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0.1 Preface

This book is the text for an upper-level lecture course (STAT 470) at the
University of Maryland on actuarial mathematics, in particular on the basics
of Life Tables, Survival Models, and Life Insurance Premiums and Reserves.
This is a ‘topics’ course, aiming not so much to prepare the students for
specific Actuarial Examinations – since it cuts across the Society of Actuaries’
Exams FM, M (Segment MLC) and C – as to present the actuarial material
conceptually with reference to ideas from other undergraduate mathematical
studies. Such a focus allows undergraduates with solid preparation in calculus
(not necessarily mathematics or statistics majors) to explore their possible
interests in business and actuarial science. It also allows the majority of such
students — who will choose some other avenue, from economics to operations
research to statistics, for the exercise of their quantitative talents — to know
something concrete and mathematically coherent about the topics and ideas
actually useful in Insurance.

The Insurance material on contingent present values and life tables is
developed as directly as possible from calculus and common-sense notions,
illustrated through word problems. Both the Interest Theory and Proba-
bility related to life tables are treated as wonderful concrete applications of
the calculus. The lectures require no background beyond a third semester of
calculus, but the prerequisite calculus courses must have been solidly under-
stood. It is a truism of pre-actuarial advising that students who have not
done really well in and digested the calculus ought not to consider actuarial
studies.

It is not assumed that the student has seen a formal introduction to prob-
ability. Notions of relative frequency and average are introduced first with
reference to the ensemble of a cohort life-table, the underlying formal random
experiment being random selection from the cohort life-table population (or,
in the context of probabilities and expectations for ‘lives aged x’, from the
subset of lx members of the population who survive to age x). The cal-
culation of expectations of functions of a time-to-death random variables is
rooted on the one hand in the concrete notion of life-table average, which is
then approximated by suitable idealized failure densities and integrals. Later,
in discussing Binomial random variables and the Law of Large Numbers, the
combinatorial and probabilistic interpretation of binomial coefficients are de-
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rived from the Binomial Theorem, which the student the is assumed to know
as a topic in calculus (Taylor series identification of coefficients of a poly-
nomial.) The general notions of expectation and probability are introduced,
but for example the Law of Large Numbers for binomial variables is treated
(rigorously) as a topic involving calculus inequalities and summation of finite
series. This approach allows introduction of the numerically and conceptually
useful large-deviation inequalities for binomial random variables to explain
just how unlikely it is for binomial (e.g., life-table) counts to deviate much
percentage-wise from expectations when the underlying population of trials
is large.

While the basics of actuarial Life Contingencies are treated elsewhere as a
problem-solving method using mortality tables presented in a cohort format,
some effort is devoted in this book to contrasting the form in which the
underlying mortality data are received to the form of the cohort life table
used in calculating premiums and reserves. This allows statistics students to
connect the basic ideas of life table construction – considered by actuaries a
more advanced topic – to the problems of statistical estimation. Accordingly,
some material is included on statistics of biomedical studies and on reliability
which would not ordinarily find its way into an actuarial course.

The reader is also not assumed to have worked previously with the The-
ory of Interest. These lectures present Theory of Interest as a mathematical
problem-topic, which is rather unlike what is done in typical finance courses.
Getting the typical Interest problems — such as the exercises on mortgage
refinancing and present values of various payoff schemes — into correct for-
mat for numerical answers is often not easy even for good mathematics stu-
dents. The approach here is to return to the first principles of present-value
Equivalence and linear Superposition of payment streams over time. Interest
Theory topics are presented here first as a way to learn the skills of apply-
ing Equivalence and Superposition principles to real problems, but also as
a way of highlighting the relationship between realized payouts under stan-
dard Insurance contracts and instances of standard payment streams with
random duration. In this approach, insurance reserves are seen as natural
generalizations of bond amortization schedules.

While the material in these lectures is presented systematically, it is not
separated by chapters into unified topics such as Interest Theory, Probability
Theory, Premium Calculation, etc. Instead the introductory material from
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probability and interest theory are interleaved, and later, various mathemat-
ical ideas are introduced as needed to advance the discussion. No book at
this level can claim to be fully self-contained, but every attempt has been
made to develop the mathematics to fit the actuarial applications as they
arise logically.

The coverage of the main body of each chapter is primarily ‘theoretical’.
At the end of each chapter is an Exercise Set and a short section of Worked
Examples to illustrate the kinds of word problems which can be solved by
the techniques of the chapter. The Worked Examples sections show how
the ideas and formulas work smoothly together, and they highlight the most
important and frequently used formulas.

Finally, this book differs from other Actuarial texts in its use of compu-
tational tools. Realistic problems on present values of payment streams, on
probabilistic survival models related to human lifetimes, and on insurance-
contract premiums related to those models, rapidly lead to calculations too
difficult to do by hand or by calculator. Actuarial students often do these
calculations using EXCEL or other spreadsheet programs, but the conceptu-
ally based formulas often translate more effectively using mathematical tools
in computing platforms like MATLAB or the statistical language R, especially
where building blocks like root-finders or numerical integration routines are
needed. In this text, we encourage the students to use the free, open-source R
platform because of its powerful tools for numerical integration, root-finding,
life-table construction, and statistical estimation. Throughout this text, il-
lustrations and Exercise solutions and solutions are given in terms of R.

Free web access to the downloadable R platform, including manuals, can
be found at http://www.r-project.org/. There are now many good in-
troductory texts on computing with R in statistical applications. One text
which combines a general introduction to R with the specifics of many sta-
tistical data analysis methods, is Venables and Ripley (2002). Some good
free tutorial material on R can also be found on the web, for example at
http://wiener.math.csi.cuny.edu/Statistics/R/simpleR/.



Chapter 1

Basics of Probability and the
Theory of Interest

This first Chapter supplies some background on elementary Probability The-
ory and basic Theory of Interest. The reader who has not previously studied
these subjects may get an overview here, but will likely want to supplement
this Chapter with reading in any of a number of calculus-based introductions
to probability and statistics, such as Hogg and Tanis (2005) or Devore (2007),
and the basics of the Theory of Interest as covered in the text of Kellison
(2008) or Chapter 1 of Gerber (1997).

1.1 Probability, Lifetimes, and Expectation

In the cohort life-table model, imagine a number l0 of individuals born
simultaneously and followed until death, resulting in data dx, lx for each
integer age x = 0, 1, 2, . . ., where

lx = number of lives aged x (i.e. alive at birthday x )

and
dx = lx − lx+1 = number dying between ages x, x + 1

Now, allow the age-variable to be denoted by t and to take all real values,
not just whole numbers x, and treat S0(t) as the fraction of individuals in a

1
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life table surviving to exact age t. This nonincreasing function S0(t) would
be called the empirical ‘survivor’ or ‘survival’ function. Although it takes on
only rational values with denominator l0, it can be approximated by a
survival function S(t) which is continuous, decreasing, and continuously
differentiable (or piecewise continuously differentiable with just a few break-
points) and takes values exactly = lx/l0 at integer ages x. Then for all
positive real y and t, S0(y)−S0(y + t) is the exact and S(y)−S(y + t)
the approximated fraction of the initial cohort which fails between time y
and y + t, and for integers x, k,

S(x) − S(x + k)

S(x)
=

lx − lx+k

lx

denotes the fraction of those alive at exact age x who fail before x + k.

