffeomorphism ¢/, of D which restricts to g, on each side of
D. Now we use Mostow’s Rigidity Theorem [Mo], to find an isometry A/, of D that restricts
to an isometry h, of (W, WN(PURN)) such that h, is homotopic to g, on (W, WN(PUN)).
It follows from Waldhausen’s Isotopy Theorem [Wal that h, is actually isotopic to g, on
(W, W N (PUQ)).

Before we extend h, to a finite order diffeomorphism of S, we re-embed W in S? as
follows. Let T be a torus in © which is contained in OW. The closure of one component of
S3 — Ty is a solid torus Z;. Because T} is incompressible in M, Z; cannot be contained in
M. Thus ON(T) is contained in Z;, and R; = cl(S® — Z;) is a knot complement contained
in M. Now, up to isotopy, there is a well-defined longitude ¢; of T}, which bounds a Seifert
surface in R;. Observe that for every g € G, there is some Ry, in M such that g(R;) = Ry,
and g(¢;) is a longitude of R;. We re-embed W in S® by replacing each R; by a solid torus
U; such that a meridian of Uj is glued to /;.

Recall that TV = cl(I' = (T U...UT},)). Let W’ be the union of W together with all
of the solid tori U;. Then W' is contained in S3, and the boundary of W’ has a single
component contained in the union of ON(I') and a collection of annuli in Q. We glue
N(T') to W’ as it was attached to W. This gives us a manifold W” in $® which contains
W such that each boundary component of W’ is either a sphere made up of an annulus
A; together with a pair of disks in N (V) or a torus made up of an A; together with an
annulus in N (V). For each such sphere we glue in a solid cylinder C; to W such that
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C; has boundary A; together with these two disks. Then we glue in solid tori to all the
torus boundary components of W so that W together with the solid cylinders and solid
tori is 3. Let A’ denote the result of re-embedding I' in this way.

Now for every a € TSG. (T"), we shall extend the isometry h, of (W, W N (PUQ)) to a
finite order orientation preserving diffeomorphism of S? as follows. Because g, is isotopic
to hg on (W, W N (PUQ)), h, will take a meridian of each U; to a meridian of some Uy,
since g, took a longitude of R; to a longitude of R,. Thus we can extend h, radially
within each solid torus U;. Now extend h, radially within each solid cylinder component
of N(E) and each ball component of N(V). Finally extend h, radially within each solid
cylinder or solid torus C;. Thus for each a € TSG4(T'), we have defined a finite order
orientation preserving diffeomorphism h, of S? such that h,(A’) = A’ and h, induces the
automorphism a on A’.

Suppose that I' has no type II or type III spheres. Then each I'; is either an arc or
a single vertex. If I'; is an arc then C; is a solid cylinder. In this case, we re-embed T';
as I'; so that I, N C; is the core of C; and we embed the segments in I'; — C; as radii of
some N(v). If T'; is a single vertex let I, = I';. The union of A’ together with I'}, ...,
I/ gives us an embedded graph A in S® which has underlying abstract graph . Now for
each a € TSG4(T), ho({T'},..., T }) = {T1,..., I}, since each I'; is the core of C; and h
was defined radially in C;. Thus for each a € TSG4(T'), ho(A) = A and h, induces a on
A. Tt follows that H = TSG,(T') is a subgroup of TSG(A).

Now we return to the general case. Let K = {h,|a € H} where h, is the diffeomorphism
of $3 defined above. Define ® : H — K by ®(a) = h,.

Claim 5: K is a well-defined group and ® is a well-defined isomorphism.

Proof of Claim 5: We begin by proving that ® is well-defined. Let h, and h/, be diffeomor-
phisms of S which both come from a given a € TSG (T') by the above construction. Then
both h, and h], induce the same permutation of the set of components of ON (V) NW, the
same permutation of the set of components of & N(E) in W, and the same permutation
of the A;’s. We show as follows that h, = hl,.

By the end of Step 4 we know there is some vertex v of I" such that a component J of
ON(v)NW is a sphere with r > 3 holes. Let ag, ..., o, denote the boundary components
of J. Now hy(J) = hl(J) and h,(co;) = hl(c;) for each i = 1, ..., r. Since J is a
sphere with at least three holes and h_ ' oh/|J is an orientation preserving isometry which
setwise fixes all of the boundary components of J, h, ! o h/|J is the identity. It follows
that he|J = hl|J. Now since h,|W and h.|W are isometries which are identical on J, we
must have h,|W = h/|W. Since h, and h, are both determined by their restrictions to
W, we can conclude that h, = h/. Hence K contains exactly one h, for each a € H and
® is well-defined.

Now let h,, hy € K, and let f = h, o hy. Both f and hgep are diffeomorphisms of S3
which can be constructed by radially extending isometries of W. Also, f and h, o hy both
induce the same permutation of the set of components of ON (V') which meet OW, the set
of components of N(E) in OW, and the set of components of 2 in OW. So by the same
argument as in the above paragraph f = hqop. Hence K is a group.

Clearly, ® is onto. To see that ® is one-to-one, suppose that a € TSG4(T") such that
®(a) = h, is the identity on S3. Thus h,|W is the identity. So for every vertex v of I" such
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that ON(v) meets W, a(v) = v. Let v be a vertex of T such that N (v) does not meet
W. Then v is a vertex in some I';. Since A; is contained in OW, hy|A; is the identity.
So, hq(c;) = ¢;, and hq(d;) = d;. Also, h, is isotopic to g, on (W, W N (P US)). Hence
9a(A;) = A;, ga(ci) = ¢;, and gq(d;) = d;. Now by the end of Step 3, a|T'; is the identity.
So a(v) = v. It follows that @ is an isomorphism. Hence we have proven Claim 5.

Now H is finite group that is a finite group that is isomorphic to the subgroup K of
Diff ; (S3). Furthermore, if I' has no type II or type III spheres, then we saw before Claim 5
that every automorphism a € H is induced on A by the element h, of K. Also, every
element of K induces some element of H on A. Thus H is induced on A by an isomorphic
finite subgroup of Diff; (S3).

This completes the proof of Proposition 1. [

4. PROOF OF PROPOSITION 2

A key part of the proof of Proposition 2 involves showing that if TSG, (T') is a simple
group, then we can find an embedded graph A with no type I vertices such that TSG (A) =
TSG(T'). Our strategy is to first find a subgraph I” which is setwise invariant under
TSGL(T') such that I has fewer type I vertices than I'. We then will create a new graph
A with the same type I vertices as I by adding vertices or chains to IV in order to make
certain that TSG4 (A) =2 TSG4(T'). Continuing this process until no type I vertices remain,
we arrive at the desired embedded graph A.

We begin with some definitions and lemmas. The proofs in this section make use of

combinatorial arguments and cut and paste techniques.

Definition 7. Let I be a graph embedded in S3, and let ¥ and X’ be spheres which each
meet I' in a single vertex. Then ¥ and ¥’ are said to be almost disjoint if ¥ NY' is either
empty or a single vertex of I'. If ¥ N X’ is the single vertex v and ¥ bounds a ball B
containing ¥’ such that ¥’ is isotopic to ¥ in B fixing I", then ¥ and ¥’ are said to be
parallel.