What do probabilities have to do with the cohort life table and survival
function ? To answer this, we first introduce probability as simply a relative
frequency, using numbers from a cohort life-table like that of the accompany-
ing Illustrative Life Table. In response to a probability question, we supply
the fraction of the relevant life-table population, to obtain identities like

Pr(life aged 29 dies between exact ages 35 and 41 or between 52 and 60 )

=
S(35) − S(41) + S(52) − S(60)

S(29)
=
{

(l35 − l41) + (l52 − l60)
}/

l29

where our convention is that a life aged 29 is one of the cohort known to
have survived to the 29th birthday. Note that the event of dying between
exact ages 35 and 41 or between 52 and 60 is the union of the nonoverlapping
events of the age random variable having value falling in the interval [35, 41)
with that of falling in [52, 60).

The idea here is that all of the lifetimes covered by the life table are
understood to be governed by an identical “mechanism” of failure, and that
any probability question about a single lifetime is really a question concerning
the fraction of a specified set of lives, e.g., those alive at age x, whose
lifetimes will satisfy the stated property, e.g., who die either between 35 and
41 or between 52 and 60. This “frequentist” notion of probability of an event
as the relative frequency with which the event occurs in a large population
of (independent) identical units is associated with the phrase “law of large
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numbers”, which will be discussed later. For now, remark only that the life
table population should be large for the ideas presented so far to make good
sense. See Table 1.1 for an illustration of a cohort life-table with realistic
numbers, and for a cohort life table constructed to reflect the best estimates
of US male and female mortality rates in 2004, see the Social Security web-
page http://www.ssa.gov/OACT/STATS/table4c6.html.

The main ideas arising in the discussion so far are really matters of com-
mon sense when applied to relative frequency but require formal axioms when
used more generally:

• Probabilities are numbers between 0 and 1 assigned to subsets of the
entire collection Ω of possible outcomes, with the probability of Ω it-
self defined equal to 1. In the examples, the subsets which are assigned
probabilities include sub-intervals of the interval of possible human life-
times measured in years, and also disjoint unions of such subintervals.
These sets in the real line are viewed as possible events summarizing
ages at death of newborns in the cohort population. At this point, we
regard each set A of ages as determining the subset of the cohort
population whose ages at death fall in A.

• The probability Pr(A ∪ B) of the union A ∪ B of disjoint (i.e.,
nonoverlapping) sets A and B is necessarily equal to the sum of the
separate probabilities Pr(A) and Pr(B).

• When probabilities are requested with reference to a smaller universe of
possible outcomes, such as B = lives aged 29, rather than all members
of a cohort population, the resulting conditional probabilities of events
A are written Pr(A |B) and calculated as Pr(A∩B)/Pr(B), where
A ∩ B denotes the intersection or overlap of the two events A, B.
The phrase “lives aged 29” defines an event which in terms of ages at
death says simply “age at death is 29 or larger” or, in relation to the
cohort population, specifies the subset of the population which survives
to exact age 29 (i.e., to the 29th birthday).

• Two events A, B are defined to be independent when Pr(A ∩ B) =
Pr(A) · Pr(B) or — equivalently, as long as Pr(B) > 0 — when
the conditional probability Pr(A|B) expressing the probability of A
if B were known to have occurred, is the same as the unconditional
probability Pr(A).
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Table 1.1: Illustrative Life-Table, simulated to resemble realistic US Male
life-table up to age 78. For details of simulation, see Section 3.2 below.

Age x lx dx x lx dx

0 100000 2629 40 92315 295
1 97371 141 41 92020 332
2 97230 107 42 91688 408
3 97123 63 43 91280 414
4 97060 63 44 90866 464
5 96997 69 45 90402 532
6 96928 69 46 89870 587
7 96859 52 47 89283 680
8 96807 54 48 88603 702
9 96753 51 49 87901 782

10 96702 33 50 87119 841
11 96669 40 51 86278 885
12 96629 47 52 85393 974
13 96582 61 53 84419 1082
14 96521 86 54 83337 1088
15 96435 105 55 82249 1213
16 96330 83 56 81036 1344
17 96247 125 57 79692 1423
18 96122 133 58 78269 1476
19 95989 149 59 76793 1572
20 95840 154 60 75221 1696
21 95686 138 61 73525 1784
22 95548 163 62 71741 1933
23 95385 168 63 69808 2022
24 95217 166 64 67786 2186
25 95051 151 65 65600 2261
26 94900 149 66 63339 2371
27 94751 166 67 60968 2426
28 94585 157 68 58542 2356
29 94428 133 69 56186 2702
30 94295 160 70 53484 2548
31 94135 149 71 50936 2677
32 93986 152 72 48259 2811
33 93834 160 73 45448 2763
34 93674 199 74 42685 2710
35 93475 187 75 39975 2848
36 93288 212 76 37127 2832
37 93076 228 77 34295 2835
38 92848 272 78 31460 2803
39 92576 261
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Note: see a basic probability textbook, such as Hogg and Tanis (1997)
or Devore (2007), for formal definitions and more detailed discussion of the
notions of sample space, event, probability, and conditional probability.

The life-table, and the mechanism by which members of the population
die, are summarized first through the survivor function S(t) which at inte-
ger values of t = x agrees with the ratios lx/l0. Note that S(t) has values
between 0 and 1, and can be interpreted as the probability for a single indi-
vidual to survive at least x time units. Since fewer people are alive at larger
ages, S(t) is a decreasing function of the continuous age-variable t, and in
applications S(t) should be continuous and piecewise continuously differen-
tiable (largely for convenience, and because any analytical expression which
would be chosen for S(t) in practice will be piecewise smooth). In addition,
by definition, S(0) = 1. Another way of summarizing the probabilities of
survival given by this function is to define the density function

f(t) = − dS

dt
(t) = −S ′(t) (1.1)

as the (absolute) rate of decrease of the function S. Then, by the funda-
mental theorem of calculus, for any ages a < b,

Pr( life aged 0 dies between ages a and b )

= S(a) − S(b) =

∫ b

a

(−S ′(t)) dt =

∫ b

a

f(t) dt (1.2)

which has the very helpful geometric interpretation that the probability of
dying within the interval [a, b) is equal to the area under the density curve
y = f(t) over the t-interval [a, b). Note also that the ‘probability’ rule which
assigns the integral

∫
A

f(t) dt to the set A (which may be an interval,
a union of intervals, or a still more complicated set) obviously satisfies the
first two of the bulleted axioms displayed above, namely that P (Ω) = 1
(where Ω is the sample space of all life-table outcomes) and Pr(A ∪ B) =
Pr(A) + Pr(B) whenever A, B are disjoint or nonoverlapping subsets of
Ω.

The terminal age ω of a life table is an integer value large enough that
S(ω) is negligibly small, but no value S(t) for t < ω is zero. For practical
purposes, no individual lives to the ω birthday. While ω is finite in real
life-tables and in some analytical survival models, most theoretical forms for
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S(t) have no finite age ω at which S(ω) = 0, and in those forms ω = ∞
by convention.

In probability theory, the sample space Ω is the set of all detailed out-
comes of the underlying data-generating experiment. Subsets of the sample
space to which probabilities will be assigned are called events. In this book,
all of the interesting events concern lifetimes, or ages at death. Insurance
contract payouts will be expressed as functions of the lifetimes at death of
insured lives, and the average or expected values of these payouts will be used
to calculate a fair equivalent value of the insurance contract to the insured.
The machinery for calculating the average values relates to the concept of
random variable based on the sample space Ω = [0,∞) of lifetimes.

1.1.1 Random Variables and Expectations

Formally, a random variable is a real-valued mapping X defined on a sample
space Ω, such that {s ∈ Ω : X(s) ∈ (a, b]} is an event with assigned
probability whenever a < b are real numbers. The real number X(s)
is interpreted as the value which would be observed if the detailed outcome
of the underlying random experiment were s ∈ Ω. The most important
feature of a random variable is its probability distribution, which is the
assignment rule of probabilities to all intervals (a, b] of values for X,
denoted for all real numbers a ≤ b by

Pr(a < X ≤ b) ≡ Pr({s ∈ Ω : X(s) ∈ (a, b]})

Remark 1.1 In datasets derived from actual mortality studies or insurance
portfolios, the detailed outcomes can be quite complicated, as discussed in
Appendix A. However, in this and succeeding Chapters, we analyze lifetimes
based on the cohort life table model, also discussed in Appendix A, which
is a simplified model based on the reduced data-structure, in which numbers
at risk and numbers of observed failures are tabulated on age intervals of one
year.

Now we are ready to define some terms and motivate the notion of ex-
pectation. Think of the age T at which a specified newly born member of
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the population will die as a random variable, which for present purposes
means a variable which takes various values t with probabilities governed
(at integer ages) by the life table data lx and the survivor function S(t) or
density function f(t) in a formula like the one just given in equation (1.2).
Suppose there is a contractual amount Y which must be paid (say, to the
heirs of that individual) at the death of the individual at age T , and suppose
that the contract provides a specific function Y = g(T ) according to which
this payment depends on (the whole-number part of) the age T at which
death occurs. What is the average value of such a payment over all individ-
uals whose lifetimes are reflected in the life-table ? Since dx = lx − lx+1

individuals (out of the original l0 ) die at ages between x and x + 1,
thereby generating a payment g(x), the total payment to all individuals in
the life-table can be written as

∑

x

(lx − lx+1) g(x)

Thus the average payment, at least under the assumption that Y = g(T )
depends only on the largest whole number [T ] less than or equal to T , is

∑
x (lx − lx+1) g(x) / l0 =

∑
x (S(x) − S(x + 1))g(x)

=
∑

x

∫ x+1

x
f(t) g(t) dt =

∫∞
0

f(t) g(t) dt
(1.3)

This quantity, the total contingent payment over the whole cohort divided by
the number in the cohort, is called the expectation of the random payment
Y = g(T ) in this special case, and can be interpreted as the weighted average
of all of the different payments g(x) actually received, where the weights
are just the relative frequency in the life table with which those payments
are received. More generally, if the restriction that g(t) depends only on
the integer part [t] of t were dropped , then the expectation of Y = g(T )
would be given by the same formula

E(Y ) = E(g(T )) =

∫ ∞

0

f(t) g(t) dt (1.4)

The foregoing discussion of expectations based on lifetime random vari-
ables included an interpretation of the expected value of discrete random
variables in terms of weighted averages which holds much more generally. In
this chapter, the averages are taken over all lives tabulated in an underly-
ing cohort life table. In Chapter 3, specifically in Section 3.3, averages are
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taken over large samples of observations of discrete random variables. With
the aid of the Law of Large Numbers, the weighted-average interpretation of
expectations can be understood as a general mathematical result.

The displayed integral (1.4), like all expectation formulas, can be under-
stood as a weighted average of values g(T ) obtained over a population,
with weights equal to the probabilities of obtaining those values. Recall from
the Riemann-integral construction in Calculus that the integral

∫
f(t)g(t)dt

can be regarded approximately as the sum over very small time-intervals
[t, t + ∆) of the quantities f(t)g(t)∆, quantities which are interpreted as
the base ∆ of a rectangle multiplied by its height f(t)g(t), and the rect-
angle closely matches the area under the graph of the function f g over the
interval [t, t + ∆). The term f(t)g(t)∆ can alternatively be interpreted
as the product of the value g(t) — essentially equal to any of the values
g(T ) which can be realized when T falls within the interval [t, t + ∆) —
multiplied by f(t)∆. The latter quantity is, by the Fundamental Theorem
of the Calculus, approximately equal for small ∆ to the area under the
function f over the interval [t, t + ∆), and is by definition equal to the
probability with which T ∈ [t, t + ∆). In summary, E(Y ) =

∫∞
0

g(t)f(t)dt
is the average of values g(T ) obtained for lifetimes T within small intervals
[t, t+∆) weighted by the probabilities of approximately f(t)∆ with which
those T and g(T ) values are obtained. The expectation is a weighted
average because the weights f(t)∆ sum to the integral

∫∞
0

f(t)dt = 1.

Remark 1.2 This way of approximating integrals of continuous integrands
by sums corresponding to the integrals of piecewise constant integrands is
closely related to the construction of the integral in terms of Riemann sums.
For fuller details, see the definition the Integral via Riemann sums in a cal-
culus book like Ellis and Gulick (2002).

The same idea and formula in (1.4) can be applied to the restricted popu-
lation of lives aged x. The resulting quantity is then called the conditional
expected value of g(T ) given that T ≥ x. The formula will be different
in two ways: first, the range of integrationis from x to ∞, because of the
resitriction to individuals in the life-table who have survived to exact age
x; second, the density f(t) must be replaced by f(t)/S(x), the so-called
conditional density given T ≥ x, which is found as follows. From the
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definition of conditional probability, for t ≥ x,

Pr(t ≤ T < t + ∆ |T ≥ x) =
Pr( {t ≤ T < t + ∆} ∩ {T ≥ x})

Pr(T ≥ x)

=
Pr(t ≤ T < t + ∆)

Pr(T ≥ x)
=

S(t)− S(t + ∆)

S(x)

Thus the density which can be used to calculate conditional probabilities
Pr(a ≤ T < b |T ≥ x) for x < a < b is

lim
∆→0

1

∆
Pr(t ≤ T < t+∆ |T ≥ x) = lim

∆→0

S(t)− S(t + ∆)

S(x)∆
=

−S ′(t)

S(x)
=

f(t)

S(x)

In other words, when it is desired to calculate the expectation of a function
Y = g(T ) of the lifetime variable T only within the conditional or restricted
population of individuals with lifetime ≥ x, then the density f(t) in the
expectation formula (1.4) should be replaced by the density which is equal
to f(t)/S(x) for all values of t which are ≥ x, and which is 0 for values
t ∈ [0, x).

The result of all of this discussion of conditional expected values is the
formula, with associated weighted-average interpretation:

E(g(T ) |T ≥ x) =
1

S(x)

∫ ∞

x

g(t) f(t) dt (1.5)

1.2 Theory of Interest

1.2.1 Interest Rates and Compounding

Since payments based upon unpredictable occurrences or contingencies for
insured lives can occur at different times, we study next the Theory of Inter-
est, which is concerned with valuing streams of payments made over time.
The general model in the case of constant interest, to which we restrict in
the current sub-section, is as follows. Money is deposited in an account like
a bank-account and grows according to a schedule determined by both the
interest rate and the occasions when interest amounts are compounded, that
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is, deemed to be added to the account. The compounding rules are impor-
tant because they determine when new interest interest begins to be earned
on previously earned interest amounts.

The central concept of compound interest is that, over the fixed time
interval of one year, an amount A0 deposited at the beginning of the interval
accumulates to A1 = A0 · (1 + i) which could be withdrawn at the end
of the interval. Since the constant interest rate is quoted as a constant over
the period of one year, we have 1 + i as the accumulation factor by which
an initial deposit is multiplied to find the balance at the end of one year.
By convention, interest rates are generally quoted as annualized rates, which
means that the interest rate ih applied to a time-interval [t, t + h] for a
period h of less than one year is prorated down to the interval h to give
hih, which results in an accumulation factor 1 + hih. Thus, for an initial
deposit A0 at time t which is to be retained in a bank account for the time
h, so that the accumulated amount is compounded (i.e., is calculated by
the bank and owned by the depositor) at time t+ h, the balance which the
owner could withdraw at time t + h is A(0) · (1 + hih).