We can consider those type I spheres which have the property that there are no other
non-parallel type I spheres on one side of the sphere.

Definition 8. Let I' be a graph embedded in S2, and let ¥ be a type I sphere for T.
Suppose that a ball B bounded by ¥ has the property that any other type I sphere ¥’
which is contained in B and almost disjoint from X, is parallel to ¥. Then we say that X
is an innermost type I sphere, B is an innermost ball, and I' N B is an innermost subgraph
with attaching vertex I' N X.

We can also focus on a particular type I vertex, and consider the type I spheres at that
vertex which have the property that there are no other non-parallel type I spheres at that
vertex on one side of the sphere. In the following definitions, we use the term rel v to mean
that we are only considering those type I spheres that meet I' at the vertex v.
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Definition 9. Let I' be a graph embedded in S3, and let ¥ be a type I sphere for I' with
Y NT = {v}. Suppose that the closure B of one component of S® — ¥ has the property
that any other type I sphere ¥’ which is contained in B and such that ¥ N ¥ = {v}, is
parallel to . Then we say that > is an innermost type I sphere rel v, B is an innermost
ball rel v, and I' N B is an innermost subgraph rel v.

Definition 10. Let I" be a graph embedded in S2, and let F' = {¥1,...,3,} be a collection
of innermost type I spheres (respectively rel v) for I'. We say F is a mazximal collection of
innermost type I spheres (respectively rel v) if the following three conditions hold:

1) The spheres in F' are pairwise almost disjoint.

2) No two spheres in F' are parallel.

3) If ¥’ is an innermost type I sphere (respectively rel v) for I" which is almost disjoint
from every X;, then Y’ is parallel to some X;.

Observe that if a maximal collection of innermost type I spheres contains only a single
sphere, then there are two innermost subgraphs and two innermost balls.

In the next few lemmas we shall prove that every embedded graph, has a maximal
collection of innermost type I spheres (possibly rel v), and this collection is unique up to
isotopy fixing T'.

Lemma 1. (Eristence) Let T be a graph embedded in S3. Then T has a mazimal collection
of innermost type I spheres. Furthermore, if v is a type I vertex, then I' has a mazximal
collection of innermost type I spheres rel v.

Proof. We prove that I' has a maximal collection of innermost type I spheres. The proof
that I has a maximal collection of innermost type I spheres rel v is analogous.

If T has no type I spheres, then the empty set satisfies the conclusion of the lemma.
Suppose that ¥ is a type I sphere for I. Let B be the closure of one component of % —¥.
Then I' = BNT is a proper subgraph of I' containing at least one edge. Suppose that ¥ is
not innermost. Then T" has a type I sphere ¥’ C B which is almost disjoint from ¥, such
that ¥’ is not parallel to ¥. Let B’ denote the closure of the component of S% — ¥/ which
does not contain . Then I' = B’ NT" is a proper subgraph of I containing at least
one edge. Suppose that Y’ is not innermost. Then I' has a type I sphere ¥’ C B’ which
is almost disjoint from Y’ and not parallel to ¥’. Since the graph I' has a finite number
of edges, this process cannot continue indefinitely, so eventually we obtain an innermost
type I sphere 3.

Let Fy = {X0}, and let ¥ have innermost ball By. Suppose I' has an innermost type I
sphere 31 which is almost disjoint from >y and not parallel to ¥g. Let By be the innermost
ball for 31 and let A = cl(S® — (By U By)). Then A = ANT is a proper subgraph of T.
Let F} = {Xg,21}. Suppose I' has an innermost type I sphere X9 which is almost disjoint
from both spheres in F} and not parallel to either sphere in F;. Let Bs be the innermost
ball for Y5, and let A’ = cl(A — Bz). Then A’ = A’ N A is a proper subgraph of A. Let
Fy = {30,%1,%2}. Again since I is finite, we eventually obtain a maximal collection Fj
of pairwise non-parallel, almost disjoint, innermost type I spheres for I'. [
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We will use the following lemma to prove the Uniqueness Lemma, as well as in subse-
quent proofs. In particular, this lemma will allow us to move one set of pairwise almost
disjoint type I spheres so that it is pairwise almost disjoint from another such set.

Lemma 2. Let I' be a graph embedded in S3, and let Sy, ..., S,, be pairwise almost
disjoint type I spheres for I'. Let X1, ... , ¥, be pairwise almost disjoint spheres such that
for each i, ¥; N T = {v;} and %; bounds a ball B; such that B; N T is either {v;} or an
innermost subgraph of T' (possibly rel v;). Then there is an isotopy of S® fizing T' which
takes {S1,...,Sm} to a collection {Ty,...,T,} of pairwise almost disjoint type I spheres
that are each almost disjoint from each %;.

Proof. By moving the S;’s slightly if necessary, we can assume that each S; meets each
Y; transversely in a finite collection of disjoint circles, possibly together with a vertex.
Consider J = {£; N 5| 1 < i < n, 1 <j < m}. Observe that the intersection of any
pair of circles in J is either empty or a single vertex. If J contains no circles, then we are
done. We show as follows how to isotop the family {S, ..., S}, fixing ', to a new family
{815+ -+, 80, ) such that J" = {¥; NS 1 <i <n, 1 <j< m} contains fewer circles than
J.

Case 1: J contains some circle which does not contain any vertex.

Pick ¢ such that ¥, — {v,} contains at least one circle of J. Pick ¢ to be a circle of J
which is innermost on ¥, — {v,}. Then ¢ bounds a disk D, on ¥, disjoint from I'" and
whose interior is disjoint from any S;. Now for some r, ¢ is contained in S,. Choose D to
be the disk on S, which is bounded by ¢ and does not contain a vertex.

Now the sphere D U D, is disjoint from I' and all S; with j # r. Thus D U D, bounds
a ball B which is disjoint from I'. It follows that B is disjoint from all S; with j #r. Let
N(B) denote a neighborhood of B which is disjoint from I' and from all S; with j # r.
Isotop S, fixing S — N(B) (and hence fixing every S; with j # r), by moving D across
B and past D, to a disk which is parallel to D, and disjoint from every ;. Let S, denote
S, after this isotopy, and for each j # r let Sj’- = S;. Then S, is a sphere which is almost
disjoint from the other Sg-. Also, S] intersects X, in fewer circles than S, does, and for
each i, every circle of S/ N'Y; is a circle of S, N X;. Now the collection {Si,...,S,} is
isotopic, fixing T, to the collection {S], ..., 5], } of pairwise almost disjoint type I spheres,
and J' = {¥; N S;| 1 <i<n,1<j<m} contains fewer circles than J.

Case 2: Every circle of J contains a vertex.