If the quoted interest rate ih is annualized, and if interest earned is
to be credited after every successive interval h = 1/m, then we say that
the interest rate is a nominal annualized interest rate with m-times-
yearly compounding or simply the nominal interest rate, and the standard
notation for it is i(m) instead of i1/m as written above.

Banks are not required to calculate interest from the instant (in practical
terms, the day) of deposit to the instant (i.e., the day) of withdrawal. In
practice, the intervals of compounding are generally fractions h = 1/m of
a year, usually with m = 1, 2, 4, or 12. This means that after a deposit
of A0 at time t, the depositor wishing to withdraw the full accumulation
or balance at time t + s for 0 < s < h owns only the initial amount A0,
because no interest has yet been credited.

The further growth of deposited money over successive time intervals
of length h = 1/m, if compounded at each additional interval of length
1/m, is easily understood inductively. With amount A0 deposited initially
at time t, the balance as of time t + h is A0(1 + i(m)/m) and can be
viewed as though it were simultaneously withdrawn and freshly deposited at
time t + h, after which it would accumulate over the succeeding interval
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[t + h, t + 2h] by multiplying the deposited amount A0(1 + i(m)/m) by
the interval-h accumulation factor 1 + i(m)/m. Thus the balance as of time
t+2h = t+ 2/m is A0(1 + i(m)/m)2. Inductively, for k ≥ 2, if the balance
A0(1 + i(m)/m)k owned by the depositor at time t + k/m is regarded as
instantaneously withdrawn and redeposited as an initial balance for the next
interval [t + k/m, t + (k + 1)/m], the balance at time t + (k + 1)/m is
A0(1 + i(m)/m)k multiplied by the interval-h accumulation factor 1 + ih, or
A0(1 + i(m)/m)(k+1).

The overall result of our reasoning about m-times yearly compounded
nominal interest is the following:

Proposition 1.1 The accumulated value of an initial bank deposit of A0

compounded m times yearly at nominal interest rate i(m) after a time
k/m+s, where 0 ≤ s < 1/m and k ≥ 0 is an integer, is (1+i(m)/m)k ·A0.

Proposition 1.1 with k = m says that at the annualized nominal interest
rate i(m) , an initial deposit of A0 accumulates after exactly one year
to a balance of (1 + i(m)/m)m A0. Since the accumulation from the full
year of deposit has the effect of multiplying the initial deposit by the factor
(1 + i(m)/m)m, a factor which would have been 1 + i at interest rate i
compounded yearly. This proves that the nominal interest rate i(m) with m-
times-yearly compounding leads to exactly the same accumulation over whole
years as a deposit account with the once-yearly compounded “effective” rate

i ≡ ieff = (1 + i(m)/m)m − 1

Since any nominal interest rate i(m) has its equivalent effective interest
rate i = ieff providing the same yearly accumulations, the nominal interest
rates i(m) with different values of m but the same value of i can also
be regarded as equivalent. These whole-year-equivalent nominal rates are
determined by solving the last equation for i(m) in terms of i = ieff :

i(m) = m
(

(1 + i)1/m − 1
)

(1.6)

For example, with i = .05, or 5% effective annual interest, the corre-
sponding nominal rates i(m) for the most common values of m are obtained
through the R code line:
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mvec = c(1,2,4,12, 365) ; imvec = mvec*(1.05ˆ(1/mvec) - 1)

as

i(1) = .05 , i(2) = .04939 , i(4) = .04909 , i(12) = .04889 , i(365) = .04879

A few simple calculus manipulations allow us to establish the pattern of
the displayed i(m) values for all choices of i, m. The right-hand side of
equation (1.6) is a function g(h) of h = 1/m, where

g(h) = h−1
(
(1 + i)h − 1

)
= (exp(h ln(1 + i))− 1)/h

has the form of a difference quotient from Calculus. Recall the Taylor series
expansion ez = 1 + z + z2/2 + z3/3! · · · which is valid for all z > 0.
Substitute this series with z = h ln(1 + i) into the displayed formula for
g(h) to conclude that

g(h) =
∞∑

j=1

(ln(1 + i) · h)j

h · j!
= ln(1 + i) +

∞∑

j=1

1

j!
(ln(1 + i))j hj−1

is an increasing function of h > 0 and is always greater than its right-hand
limit

g(0+) = lim
h↘0

exp(h ln(1 + i)) − 1

h
=

d

dh

(
eh ln(1+i)

)
h=0

= ln(1 + i)

The information just established concerning the behavior of i(m) =
g(1/m) as a function of m for fixed effective interest rate i = ieff is
summarized as follows.

Proposition 1.2 When i = ieff is fixed, the nominal annual interest rate
i(m) for m-times-yearly compounding is a decreasing function of the positive
integer m and tends as m → ∞ to the limiting value, defined as the force
of interest,

δ = ln(1 + ieff) = lim
m→∞

i(m)
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In the displayed i(m) values for i = .05, the daily-compounded nominal
interest rate was i(365) = .048973. The corresponding force of interest, also
called the instaneously or continuously compounded nominal interest rate, is
δ = ln(1.05) = .048970.

The effective interest rate ieff can be expressed through its nominal
continuously compounded interest rate δ as i = eδ, and the other nominal
rates have similar expressions immediately derived from (1.6):

i(m) = m (eδ/m − 1)

For all durations t which are rational numbers, i.e., are of the form
t = k/m for positive integers k, m, Prop. 1.1 with s = 0 says that the
accumulation factor for duration t = k/m based on m-times-yearly com-
pounding at effective interest rate i is (1+i(m)/m)k = (1+i(m)/m)mt = et δ.
Since t = k/m is also of the form kl/(ml) for every integer l ≥ 1, the same
reasoning gives etδ as the accumulation factor for duration t under the
same effective interest rate with ml-times-yearly compounding. Taking the
limit as l → ∞, with t fixed and arbitrary m ≥ 1, says that the accumu-
lation factor over duration t for instantaneous or continuous compounding
should be the same. This is essentially a definition of what accumulation
by continuous compounding should mean, but it is the only definition under
which continuous compounding is well approximated by compounding arib-
trarily (but finitely) many times per day.

Now it is obvious that the accumulation factor by continuous compound-
ing over a duration k/m + s (for 0 ≤ s ≤ 1/m is nondecreasing in s and
must therefore lie within the interval [eδk/m, eδ(k+1)/m]. By continuity of the
exponential function, there follows:

Proposition 1.3 The accumulated balance of an initial deposit A0 under
continuous compounding with effective interest rate i, or equivalently with
force of interest δ = ln(1+i), over a duration t > 0 which is not necessarily
a rational number, is exp(δt) · A0.

So far, we have described in Props. 1.1 and 1.3 the mechanism of accu-
mulation under nominal interest rates applying with either m-times-yearly or
continuous compounding, and in equation (1.6) and Prop. 1.2 the relations
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between nominal interest rates, force of interest, and effective interest rates.
There is a further term for interest rates which must be disclosed to borrow-
ers under US contracts, namely the Annual Percentage Rate or APR. Unlike
the interest rate terminology discussed up to this point, APR is a legal term
which refers either (‘effective APR’) to the effective interest rate or (‘nominal
APR’ or simply ‘APR’) to the nominal interest, to which is added in either
case the service fees charged by the lender as a fraction of the beginning-of-
year loan balance. The APR disclosure is intended as a consumer protection
to the borrower, but may vary across jurisdictions in the way start-up fees
(e.g., origination and participation) are required to be reported.

1.2.2 Present Values and Payment Streams

Applications of the theory of interest generally involve comparisons between
streams of payments which may be made at different times and may accu-
mulate at different rates of interest. These payments may be deposits into
a bank or investment account, or loan repayments, or successive payments
designed to accumulate over time at interest to a sufficient reserve fund to
meet some future liability.

First, a discrete payment stream is a sequence of (positive) deposit
amounts αj made at specified calendar times tj, j = 1, 2, . . . , n and
which are regarded as accumulating from their times of deposit according to
a schedule of interest rates r(t) which remain constant within successive
intervals of calendar time t but which may change from one such interval
to the next.

Two basic principles govern all problems of valuing such payment streams.

• The Principle of Equivalence defines equivalence at time τ
between two payment streams, one with payments and times (αj , tj,
j = 1, 2, . . . , n) and interest rate function r(t) and the other with
payments and times (α∗

j , t∗j , j = 1, 2, . . . , n∗) and interest rate func-
tion r∗(t), where τ ≥ maxj tj, maxj t∗j . These streams are called
equivalent at τ if the accumulated values at τ from the two payment
streams under their respective interest rate functions are the same.
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• The Principle of Linear Superposition states that the total accu-
mulated amount resulting at time τ from a payment stream (αj , tj, j =
1, 2, . . . , n) under interest rate function r(t) is the same as the sum of
the accumulated values up to time T of n separate deposit accounts
initiated at the respective times tj with deposits of αj, all under the
same interest rate function r(t).

The two Principles as just stated do not yet tell us how to calculate the
accumulated values at τ under interest rate functions r(t) that vary over
time. However, we can already see that the first Principle is a definition,
while we will see that the second is an essentially obvious restatement of
the commutativity of addition together with the fact that the accumulation
of discrete payment streams is a well-defined linear function of the payment
amounts αj.

Consider first the case where r(t) ≡ i is constant over the entire time-
interval [minj tj, τ ]. Then Prop. 1.3 gives the contribution of the deposit
αj at time tj to the accumulated value at τ as αj · (1 + i)τ−tj . On
the other hand, the direct inductive calculation of the accumulated amounts
at all times tl ≥ tj due to the αj deposit, are also given via Prop. 1.3
as αj · (1 + i)tl−tj , from which (by continuously compounding at interest
rate i from the largest of the times tl until τ ) the final contribution
of the αj deposit to the final accumulation at τ is again seen to be
αj · (1 + i)τ−tj . This argument, with a little more notational effort and an
inductive argument over the successively larger deposit times tl, can be made
into a rigorous proof of the Linear Superposition principle in the constant
interest-rate environment with continuous compounding. The formula for
the continuously compounded accumulated value of the stream at time τ is

n∑

j=1

αj (1 + i)τ−tj =
n∑

j=1

αj eδ (τ−tj) (1.7)

If compounding is instead m-times-yearly and all of the time-differences τ−tl

are integer multiples of 1/m, then we appeal to Propositions 1.1 and 1.3
to confirm that there is no difference between the accumulated values at
effective interest rate i under continuous or m-times-yearly compounding,
and formula (1.7) again expresses the accumulated value at τ , which is also
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equal to
n∑

j=1

αj (1 + i(m)/m)m(τ−tj)

The most important application of the principle of equivalence is in find-
ing a deposit amount αPV at a single fixed time t which is equivalent
to the payment stream (αj, tj, j = 1, . . . , n) at all times τ ≥ maxj tj, at
the same effective interest rate i = ieff with continuous compounding as
is used to accumulate (αj, tj, j = 1, . . . , n). This amount αPV is then
called the present value of the payment stream at time t . To see
why this is possible, consider any fixed τ ≥ max(t, maxj tj) and equate
the accumulated value (1.7) to the accumulated value αPV (1 + i)τ−t of the
single deposit at time t using interest rate i, yielding:

n∑

j=1

αj (1 + i)τ−tj = αPV (1 + i)τ−t =⇒ αPV =
n∑

j=1

αj (1 + i)t−tj

(1.8)
This equation determining αPV evidently does not depend upon τ . It tells
first (with n = 1, t1 = 0 in (1.8)) the present value at fixed interest rate i
of a payment of 1 exactly t years in the future, (1 + i)−t. This is the
amount which must be put in the bank at time 0 in order to accumulate by
the factor (1 + i)t given by Prop. 1.3) to the value 1 at time t. Then, more
generally,

the present value at time 0 under constant interest rate i of
a payment stream consisting of payments αj at future times
tj, j = 1, . . . , n is equal to the summation

∑n
j=1 αj (1 + i)−tj .

The same phenomenon, that a single deposit αPV at time t0 can be
equivalent at all times τ to a payment stream (αj, tj, j = 1, . . . , n) turns
out to hold more generally whenever the same time-varying interest rate
function r(t) is used to accumulate both the single deposit and the payment
stream. The proof of this Fact will be left to an Exercise in Section 1.2.4
where accumulation formulas for variable interest rates are discussed. The
magnitude αPV is then the general present value of the payment stream at
time t0.
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1.2.3 Principal and Interest, and Discount Rates

In this Section, we consider the compounding of interest from the point of
view of a borrower of an amount L at time 0, where the interest rate is
constant with ieff = i. Initially assume continuous compounding for all
accumulations. If the borrower plans to make payments αj , 1 ≤ j ≤ n, at
times 0 < t1 < t2 < · · · < tn, then by definition

the principal remaining on the loan as of time t is equal to the
accumulated value at t of the single deposit L at time 0 , minus
the accumulated value at t under continuously compounded
effective rate i of all payments made at times before t, i.e.,

Principal at time t = L (1 + i)t −
∑

j: tj≤t αj (1 + i)t−tj .

The principal remaining in the loan just after a payment has been made is
the same as the amount the borrower could pay to pay off the loan completely
at that instant. In addition, if there are fees or late charges due at the times
tj when payments are made, then those amounts are added to the Principal
or Balance owed as of tj. However, in the present discussion we ignore all
such additional fees or charges.

The principal owed on the loan just after time t reflects that as of time
t, the lender must be compensated for the amount (1 + i)t L to which the
original loan amount would accumulate; while the accumulated value of the
stream of payments actually made up to time t reduces the debt.

Each payment αj made can be broken down into the so-called Interest
and Principal portions by the rule:

Interest Portion of Paymt at tj = (Principal at tj−1) · ((1 + i)tj−tj−1 − 1)

Principal Portion of Paymt at tj = αj − Interest Portion of Paymt at tj

The first of these lines is clearly the amount of interest that the principal
just after tj−1 would have earned at rate i over the time interval tj − tj−1.
The amount of the payment at tj minus the amount of interest at tj is the
amount by which the principal decreases from just after tj−1 to just after
tj. This simple Proposition is not quite obvious, but is easily shown by an
algebraic rearrangement of terms, given as an Exercise.
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Exercise 1.A. Show that the foregoing definitions of Principal and Principal
Portions of payments are compatible by deriving the following identity from
the definitions. If Π(t) denotes the principal owed just after time t, and
πj denotes the principal portion of the payment at tj, then

Π(tj−1) − πj = Π(tj) 2

The nominal interest rates i(m) for different periods of compounding were
seen in Prop. 1.2 to be related by the formulas

(1 + i(m)/m)m = 1 + i = 1 + ieff , i(m) = m
{
(1 + i)1/m − 1

}
(1.9)

Similarly, interest can be said to be governed by the discount rates d(m) for
various compounding periods, defined by

1 − d(m)/m = (1 + i(m)/m)−1

Solving the last equation for d(m) gives

d(m) = i(m)/(1 + i(m)/m) (1.10)

The idea of discount rates is that if an amount 1 is loaned out at interest,
then the amount d(m)/m is the correct amount to be repaid at the beginning
rather than the end of each fraction 1/m of the year, with repayment of
the principal of 1 at the end of the year, in order to amount to the same
effective interest rate. The reason is that, according to the definition, the
amount 1−d(m)/m accumulates at nominal interest i(m) to (1−d(m)/m) ·
(1 + i(m)/m) = 1 after a time-period of 1/m.