Pick ¢ and r such that ¥£,N.S, contains at least one circle of J. Then X,N S, will consist
of a single circle of J, since any such circle contains v,. Thus B, NS, is a disk D,.. Now D,.
splits B, into two balls B" and B”. Since I'; is either an innermost subgraph (possibly rel
vy) or a single vertex, the intersection of at least one of B or B” with I' is a single vertex.
Without loss of generality, B’ NT" is a single vertex. Let D’ denote the disk in ¥, such
that 0B’ = D’ U D,.. Let ¢ be a circle of J which is innermost on D’ (possibly ¢ = 0Dy.).
Then J contains vg. For some p, ¢ = ¥,N S,. Then B’ NS, is a disk D, bounded by c.
Let D, denote the disk in D’ which is bounded by c.
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Now the sphere D, U D, meets I' in the single vertex v,. Since B'NT = {v,}, D, U D,
bounds a ball B whose interior is disjoint from I'. It follows that B is disjoint from all
S; with j # p. Isotop S,, fixing I and every S; with j # p, by moving D,, across B and
past D, to a disk which is parallel to D, and whose intersection with every X; and every
S; with j # p is either empty or the single vertex v,. Let S| denote S, after this isotopy,
and for each j # ¢ let S; = S;. Then S}, is a sphere which is almost disjoint from the
other S; and from ;. Also, for each ¢, every circle of Sz/) N3 is a circle of S, N ;. Now
the collection {Sy,...,S,,} is isotopic, fixing I, to the collection {S],...,S},} of pairwise
almost disjoint type I spheres, and J' = {¥; N S}| 1 <i < n, 1 < j < m} contains fewer
circles than J. [

Lemma 3. (Uniqueness) Let T be a graph embedded in S* which has some type I vertex
v. Let F = {X¥1,...,%,} denote either a maximal collection of innermost type I spheres
for T', or a maximal collection of innermost type I spheres for I rel v. Then F is unique
up to an isotopy of S* fixing I.

Proof. We prove this when F' = {3,...,3,} is a maximal collection of innermost type I
spheres; the argument rel v is analogous.

Let vq, ... , v, be the respective attaching vertices of 31, ..., ¥,. Let E = {S1,...,S,}
denote another maximal collection of innermost type I spheres for I' with attaching vertices
w1y, ..., Wy. By applying Lemma 2, E can be isotoped fixing I" to a maximal collection
E' = {Ty,...,T,,} of innermost type I spheres that are each almost disjoint from every
sphere in F'. Now by definition of maximality, 71} is either parallel or equal to some ;.
Without loss of generality, T} is either parallel or equal to ;. In particular, vy = w;.
Now 75 is either parallel or equal to some ;. However, T5 cannot be equal or parallel to
Y1, since T5 is not equal or parallel to 7. Thus without loss of generality, T5 is equal or
parallel to ¥o. Continue in this way, so that for each j, v; = w; and T} is equal or parallel
to ¥;. This implies that m < n. However, reversing the roles of the T}’s and the ¥;’s we
conclude that m = n. Since every T} is equal or parallel to ¥;, there is an isotopy fixing
I' taking the collection E’ to the collection F. Now by composing this isotopy with the
isotopy taking E to E’, we obtain an isotopy fixing I" taking F to F. [

Let FF = {¥,...,%,} be a maximal collection of innermost type I spheres (respectively
rel v) for I with n > 1. Then F uniquely determines a set of innermost balls {B,..., By}
(respectively rel v) which in turn uniquely determines a family of innermost subgraphs
{T'y,..., T} (respectively rel v). Thus it follows from Lemma 3 that there is a well-defined
set {T'y,...,T',} of all the innermost subgraphs (respectively rel v) of T independent of the
choice of the family F', and for each ¢ # j, I'; N I'; is either empty or a single vertex.

Lemma 4. Let T' be an embedded graph, and suppose that {T'1,..., T} is a set of inner-
most subgraphs of I, or innermost subgraphs rel v for a particular type I vertex v. Let
I"=c(I' = (I'yU---UT,)). Then every type I vertex of I is a type I vertex of T.

Proof. Let {By,..., B} be a collection of innermost balls or innermost balls rel v, with
B; NT =T, for each i. Since X is a type I sphere for T/, ¥ N T is some vertex z. We
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can now apply Lemma 2 to the graph I to conclude that there is an isotopy fixing I
which takes ¥ to a type I sphere ¥’ for I that is disjoint from every B; except possibly
at z. Since ¥ is a type I sphere for I, both components of S3 — ¥/ meet I". If some B;
contained ¥’, then int(B;) NI would be non-empty. But this contradicts the fact that T';
is innermost or innermost rel v and X’ is a type I sphere for IV. Thus for each 7, X' N B;
is either empty or the vertex x. It follows that ¥ NT" = {«}. Also, since I" contains I/, we
know that each component of S® — 3 contains part of I'. Thus Y/ is also a type I sphere
for I'. O

Lemma 5. Let T be a graph embedded in S3, and suppose that T has some type I sphere.
Then I' has an innermost type I vertex v with the property that at most one innermost
subgraph rel v is not an innermost subgraph of T'.

Proof. Since T' has a type I sphere, there is some type I vertex v; where an innermost
subgraph is attached. Assume v; does not satisfy the conclusion of the lemma. Then there
is some ball B; which is innermost rel v; but not innermost. Hence int(By) contains a
type I vertex v, where another innermost subgraph is attached.

We shall continue this process inductively for n > 2 as follows. Let vy, ..., v, be
distinct vertices and let B,,_; be an innermost ball rel v,,_; whose interior contains a
type I vertex v, where an innermost subgraph is attached such that int(B,,—1) does not
contain any v; with ¢ < n. Suppose that v,, does not satisfy the conclusion of the lemma.

By Lemma 1, there is a maximal collection F}, of innermost type I spheres rel v,,. Thus
there is a collection F,, of innermost balls rel v,, whose boundaries are the spheres in F,,
and whose interiors are pairwise disjoint. Now precisely one of the balls in the collection
FE,, contains the vertex v,_1 in its interior. Since v,, does not satisfy the conclusion of the
lemma, there are at least two innermost subgraphs rel v,, which are not innermost. Hence
at least two of the balls in F,, are not innermost. Thus we can choose a ball B,, in E,
which is not innermost and which does not contain v,,_1.

By applying Lemma 2 to I', we can assume that dB,, was chosen so that it was disjoint
from 0B, 1. Since v, € int(B, 1) and 0B, contains v,, it now follows that B, C
int(Bp—1). Also since B, is an innermost ball rel v, which is not innermost, int(B,,)
contains some type I vertex v, 1 where an innermost subgraph is attached. On the other
hand, for all i <n+ 1, v; ¢ int(B,,). Thus vy, ..., v,41 are distinct vertices.

Since I' has only finitely many vertices, this process must come to an end. Hence we
eventually find some type I vertex which satisfies the conclusion of the lemma. [

Proposition 2. Let I' be an embedded graph which has at least one type I sphere, and let
H = TSG4(T"). Then either H is realizable by a graph with no type I spheres, H = S,
for some r, or H has a non-trivial normal subgroup N such that both N and H/N are
realizable.