The quantities i(m) and d(m) are naturally introduced as the interest
payments which must be made respectively at the ends and the beginnings
of successive time-periods of length 1/m in order that the principal owed at
each time j/m on an amount 1 borrowed at time 0 will always be 1. To
define these terms and justify this assertion, consider first the simplest case,
m = 1. If 1 is to be borrowed at time 0, then the single payment at time
1 which fully compensates the lender, if that lender could alternatively have
earned interest rate i, is (1+i), which we view as a payment of 1 principal
(the face amount of the loan) and i interest. In exactly the same way, if
1 is borrowed at time 0 for a time-period 1/m, then the repayment at
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time 1/m takes the form of 1 principal and i(m)/m interest. Thus, if
1 was borrowed at time 0, an interest payment of i(m)/m at time 1/m
leaves an amount 1 still owed, which can be viewed as an amount borrowed
on the time-interval (1/m, 2/m]. Then a payment of i(m)/m at time
2/m still leaves an amount 1 owed at 2/m, which is deemed borrowed
until time 3/m, and so forth, until the loan of 1 on the final time-interval
((m−1)/m, 1] is paid off at time 1 with a final interest payment of i(m)/m
together with the principal repayment of 1. The overall result which we
have just proved intuitively is:

1 at time 0 is equivalent to the stream of m payments of
i(m)/m at times 1/m, 2/m, . . . , 1 plus the payment of 1 at
time 1.

Similarly, if interest is to be paid at the beginning of the period of the
loan instead of the end, the interest paid at time 0 for a loan of 1 would
be d = i/(1 + i), with the only other payment a repayment of principal at
time 1. To see that this is correct, note that since interest d is paid at the
same instant as receiving the loan of 1 , the net amount actually received
is 1 − d = (1 + i)−1, which accumulates in value to (1 − d)(1 + i) = 1 at
time 1. Similarly, if interest payments are to be made at the beginnings
of each of the intervals (j/m, (j + 1)/m] for j = 0, 1, . . . , m − 1, with
a final principal repayment of 1 at time 1, then the interest payments
should be d(m)/m. This follows because the amount effectively borrowed
(after the immediate interest payment) over each interval (j/m, (j + 1)/m]
is (1−d(m)/m), which accumulates in value over the interval of length 1/m
to an amount (1 − d(m)/m)(1 + i(m)/m) = 1. So throughout the year-long
life of the loan, the principal owed at (or just before) each time (j +1)/m is
exactly 1. The overall result concerning m-period-yearly discount interest
is

1 at time 0 is equivalent to the stream of m payments of
d(m)/m at times 0, 1/m, 2/m, . . . , (m−1)/m plus the payment
of 1 at time 1.

A useful algebraic exercise to confirm the displayed assertions is:
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Exercise 1.B. Verify that the present values at time 0 of the payment
streams with m interest payments in the displayed assertions are respectively

m∑

j=1

i(m)

m
(1 + i)−j/m +(1 + i)−1 and

m−1∑

j=0

d(m)

m
(1 + i)−j/m +(1 + i)−1

and that both are equal to 1. These identities are valid for all i > 0. 2

1.2.4 Variable Interest Rates

Now we formulate the generalization of these ideas to the case of non-constant
instantaneously varying, but known or observed, effective interest rate r(t)
at time t , corresponding to the instantaneous continuously compounded
nominal rate, or time-varying force of interest , δ(t) = ln(1+r(t)). Consider
the compounding of interest over successive intervals [b + kh, b + (k + 1)h],
where h = 1/m for large m, there is an essentially constant principal
amount over each interval of length 1/m. Since we assume the functions
r(t) and therefore ln(1+ δ(t)) are uniformly continuous in t, so that over
very short intervals [b + kh, b + (k + 1)h] with instantaneous compounding,
the interest rate and its associated force of interest are essentially constant,
with accumulation factor over the interval given by ehδ(kh). Therefore, if an
initial time b and duration τ > 0 are fixed and [mτ ] = [τ/h] denotes the
largest integer ≤ mτ , we find that the continuous compounding of interest
over the time-interval [b, b + τ ] results in an overall accumulation factor of
approximately

ehδ(b) ehδ(b+h) ehδ(b+2h) · · · ehδ(b+([τ/h]−1)h) exp
(
((τ − h[τ/h]) · δ(b + h[τ/h])

)

which has limit as m → ∞ equal to

exp
(

lim
m

1

m

[mτ ]−1∑

k=0

δ(b + k/m)
)

= exp
(∫ t

0

δ(b + s) ds
)

The last step in this chain of equalities relates the concept of continuous
compounding to that of the Riemann integral. To specify continuous-time
varying interest rates in terms of instantaneous effective rates, we would
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equate the last displayed formula for the accumulation factor over [b, b+ τ ]
to

exp
(∫ t

0

ln(1 + r(b + s)) ds
)

Next consider the case of deposits α0, α1, . . . , αk, . . . , αn made at times
0, h, . . . , kh, . . . , nh, where h = 1/m is the given compounding-period, and
wherenominal annualized instantaneous interest-rates δ(kh) (with compounding-
period h) apply to the accrual of interest on the interval [kh, (k + 1)h). If
the accumulated bank balance just after time kh is denoted by Bk , then
how can the accumulated bank balance be expressed in terms of αj and
δ(jh) ? Clearly

Bk+1 = Bk · eδ(kh)/m + αk+1 , B0 = α0

The preceding difference equation can be solved in terms of successive sum-
mation and product operations acting on the sequences αj and δ(jh), as
follows. First define a function Ak to denote the accumulated bank balance
at time kh for a unit invested at time 0 and earning interest with instan-
taneous nominal interest rates δ(jh) applying respectively over the whole
compounding-intervals [jh, (j + 1)h), j = 0, . . . , k − 1. Then by definition,
Ak satisfies a homogeneous equation analogous to the previous one, which
together with its solution is given by

Ak+1 = Ak · eδ(kh)/m , A0 = 1, Ak =
k−1∏

j=0

eδ(jh)/m

We now return to the idea of equivalent investments and present value of
a payment stream, as discussed in Section 1.2.2. Our object is to determine a
single deposit D at time 0 which is equivalent at time τ = nh to a stream
of deposits αj, j = 0, 1, 2, . . . , n, where all amounts accumulate according
to the continuously compounded instantaneous effective interest rate r(t)
and associated force of interest δ(t) = ln(1 + r(t)). By approximating the
continuous interest rate function r(t) by one which is constant on intervals
[kh, (k + 1)h), we have just calculated that an amount 1 at time 0
compounds to an accumulated amount An at time τ = nh. Therefore, an
amount D at time 0 accumulates to D · An at time τ , and in particular
D = 1/An at time 0 accumulates to 1 at time τ . Note, as in (1.8)
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of Section 1.2.2, this single equivalent deposit D would be the same if the
accumulations were valued at any other time τ ′ > nh. Thus the present
value of 1 at time τ = nh is 1/An . Now define Gk to be the present
value of the stream of payments αj at time jh for j = 0, 1, . . . , k. Since
Bk was the accumulated value just after time kh of the same stream of
payments, and since the present value at 0 of an amount Bk at time kh
is just Bk/Ak, we conclude

Gk+1 =
Bk+1

Ak+1
=

Bk exp(δ(km)/m)

Ak exp(δ(km)/m)
+

αk+1

Ak+1
, k ≥ 1 , G0 = α0

Thus Gk+1 − Gk = αk+1/Ak+1, and

Gk+1 = α0 +
k∑

i=0

αi+1

Ai+1

=
k+1∑

j=0

αj

Aj

In summary, we have simultaneously found the solution for the accumulated
balance Bk just after time kh and for the present value Gk at time 0 :

Gk =
k∑

i=0

αi

Ai
, Bk = Ak · Gk , k = 0, . . . , n

The formulas just developed can be used to give the internal rate of return
r over the time-interval [0, τ ] of a unit investment which pays amount αk

at times tk, k = 0, . . . , n, 0 ≤ tk ≤ τ . This constant (effective) interest
rate r is the one such that

n∑

k=0

sk

(
1 + r

)−tk
= 1

With respect to the constant interest rate r , the present value of a payment
αk at a time tk time-units in the future is αk · (1 + r)−tk . Therefore the
stream of payments αk at times tk, (k = 0, 1, . . . , n) becomes equivalent,
for the uniquely defined interest rate r, to an immediate (time-0) payment
of 1.
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Exercise 1.C. As an illustration of the notion of effective interest rate, or
internal rate of return, suppose that you are offered an investment option
under which an investment of 10, 000 made now is expected to pay 300
yearly for 5 years (beginning 1 year from the date of the investment), and then
800 yearly for the following five years, with the principal of 10, 000 returned
to you (if all goes well) exactly 10 years from the date of the investment (at
the same time as the last of the 800 payments. If the investment goes
as planned, what is the effective interest rate you will be earning on your
investment ?

Solution. As in all calculations of effective interest rate, the present value
ofthe payment-stream, at the unknown interest rate r = ieff, must be bal-
anced with the value (here 10, 000) which is invested. (That is because the
indicated payment stream is being regarded as equivalent to bank interest at
rate r.) The balance equation in the Example is obviously

10, 000 = 300
5∑

j=1

(1 + r)−j + 800
10∑

j=6

(1 + r)−j + 10, 000 (1 + r)−10

The right-hand side can be simplified somewhat, in terms of the notation
x = (1 + r)−5, to

300

1 + r

( 1 − x

1 − (1 + r)−1

)
+

800x

(1 + r)

( 1 − x

1 − (1 + r)−1

)
+ 10000x2

=
1 − x

r
(300 + 800x) + 10000x2 (1.11)

Setting this simplified expression equal to the left-hand side of 10, 000 does
not lead to a closed-form solution, since both x = (1+r)−5 and r involve the
unknown r. Nevertheless, we can solve the equation roughly by ‘tabulating’
the values of the simplified right-hand side as a function of r ranging in
increments of 0.005 from 0.035 through 0.075. (We can guess that the
correct answer lies between the minimum and maximum payments expressed
as a fraction of the principal.) This tabulation yields:

r .035 .040 .045 .050 .055 .060 .065 .070 .075
(1.11) 11485 11018 10574 10152 9749 9366 9000 8562 8320

From these values, we can see that the right-hand side is equal to 10, 000
for a value of r falling between 0.05 and 0.055. Interpolating linearly to
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approximate the answer yields r = 0.050 + 0.005 ∗ (10000 − 10152)/(9749 −
10152) = 0.05189, while an accurate equation-solver finds r = 0.05186. For
example, the root-finding function in R is called uniroot , and the R code for
computing the effective interest rate in this Example is:

Rsolv = function(r) { x = (1+r)^(-5)

(1-x)*(300+800*x)/r + 10000*x^2 - 10000 }

uniroot(Rsolv, c(.035,.075))$root

[1] 0.05185676

1.2.5 Continuous-time Payment Streams

There is a completely analogous development for continuous-time deposit
streams with continuous compounding. Suppose D(t) to be the rate per
unit time at which savings deposits are made, so that if we take m to go to
∞ in the previous discussion, we have D(t) = limm→∞ mα[mt], where [·]
again denotes greatest-integer. Taking δ(t) to be the time-varying nominal
interest rate with continuous compounding, and B(t) to be the accumulated
balance as of time t (analogous to the quantity B[mt] = Bk from before,
when t = k/m), we replace the previous difference-equation by

B(t + h) = B(t) (1 + h δ(t)) + hD(t) + o(h)

where o(h) denotes a remainder such that o(h)/h → 0 as h → 0.
Subtracting B(t) from both sides of the last equation, dividing by h, and
letting h decrease to 0, yields a differential equation at times t > 0 :

B′(t) = B(t) δ(t) + D(t) , A(0) = α0 (1.12)

The method of solution of (1.12), which is the standard one from differential
equations theory of multiplying through by an integrating factor , again has
a natural interpretation in terms of present values. The integrating factor
1/A(t) = exp(−

∫ t

0
δ(s) ds) is the present value at time 0 of a payment of

1 at time t, and the quantity B(t)/A(t) = G(t) is then the present value
of the deposit stream of α0 at time 0 followed by continuous deposits at
rate D(t). The ratio-rule of differentiation yields

G′(t) =
B′(t)

A(t)
− B(t)A′(t)

A2(t)
=

B′(t) − B(t) δ(t)

A(t)
=

D(t)

A(t)
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where the substitution A′(t)/A(t) ≡ δ(t) has been made in the third ex-
pression. Since G(0) = B(0) = α0, the solution to the differential equation
(1.12) becomes

G(t) = α0 +

∫ t

0

D(s)

A(s)
ds , B(t) = A(t)G(t)

Finally, the formula can be specialized to the case of a constant unit-rate
payment stream ( D(x) = 1, δ(x) = δ = ln(1 + i), 0 ≤ x ≤ T ) with
no initial deposit (i.e., α0 = 0). By the preceding formulas, A(t) =
exp(t ln(1 + i)) = (1 + i)t, and the present value of such a payment stream
is ∫ T

0

1 · exp(−t ln(1 + i)) dt =
1

δ

(
1 − (1 + i)−T

)

Recall that the force of interest δ = ln(1 + i) is the limiting value obtained
from the nominal interest rate i(m) using the difference-quotient representa-
tion:

lim
m→∞

i(m) = lim
m→∞

exp((1/m) ln(1 + i)) − 1

1/m
= ln(1 + i)

The present value of a payment at time T in the future is then

(
1 +

i(m)

m

)−mT

= (1 + i)−T = exp(−δ T )

1.3 Exercise Set 1

The first homework set covers the basic definitions in two areas:
(i) probability as it relates to events defined from cohort life-tables, including
the theoretical machinery of population and conditional survival, distribu-
tion, and density functions and the definition of expectation; (ii) the theory
of interest and present values, with special reference to the idea of income
streams of equal value at a fixed rate of interest.

(1). For how long a time should $100 be left to accumulate at 5% interest
so that it will amount to twice the accumulated value (over the same time
period) of another $100 deposited at 3% ?
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(2). Use a calculator or computer to answer the following numerically:

(a) Suppose you sell for $6,000 the right to receive for 10 years the amount
of $1,000 per year payable quarterly (starting at the end of the first quarter).
What effective rate of interest makes this a fair sale price ? (You will have
to solve numerically or graphically, or interpolate a tabulation, to find it.)

(b) $100 deposited 20 years ago has grown at interest to $235. The
interest was compounded twice a year. What were the nominal and effective
interest rates ?

(c) How much should be set aside (the same amount each year) at the
beginning of each year for 10 years to amount to $1000 at the end of the 10th
year at the interest rate of part (b) ?

In the following problems, S(t) denotes the probability for a newborn
in a designated population to survive to exact age t . If a cohort life table
is under discussion, then the probability distribution relates to a randomly
chosen member of the newborn cohort.

(3). Assume that a population’s survival probability function is given by
S(t) = 0.1(100 − t)1/2, for 0 ≤ t ≤ 100.

(a) Find the probability that a life aged 0 will die between exact ages 19
and 36.