Proof. 1f TSG4(T") = Zs, then H is realized by the graph consisting of a single edge. Thus
we assume that TSG (T") is neither trivial nor Zs and T has a type I sphere. As before, m
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will denote a number larger than the number of vertices in I'. We will use m throughout the
proof. We will show that either H = S,. for some r, H has a non-trivial normal subgroup
N such that both N and H/N are realizable, or there exists an embedded graph A such
that TSG4(A) =2 TSG(T") and A has fewer type I vertices than I'.

Since I' has a type I vertex, by Lemma 5 some innermost type I vertex v; has the
property that at most one innermost subgraph rel v; is not an innermost subgraph of I'.
We will use this property in Step 3. If vy is fixed by TSG,(T), let F' = {¥4,...,%,} be
a maximal family of innermost type I spheres rel v;. Otherwise, let F' = {¥,...,%,}
be a maximal family of innermost type I spheres for I' with respective attaching vertices
{v1,...,vn} (not necessarily distinct). In either case, let the innermost balls and subgraphs
associated with F' be {By,...,B,} and {I'y,...,T',}, respectively. If n > 1, then the B,
and I'; are uniquely determined by the ;. If n = 1, then we arbitrarily choose B; to be
the closure of one component of S® — ¥; and choose I'y = B; NT.

Step 1. We reduce the proof to the case where there is a group G of diffeomorphisms of
(83,T) inducing TSG,(T) leaving {Bx, ..., B,} setwise invariant.

For each a € TSG,(T'), there is some orientation preserving diffeomorphism h, :
(83,T) — (S3,T) which induces a. By Lemma 3, the set {h,(21),...,he(3,)} is isotopic,
fixing T', to the set {X1,...,X,}. So there is an orientation preserving diffeomorphism
fa : 8% — 83 which pointwise fixes T' such that fo({he(21),...,ha(Zn)}) = {21, .., S0}
Hence for each a € TSG,(T'), there exists an orientation preserving diffeomorphism
faohg : (S3,T) — (S3,T) which induces a and leaves {¥,...,%,} setwise invariant.
Let G denote the group of all orientation preserving diffeomorphisms g : (S3,T') — (S3,T)
such that g({31,...,%,}) = {¥1,...,2,}. Then G induces TSG(I'), and for every
a € TSG4(T'), we can choose a g, € G such that g, induces a.

If n > 1, then the conclusion of Step 1 follows. Suppose that n = 1 and there is some
g € G which interchanges the two components of S% — ;. The closures of the components
of S3 — ¥ intersect I' in subgraphs a; and as and neither oy nor as is an arc. Define
® : TSGL(I') — Zs by ®(a) = 0 if g, does not interchange a; and ao and ®(a) = 1
otherwise. Then ® is onto.

We know that ® is not an isomorphism, so we may assume ker(®) is not trivial. We
create a new embedded graph II from I' by adding m vertices to every edge of a;. Now every
a’ € TSG, (IT) induces an a € TSG_ (I") which does not interchange o and . Conversely,
every a € TSG(T") which does not interchange oy and as induces an @’ € TSG (II). It
follows that TSG (IT) = ker(®). Let I’ denote the graph consisting of a single edge, then
TSGL(IT') = Zo = im(®). Now N = ker(®) and H/N = im(®) are both realizable, and
we are done.

Thus we assume each component of S3 — ¥ is setwise invariant under TSG, (). It
follows that for each g € G, we have g(By) = By.

Step 2. We prove the proposition in the case where vy is fized by TSG4(T') and there is
some innermost subgraph rel vi which is not setwise invariant under TSG(T).

In this case, {I'1,...,I',} was chosen to be a maximal family of innermost subgraphs
rel v1. Without loss of generality, {T'1,...,T'.} is the orbit of Ty, and r» > 1. We define a
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homomorphism ® : TSG4(T') — S, by letting ®(a) be the permutation that a induces on
the set {I'y,..., T}

To see that ® is onto, let (ij) be some transposition in S,. Since I'; and I'; are both in
the orbit of I'1, there is some a € TSG(I") such that a(I';) = T';. We will use g, to define
an orientation preserving diffeomorphism g : (S®,T') — (S3,T) as follows. Let g|B; = g4|B:;
and g|B; = g, '|B;. Let B denote a ball containing B;U B, such that dBN(B;UB;) = {v1}
and BNT' =T, UT;. Extend g to a diffeomorphism of B such that ¢|0B is the identity,
and extend g to S® — B by the identity. Now g(I') = I' and g takes vertices to vertices.
Let a’ denote the automorphism induced on I" by g. Then o’ interchanges I'; and I'; and
a'|I' — (I'; UT;) is the identity. So ®(a’) is the transposition (ij). Hence @ is onto.

If ker(®) is trivial, then TSG, (') = S, and we are done, so suppose that ker(®) is non-
trivial. Starting with I', for each ¢ < r we add im vertices to every edge of I'; containing
vy. Let II denote the embedded graph we obtain. Then every a’ € TSG, (II) induces an
a € TSG4 (') that takes each I'; to itself. Conversely, each a € TSG(I') which takes
each T'; to itself induces an o’ € TSG, (II). It follows that TSG (II) = ker(®). Now let
IT" denote the embedded graph consisting of r edges joined together at a common vertex.
Then TSG, (IT") = S,. Thus if N = ker(®), then both N and H/N are realizable. So we
are done with Step 2.

From now on, we shall assume that one of the following two conditions holds.
(a) vy is not fixed by TSG(T")

(b) vy is fixed by TSG,(I') and every innermost subgraph rel v; is setwise invariant
under TSG, (T).

Step 3. We choose a particular subgraph TV on which TSG(T") induces a non-trivial
action.

If condition (a) holds, then F' = {¥4,...,%,} was chosen to be a maximal family of
innermost type I spheres for I" with respective innermost type I vertices {vy,...,v,} and
innermost subgraphs {I'y,..., T, }, and n > 1. Recall from our choice of v prior to Step 1
that at most one innermost subgraph rel vy is not one of the subgraphs I'y, ... , I'j;. Since
vy is not fixed by TSG4(T'), there is exactly one innermost graph rel vy which is not one
of these subgraphs. Let the orbit of the innermost graphs at v; be O = {I'y,...,T',.}, and
let TV = cl(T" — O).

Since I"” contains the vertex vy, which is not fixed by TSG,(T'), there is some a €
TSGL(T") that induces a non-trivial automorphism on I". Observe that I' is setwise
invariant under G, and the homomorphism ¥ : TSG(I') — TSG,(I") given by ¥(a) =
a|I"” is not trivial.

We see as follows that ker(W) is realizable. If ker(¥) is trivial then it’s realizable, so
assume it is non-trivial. Thus there is more than one I'; € O which is attached at v;. Let
{z1,...,25} denote a set of distinct vertices representing the orbit of v; under TSG (T).
Then s > 1, hence r > 4. We create a new embedded graph II from I' as follows. For
each j < s, we add jm vertices to every edge in O containing the vertex x;. Then we
collapse I to a single vertex v. Since r > 2, v has valence at least three and is the only
vertex in IT which is an endpoint of every chain of length at least m. Hence TSG_ (II) fixes
v. Now for every a’ € TSG, (IT) we can uniquely define an automorphism a of T which
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fixes every vertex in I and is induced by a’ on O. Furthermore, since I is contained
in a ball whose interior is disjoint from O, it is not hard to see that the automorphism
a is induced by an orientation preserving diffeomorphism of (S3,T). Conversely, every
a € TSG,(T) that fixes every vertex in I'” induces a unique a’ € TSG (II). It follows that
TSG, (IT) = ker ().

If condition (b) holds, then F = {¥,...,%,} was chosen to be a maximal family of
innermost type I spheres rel v;. Since TSG, (I') is non-trivial, without loss of generality
there is some a € TSG (") which induces a non-trivial automorphism on I'y. In this case,
we let IV =T', and let r = 1.

As in the previous case, I'" is setwise invariant under G, and ¥ (as defined above) is not
trivial. We let IT denote cl(I' — I'') with two chains added at v; one of length m and the
other of length 2m. For every a’ € TSG. (II) we can define an automorphism a € TSG(T")
which fixes every vertex in I'V and is equal to a’ on II. Conversely, every a € TSG(T") that
fixes every vertex in I induces an a’ € TSG4 (II). It follows that TSG (IT) = ker(¥).

In both of the above cases, while the set {vy,...,v,} of vertices is setwise invariant
under TSG4(T'), it may not be setwise invariant under TSG, (I). Thus, in general, ¥
may not be surjective. So in Step 4 we will create a new graph A by adding vertices and
chains of vertices to IV such that im(¥) = TSG, (A). Then in Step 5 we will show that
TSG,(A) 2 im(P).

Step 4. We construct A.

Let P be a chain in IV containing v;. Note that if no edge in I'V containing v has a vertex
of valence two in I, then P will be a single edge. Suppose that I'' = P, then TSG, (T) &
Zso. Since there is some a € TSG, (') which induces a non-trivial automorphism on I",
im(¥) = TSG4(I"). Thus if N = ker(¥), then both N and H/N are realizable. If N is
trivial, then TSG, (') = Zy. So in this case we are done. Thus we assume that I' is not
a chain.

We will construct an embedded graph A that satisfies the following two conditions:

(1) For every a € TSG4(T'), there is a g, € G such that g,(A) = A.

(2) For any diffeomorphism g : (S®,A) — (S3,A), g({v1,...,v:}) = {v1,...,v,}, and
g(I") =1"

Case 1: wv; has valence one in I".

Let ¢ be the edge in T” containing v;. We create A by adding m vertices to each edge
in the orbit of ¢ under TSG4 (T'). It is easy to see that condition (1) is satisfied for A.

Since P and its orbit under TSG(T") are the only chains of length at least m in A,
the orbit of P under TSG,(A) is the same as the orbit of P under TSG,(T). Since
IV # P, one endpoint x of P has valence at least three in I"V. So there is no a € TSG(A)
which interchanges the endpoints of P or any arc in its orbit. Now for any diffeomorphism
g: (83 A) — (83, A), we must have g({v1,...,v.}) = {v1,...,v.}, and g(I") =T".

Case 2: The valence of v; is at least two in I".

In this case, we will add chains with m vertices in order to make sure that condition (2)
is satisfied. For each i < r and each ¢; in I which contains v;, let f; = N(v;) Ne; and let
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{w;} =¢;NON(v;). Now for each j choose an arc d; in N(v;) — B; with endpoints v; and
w; such that: int(d;) is disjoint from I, if j # j/ then int(d;) is disjoint from d,, and there
is an isotopy of N(v;) which is fixed on I'" taking the d;’s to the corresponding f;’s. We
create A from I by adding each d; together with the vertex w;, and adding m vertices to
d;.

Since the d; are isotopic to the f; fixing I", for every a € TSG,(I'), we can choose
ga € G such that g,(A) = A. Also in A, each w; has valence three. On the other hand,
since we added at least two d;’s containing the vertex vy, we know that vy, ..., v, each
have valence at least four in A. Now vy, ..., v, are the only vertices of valence more than
three in A which are endpoints of a chain of length at least m in A. So again for any
diffeomorphism g : (S®,A) — (83, A), we must have g({vy,...,v.}) = {v1,...,0,} and
g(I'”) =T".

Step 5. We prove that im(V¥) =2 TSGL(A).

For both of our constructions of A, if g and ¢’ are elements of G inducing the same
automorphism on I and taking A to itself sending vertices of A to vertices of A, then
g and ¢’ both induce the same automorphism of A. Since A satisfies condition (1), we
can thus define a homomorphism @ : im(¥V) — TSG4(A) by letting ®(a) denote the
automorphism that g, induces on A. Since I is a subset of A, if g, induces a trivial
automorphism of A, then a must be trivial on I'V. Thus ker(®) is trivial.

To show that U is onto, we let a € TSG,(A). Then there is an orientation preserving
diffeomorphism g : (S3,A) — (S, A) inducing a, and by condition (2), g({v1,...,v.}) =
{v1,...,v.}, and g(I'") = T". We will construct an orientation preserving diffeomorphism
h:(S3T)— (S83,T) that induces a on A as follows.

First suppose that I' satisfies condition (a). Then, for each i < r, B; N\I" = {v;}. By
our construction of A, for each i < r, BN A = {v;}. Now, for each ¢ < r, we choose a
slightly larger innermost ball D; for T attached at v; such that B; — {v;} C int(D;) and
D; N A = {v;}. Since g({v1,...,v.}) = {v1,...,v.} and {v1,...,v,} is setwise invariant
under G, for each i < r there is a j; < r such that g(D;) NA = {v;,} and B, is in the orbit
of B; under G. So thereis a g; € G such that ¢;(B;) = B;,. Also, there is an isotopy fixing
A which takes each g(D;) to Dj,. So there is some orientation preserving diffeomorphism
g : (83, A) — (83, A) which induces a on A such that for each i < r, ¢(D;) = Dj,.

Define h|cl(S® — (D1 U---UD,)) = ¢'|cl(S® — (D1 U---UD,)), and define h : (B;,T;) —
(Bj;,T';,) to be g;|B;. Finally, for each 4, since h|0D; and h|0B; are both orientation
preserving diffeomorphisms which take v; to vj;, we can extend h to a diffeomorphism
taking D; — B; to Dj, — B;,. Now h: (S, A) — (53, A) induces a on A and h(T") =T Let
b be the automorphism which A induces on I'. Then ® o ¥(b) = a, and hence ® is onto.

Now suppose that I" satisfies condition (b). Then B; NIV =T", and by our construction
of A, BiNA = A and 9B; NA = {v;}. Since g(A) = A, we have g(B;) N A = A. Now since
g(v1) = vy, it follows that g(0Bj) is isotopic to By by an isotopy fixing A. Hence there
is some orientation preserving diffeomorphism ¢’ : (5%, A) — (S, A) inducing a on A such
that ¢’(B1) = B;. Define h|B; = ¢'|By. Let Dy be a slightly larger innermost ball for T’
attached at vy such that By —{v1} C int(D;) and D; NT" =T'y. Since h|0B is orientation
preserving we can extend h to a diffeomorphism of Dy — By such that h|0D; is the identity,
and define h to be the identity on S® — D;. Now h : (83, A) — (S, A) induces a on A, and
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h is a diffeomorphism of (S3,T). So as above, let b be the automorphism which A induces
on I, then ® o ¥(b) = a. Thus again ® is onto.

Therefore in either case, im(¥) = TSG4(A). Now let N = ker(V), then N and H/N
are both realizable. If IV is non-trivial then we are done. Otherwise, H is realized by A.
Hence we will be done after Step 6.

Step 6. We show that A has fewer type I vertices than T'.

First suppose A was created in Case 1. Then A is homeomorphic as a topological space
to IV, So, I'" and A have the same set of type I vertices, and by Lemma 4, every type I
vertex of IV is a type I vertex of I'. On the other hand, since the valence of vy is one in A,
vy is not a type I vertex of A. So A has fewer type I vertices than I'.

Assume we created A in Case 2, and x is a type I vertex of A with type I sphere X. Let
a and (3 be the closures of the components of A — Y. If « or 3 contains an edge in one of
the d; then it contains d; U f;. Thus each component of S® — ¥ contains part of IV,

Suppose x = v1, then x is a type I vertex of I', so the valence of x in I' is at least three.
By applying Lemma 2 if necessary to A, we can choose ¥ so that it is almost disjoint
from each of the spheres %, ..., 3,. It follows that ¥ N T = {v;}. Thus X is a type I
sphere for T' with attaching vertex v;. Recall that if condition (a) is satisfied then ~ is
the unique innermost subgraph rel v; that is not innermost, and by definition, IV C 7. It
follows that each component of $3 — ¥ contains part of +y. If condition (b) is satisfied, then
each component of S — ¥ contains part of IV = I'y. Since both v and I'; are innermost
subgraphs of T" rel v1 and X is a type I sphere for I' with attaching vertex vy, in either
case we obtain a contradiction. Thus v; cannot be a type I vertex of A (or of I'”). Now for
each i < r, there is a diffeomorphism g : (S3,A) — (53, A) such that g(v;) = v;. Thus, for
any ¢ < r, v; is not a type I vertex of A (or of T").

Now suppose z is some w;. Without loss of generality, f; U d; is contained in o and
€; — f; is contained in 3. For some ¢ < r, v; is an endpoint of d;. Now v; and all of the
edges of A incident to v; are also in a. Let B denote the closure of the component of S% — X
which contains 3. By our construction, f; U d; bounds a disk whose interior is disjoint
from A. So there is a ball B’ consisting of B together with a ball containing d; U f; such
that BPNA=p4U f; Ud;, and 0B’ NA = {v;}. Let ¥ = 9B’. Thus ¥’ is a type I sphere
for A with attaching vertex v;. But as we saw above this is impossible.

Thus « is neither v; with ¢ < r nor some w;. Also = has valence at least three in A. It
follows that z is a vertex of IV with the same valence in I that it has in A. Hence x is a
type I vertex for IV with type I sphere X. Thus every type I vertex of A is a type I vertex
of IV, and by Lemma 4 every type I vertex of I is a type I vertex of I'. We saw above that
v1, ..., v are not type I vertices of A. Thus the set of type I vertices of A are a proper
subset of those of T'.

This completes the proof of Proposition 2. [

5. EMBEDDING GRAPHS IN S3

In this section we prove the converse of Theorem 2. In particular, in Theorem 3 we
will show that for every finite subgroup G of Diff, (S%), there is an embedded graph T
with underlying abstract graph a complete bipartite graph such that TSG(T') & G. A
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complete bipartite graph K, , is the graph consisting of two sets V and W of n vertices
each and edges joining every vertex in V' to every vertex in WW.

Our strategy to construct I' will be as follows. Let n denote the order of G. Then the
sets of vertices V and W will each be embedded as the orbit under GG of a single point in
S3. We will embed the edges of K, ,, by lifting paths from the orbit space obtained from
S3 under the action of G. Finally, by tying distinct knots in edges from different orbits we
will ensure that TSG (") is not larger than G.

We will use the following terminology. An edge e of a graph + is said to be invertible
if there exists some a € Aut(y) that interchanges the vertices of e. In this case we say
that a inverts e. We have analogous definitions for embedded graphs: if € is an edge in an
embedded graph T', and there is some a € TSG, (T") such that a interchanges the vertices
of e, then we say ¢ is invertible and a inverts e.

Graph Embedding Lemma. Let v be a graph. Let H be a subgroup of Aut(vy) that
is isomorphic to a finite subgroup G of Diff | (S®). Suppose that no non-trivial element
of H fixes any vertex or inverts any edge of v. Then there is an embedded graph T with
underlying abstract graph v such that G induces H on T.

Proof. Smith [Sm] has shown that the fixed point set of every finite order orientation
preserving diffeomorphism of S2 is either the empty set or a simple closed curve. Let Y
denote the union of the fixed point sets of all of the non-trivial elements of G. Then Y is a
union of finitely many simple closed curves whose pairwise intersection consists of finitely
many points. So M = S — Y is path connected. Also, M is setwise invariant under G
because Y is setwise invariant.

Let ¥ : H — G be an isomorphism and for each a € H, define g, = ¥(a). Let
{wy,...,wy} be a set consisting of one representative from each orbit of the action of H
on the vertices. Let vy, ..., v, be distinct points in M which have disjoint orbits under
G. For each i < g, we embed the vertex w; as the point v;.

Since no vertex is fixed by any non-trivial element of H, for every vertex w in =y, there
are unique a € H and i < ¢ such that w = a(w;). Thus we can unambiguously embed
every vertex w = a(w;) as the point g,(v;). Since the embedded vertex representatives
V1, ..., U are disjoint from Y and have disjoint orbits under G, all of the vertices of ~
are embedded as distinct points in M. Let V denote the set of embedded vertices; then
G leaves V setwise invariant. The map sending each a € H to the restriction g,|V is an
isomorphism, since ¥ is an isomorphism and V' is disjoint from Y. Thus G induces H on
the set V.

Let {e1,...,e,} be a set consisting of one representative from each orbit of the action
of H on the edges. For each i, let z; and y; be the embedded vertices of e;. Since M is
path connected, for each ¢ there is a path a; in M from x; to ;.

Let m: M — M /G denote the quotient map. Then 7 is a covering map, and the quotient
space @ = M/G is a 3-manifold. For each i, let o, = m o ;. Then « is a path or loop
from 7(x;) to m(y;). Using a general position argument in @), we can homotop each o/ rel
its endpoints to a simple path or loop p) such that int(p} (1)), ..., int(p},(I)), and (V)
are pairwise disjoint. For each i, let p; be the lift of p, beginning at ;. Since p, = 7o p;
is one-to-one except possibly on the set {0,1}, we know that p; must also be one-to-one
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except possibly on the set {0,1}. Since p) is homotopic rel its endpoints to o}, we know
that p; is homotopic rel its endpoints to «;. Thus p; is a simple path in M from z; to y;.

For each i, we embed e; as the image of the simple path p;. Then for i # j, int(p;(I))
is disjoint from int(p;(I)).

We embed an arbitrary edge e as follows. We know that e = a(e;) for some a € H and
some 7. To show that a and 7 are uniquely determined by e, suppose that b € H such that
e = b(e;). Then ¢ must equal j, since when i # j, e; and e; have disjoint orbits under H.
Also, since no non-trivial element of H fixes any vertex or inverts any edge, a~' o b must
be trivial, and hence b = a. So we can unambiguously embed e as ¢ = g,(p;(I)). Then ¢
is a simple path from g,(z;) to g4 (v;)-

Let I" consist of the vertices V' together with the embedded edges described above. Then
I' is setwise invariant under GG. We see that I' is an embedded graph as follows. First,
since each int(p}(I)) is disjoint from 7(V'), the orbit of int(p;(I)) must be disjoint from V.
Similarly, since for i # j, p}(I) and p}(I) have disjoint interiors, for every g, h € G g(p:(1))
and h(p;(I)) have disjoint interiors. Furthermore, if g h, then g(p;(I)) and h(p;(I)) have
disjoint interiors.

Hence I' is an embedded graph with underlying abstract graph = such that G induces
HonT. [

In the proof of Proposition 4, we will use local knotting as a tool to modify our embedded
graph. In particular, we would like to be able to add a local knot k to a particular edge ¢
of T" so that no element of TSG, (T") can take € to an edge which does not contain x. Also
we would like to be able to add a non-invertible local knot to an edge € so that no element
of TSG4(T') can interchange the endpoints of ¢.

We begin by formalizing our definition of local knotting. Let I' be an embedded graph
and let £ be some edge which is contained in a simple closed curve in I'. We say that e
contains the local knot k if there is a ball B such that BN T is an arc « in the interior
of e, properly embedded in B, and the union of o and an arc in 0B has knot type k.
We abbreviate this by saying € contains the local knot x with ball B. When we say an
embedded graph I" is obtained from I" by adding the local knot k to € we will mean that
we replace an arc « in the interior of ¢ with an arc o’ in a tubular neighborhood B of «
such that o' is properly embedded in B, and the union of o/ and an arc in 9B has knot
type k.

Suppose we add a prime local knot k to an edge ¢ of I and call the new embedded edge
e’. If k' # K is a prime knot that is not a local knot of e, then x’ is also not a local knot
of /. This can be seen as follows. Suppose towards contradiction that ¢’ contains s’ with
ball B’. Since the balls B and B’ for x and ' are disjoint from I" — ¢, and ¢ is contained
in a simple closed curve « in T, it is enough to prove the assertion in the case when I' = a.
But in this case the assertion follows immediately from the prime decomposition theorem
for knots.

Orienting an edge from one endpoint to the other naturally induces an orientation on
any local knot it contains. If k is non-invertible and £ does not contain x, then, by an
argument similar to the above paragraph, adding s to € to get &' does not result in &’
containing the reverse of k as a local knot. In particular, this means that if I' does not
contain the non-invertible local knot « (or its reverse), and I is the graph obtained from
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I by adding & to &, then there is no a € TSG, (T") which inverts &’.

We sometimes want to add a new local knot to one edge of an embedded graph without
causing other edges to contain that local knot. Let £; and €5 be edges of I'. A bridging
sphere for 1 and &9 is a sphere S such that S meets I' transversely in {z1, 22}, where z;
is a point in the interior of ;.

Local Knotting Lemma. Let I' be an embedded graph with distinct edges €1 and eo,
each contained in a simple closed curve in I'. Let k1 and ko be knot types, which are not
necessarily distinct. Suppose €2 does not contain the local knot ko, and there is no bridging
sphere for e1 and 5. Then adding k1 to €1 does not cause €5 to contain the local knot ko.

Proof. Let T' be the graph obtained from I' by adding the local knot x; to ;. Let &
denote the edge in IV obtained by adding the local knot k1 to &1 in I'.

Suppose, in I, €] contains the local knot x; with ball By, and e contains the local
knot ko with ball Bs. By general position, we can assume that 0B and 0Bs intersect
in a disjoint union of circles. We begin by eliminating as many circles of intersection as
we can as follows. Suppose there is a circle of intersection that bounds a disk F' on 0B
disjoint from I'. Choose C to be an innermost circle of intersection in F', and let D; be
the disk in F' which is bounded by C. Suppose, for the sake of contradiction, that each
component of 0By — C' contains one point of 5. Pick a disk Dy bounded by C on 0Bs.
By the hypotheses of the lemma, 5 is contained in a simple closed curve in IV. Then
the sphere Dy U Dy meets this simple closed curve transversely in a single point, which is
impossible. Thus C' bounds a disk Dy on dB> disjoint from I'V. Then the sphere D; U D,
is disjoint from I, so it bounds a ball X which is also disjoint from I". Therefore, while
fixing T, we can isotop Dy through X to a disk just past D1, and thus eliminate the circle
of intersection C'. By repeating this process, we can isotop Bs, fixing I”, to a new ball B}
such that no circle of 9By N 9B bounds a disk on 9By disjoint from I. Now, as an edge
of I, e9 contains the local knot ko with ball Bj.

Suppose, for the sake of contradiction, that 9By N dBY is empty. Then B; and B are
disjoint. Hence we can re-embed ¢| back as €1 in B; without creating any intersections
between ¢, and Bj. Thus, in I', €2 contains the local knot ko with ball B). But this is
contrary to the hypothesis of our lemma. Therefore 9B N dB) must contain one or more
circles of intersection, none of which bounds a disk on dB; disjoint from &|. Let C be a
circle of intersection that bounds an innermost disk D on 9B;. Let Dy be a disk bounded
by C on 0Bj. It follows from our hypothesis that €] is contained in a simple closed curve
in IV, which we know intersects the sphere D; U Dy transversely in at least one point, in
the interior of ¢|. Therefore Dy intersects 9 transversely in a single interior point. Thus
D1 U Ds is a bridging sphere for ¢| and e, as edges of I'. Hence Dy U D5 is also a bridging
sphere for €1 and e, as edges of I'. But this contradicts our hypothesis. [J

Observe that a 3-connected embedded graph I' can have no bridging spheres. Thus, by
the Local Knotting Lemma, adding a local knot k1 to any edge of I' does not cause any
other edge of I" to contain a new local knot ks.
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Proposition 4. Let A be an embedded 3-connected graph. Let H be a subgroup of TSG(A)
which is induced by an isomorphic group G of diffeomorphisms of S, such that no non-

trivial element of H fixes any vertex of A. Then A can be re-embedded as I' such that
H =TSG, (') and H is still induced by G.

Proof. We will obtain I' by adding local knots to the edges of A. For each a € H, let g,
denote the unique element of G which induces a on A. We can choose N(A) so that N (V)
and N(FE) are each setwise invariant under G.

Let v denote the underlying abstract graph of A, and let {ey, ..., e, } be a set of edges of
~ consisting of one representative from each edge orbit under H. Without loss of generality,
there is some m < n such that e; is invertible if and only if i < m. For each i, let §; denote
the embedded edge corresponding to e;. Since no non-trivial element of H fixes any vertex,
for each i < m, there is a unique a; € H which inverts e;. So g, is the unique element of
G which inverts §;.

Let {k1,...,kn} be a set of distinct knots none of which is contained in A, such that if
1 < m then k; is strongly invertible and otherwise k; is non-invertible. For each 7, we add
the local knot x; to d; and call this new edge ¢;. For ¢ < m, since k; is strongly invertible,
we can add k; in such a way that g,,(¢;) = ¢;. We embed each e; as ¢; and each edge
e = a(e;) as gq(g;). Thus, gq(;) is g4(d;) with the local knot k; added. Let I denote the
embedded graph obtained in this way. Observe that in constructing I', we added the local
knot k; to an edge ¢ if and only if § is in the orbit of §; under G. Now it follows from the
Local Knotting Lemma that an embedded edge ¢ in I' contains the local knot x; if and
only if € is in the orbit of £; under G.

By our construction, for every a € H, I is setwise invariant under g,. Thus H is
a subgroup of TSG, (") which is induced by G and H = G. We will show below that
H =TSG,(T).

Let ¢ be a non-trivial element of TSG(I"). We will show that ¢ € H. Since ¢ €
TSG, (T), there is some diffeomorphism & : (S, T) — (S3,T) such that h induces ¢. Since
 is non-trivial, there is some edge ¢ which h does not leave setwise invariant. For some i,
this € is in the orbit of ¢;, and hence contains the local knot ;. Since h is a diffeomorphism,
h(e) must contain the local knot «;, and therefore h(e) is in the orbit of ¢; under G. Hence
there is some g; € G such that g;(g) = k(). Thus g7 ' oh(e) = ¢.

We define a new diffeomorphism f : (S3,T') — (S3,T') as follows. If g; ' o h interchanges
the vertices of e, then the local knot k; must be invertible. In this case, there is some
g2 € G which inverts . So we let f = gs 0 91_1 o h. Otherwise we let f = gl_l o h. Thus in
either case, f(¢) = ¢, fixing both vertices.

We will show below that f actually fixes every vertex of I'. Since we have shown that
f fixes the vertices of ¢, it suffices to show that if f fixes a vertex x, then f fixes every
vertex adjacent to x. Suppose that there is some edge ¢’ containing the vertex x, such
that f(¢’)#¢’. By the same argument given two paragraphs up, since ¢’ and f(&’) contain
the same local knots, there is some g3 € G such that g3(¢’) = f(¢’). By our hypothesis no
non-trivial element of G fixes any embedded vertex. Let 2’ denote the vertex of g3(&’) other
than z, then gs3(x) = 2’. So g5 Lo f is a diffeomorphism that takes £ to itself interchanging
xz and z’. It follows that the local knot k; which is contained in ¢’ must be invertible.
Hence, as in the above paragraph, there is a g4 € G which takes &’ to itself interchanging
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x and z’. But this implies that g3 0 g4(¢’) #¢’ and g3 o0 gs(x) = z. So g3 0 g4 is a non-trivial
element of G that fixes an embedded vertex, which is impossible. Hence f takes every edge
containing the vertex x to itself, and thus fixes every vertex adjacent to x.

Recall that either f = g5 o gfl ohor f= gfl o h. Since f fixes every vertex of I, h
induces the same automorphism as either g; o g5 ! or g1 does. Since the automorphisms
induced by both g1 o g5 L and g¢; are elements of H, it follows that ¢, the automorphism
induced by h, is an element of H. Therefore TSG,(I') = H. O

The following result follows immediately from Propositions 1 and 4, together with the
fact that a 3-connected embedded graph has no type I, 11, or I1I spheres.

Corollary. Let A be an embedded 3-connected graph. Let H be a subgroup of TSG(A)
such that no non-trivial element of H fizes any vertex of I'. Then A can be re-embedded as
T such that H = TSG, (T') and H is induced by an isomorphic finite subgroup of Diff ; (S3).

We shall use Proposition 4 to prove the following converse of Theorem 2. Note that the
statement of Theorem 3 that we prove below is slightly stronger than that given in the
introduction.

Theorem 3. For every finite subgroup G of Diff , (S3), there is an embedded 3-connected
graph T such that G =2 TSG(T") and TSGL(T") is induced by G. Moreover, this T' can be
chosen to be a complete bipartite graph K, , for some n.

Proof. Suppose that G is the trivial group. The complete bipartite graph Ks3 is 3-
connected. By Proposition 4 there is an embedded graph I' with underlying abstract
graph K3 3 such that TSGy (') is trivial. So from now on we assume that the group G is
not trivial.

Now let n denote the order of G. First we suppose that n > 2. Let {v1,vs,...,v,} and
{w1,ws,...,wy} denote the sets of vertices of an abstract complete bipartite graph K, ,,.
Since n > 2 we know that K, , is 3-connected. Pick x; to be a point in 53 that is not
fixed by any non-trivial element of G. Let {z1,z2,...,x,} denote the orbit of 21 under G.
We will define a homomorphism ¥ : G — Aut(K, ,) as follows. Let g € G and let i < n
be given. Then g(z;) = z; for some j. We define ¥(g)(v;) = v; and ¥(g)(w;) = w;. Let
H denote the image of V.

Since no non-trivial element of G fixes any x;, ¥ is one-to-one, and hence H = G. Also,
no non-trivial element of H takes any vertex to itself. Furthermore, since no element of
H takes any v; to any w;, no edges of K, , are inverted by any element of H. Now we
can apply the Graph Embedding Lemma to obtain an embedded graph I'" with underlying
abstract graph K, ,, such that G induces H on I'. Furthermore, by Proposition 4, I' can
be chosen so that H = TSG,(I') and H is induced by G.

Finally, suppose that n = 2, so G is Zs. Let {v1, v2,v3,v4} and {wq,wy, ws, wy} denote
the sets of vertices of an abstract complete bipartite graph K4 4. Then K} 4 is 3-connected.
Let H be the subgroup of Aut(K4 4) generated by the 2-cycle (v1, v2)(vs, v4) (w1, w2) (w3, wya).
Then H = Zs, no vertex of K4 4 is fixed by any non-trivial element of H, and there are
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no edges which are inverted by an element of H. Thus we can again apply the Graph Em-
bedding Lemma and Proposition 4 to get an embedded graph I' with underlying abstract
graph K, 4 such that TSG4(I') is induced by G and G = TSG4(T'). O
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