(b) Find the probability that a life aged 36 will die before exact age 51.

(4). For members of the poulation in Problem (3),

(a) Find the expected age at death of a newborn (life aged 0).

(b) Find the expected age at death of a life aged 20.

(5). Use the Illustrative Life-table (Table 1.1) to calculate the following
probabilities. (In each case, assume that the indicated span of years runs
from birthday to birthday.) Find the probability

(a) that a life aged 26 will live at least 30 more years;

(b) that a life aged 22 will die between ages 45 and 55;

(c) that a life aged 25 will die either before age 50 or after age 70.
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(6). In a special population, you are given the following facts:

(i) The probability that two independent lives, respectively aged 25 and
45, both survive 20 years is 0.7.

(ii) The probability that a life aged 25 will survive 10 years is 0.9.

Then find the probability that a life aged 35 will survive to age 65.

(7). Suppose that you borrowed $1000 at 6% effective rate, to be repaid
in 5 years in a lump sum, and that after holding the money idle for 1 year
you invested the money and earned 8% effective for theremaining four years.
What is the effective interest rate you earned (ignoring interest costs) over 5
years on the $1000 which you borrowed ? Taking interest costs into account,
what is the present value of your profit over the 5 years of the loan ? Also
re-do the problem if instead of repaying all principal and interest at the end
of 5 years, you must make a payment of accrued interest at the end of 3
years, with the additional interest and principal due in a single lump-sum at
the end of 5 years.

(8). Find the total present value at 5% APR of payments of $1 at the end
of 1, 3, 5, 7, and 9 years and payments of $2 at the end of 2, 4, 6, 8, and 10
years.

(9). Find the present value at time 0 at a 6% effective interest rate of a
series payments of 100 at times 1, 2, 3 and of 300 at times 6, 7, 8.

(10). Find the present value at time 0 of payments of 100 at ten successive
times 1, 2, . . . , 10 if the instanteous effective interest rate applying at all
times t in the time interval [0, 10] is r(t) = .07 − (.002)t.

(11). Find the internal rate of return (i.e., the equivaent constant effective
interest rate) over the time interval [0, 7] of an investment which pays bank
interest of 4% at times in [0, 5] if you make deposits of 1000 at each of
the times t = 0, 2, 4, if the interest rate earned on the time interval [5, 7]
is 6%, and if the total balance is withdrawn at time 7.

(12). (i) Find the payment amount K such that a loan of 10, 000 at a 7%
effective annual interest rate is repaid in exactly three payments consisting
of an amount K at times 1 and 3 years and of 2K at 5 years.
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(ii) After finding K in part (i), decompose each of the three loan repay-
ment amounts K, K, 2K at respective times, 1, 3, 5 into their principal
and interest portions.

1.4 Worked Examples

Example 1. How many years does it take for money to triple in value at
interest rate i ?

The equation to solve is 3 = (1 + i)t, so the answer is ln(3)/ ln(1 + i),
with numerical answer given by

t =





22.52 for i = 0.05
16.24 for i = 0.07
11.53 for i = 0.10

Example 2. Suppose that a sum of $1000 is borrowed for 5 years at 5%,
with interest deducted immediately in a lump sum from the amount borrowed,
and principal due in a lump sum at the end of the 5 years. Suppose further
that the amount received is invested and earns 7%. What is the value of the
net profit at the end of the 5 years ? What is its present value (at 5%) as
of time 0 ?

First, the amount received by the borrower at time 0 is
1000 (1 − d)5 = 1000/(1.05)5 = 783.53, where d = .05/1.05, since the
amount received should compound to precisely the principal of 1000 at 5%
interest in 5 years. Next, the compounded value of 783.53 for 5 years at
7% is 783.53 (1.07)5 = 1098.94, so the net profit at the end of 5 years, after
paying off the principal of 1000, is 98.94. The present value of the profit
ought to be calculated with respect to the ‘going rate of interest’, which in
this problem is presumably the rate of 5% at which the money is borrowed,
so is 98.94/(1.05)5 = 77.52.

Example 3. For the following small cohort life-table (first 3 columns) with 5
age-categories, find the probabilities for all values of [T ], both uncondition-
ally and conditionally for lives aged 2, and find the expectation of both [T ]
and (1.05)−[T ]−1.
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The basic information in the table is the first column lx of numbers
surviving. Then dx = lx − lx+1 for x = 0, 1, . . . , 4. The random variable
T is the life-length for a randomly selected individual from the age=0 cohort,
and therefore Pr([T ] = x) = Pr(x ≤ T < x + 1) = dx/l0. The conditional
probabilities given survivorship to age-category 2 are simply the ratios with
numerator dx for x ≥ 2 , and with denominator l2 = 65.

x lx dx Pr([T ] = x) Pr([T ] = x|T ≥ 2) 1.05−x−1

0 100 20 0.20 0 0.95238
1 80 15 0.15 0 0.90703
2 65 10 0.10 0.15385 0.86384
3 55 15 0.15 0.23077 0.82770
4 40 40 0.40 0.61538 0.78353
5 0 0 0 0 0.74622

In terms of the columns of this table, we evaluate from the definitions and
formula (1.3)

E([T ]) = 0 · (0.20) + 1 · (0.15) + 2 · (0.10) + 3 · (0.15) + 4 · (0.40) = 2.4

E([T ] |T ≥ 2) = 2 · (0.15385) + 3 · (0.23077) + 4 · (0.61538) = 3.4615

E(1.05−[T ]−1) = 0.95238 · 0.20 + 0.90703 · 0.15 + 0.86384 · 0.10+

+0.8277 · 0.15 + 0.78353 · 0.40 = 0.8497

The expectation of [T ] is interpreted as the average per person in the cohort
life-table of the number of completed whole years before death. The quantity
(1.05)−[T ]−1 can be interpreted as the present value at birth of a payment
of 1 to be made at the end of the year of death, and the final expectation
calculated above is the average of that present-value over all the individuals
in the cohort life-table, if the going rate of interest is 5%.

Example 4. Suppose that the death-rates qx = dx/lx for integer ages x in
a cohort life-table follow the functional form

qx =

{
4 · 10−4 for 5 ≤ x < 30
8 · 10−4 for 30 ≤ x ≤ 55

between the ages x of 5 and 55 inclusive. Find analytical expressions for
S(x), lx, dx at these ages if l0 = 105, S(5) = .96.
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The key formula expressing survival probabilities in terms of death-rates
qx is:

S(x + 1)

S(x)
=

lx+1

lx
= 1 − qx

or
lx = l0 · S(x) = (1 − q0)(1 − q1) · · · (1 − qx−1)

So it follows that for x = 5, . . . , 30,

S(x)

S(5)
= (1 − .0004)x−5 , lx = 96000 · (0.9996)x−5

so that S(30) = .940446, and for x = 31, . . . , 55,

S(x) = S(30) · (.9992)x−30 = .940446 (.9992)x−30

The death-counts dx are expressed most simply through the preceding
expressions together with the formula dx = qx lx .
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1.5 Useful Formulas from Chapter 1

S(x) =
lx
l0

, dx = lx − lx+1

p. 1

P (x ≤ T < x + k) = S(x) − S(x + k) =
lx − lx+k

lx

p. 2

f(t) = −S ′(t) , S(y) − S(y + t) =

∫ y+t

y

f(s) ds

p. 5

E
(

g(T )
∣∣∣T ≥ x

)
=

1

S(x)

∫ ∞

x

g(t) f(t) dt

p. 9

1 + i = 1 + ieff =

(
1 +

i(m)

m

)m

=

(
1 − d(m)

m

)−m

= eδ

p. 18
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Chapter 2

Theory of Interest and
Force of Mortality

The parallel development of Interest and Probability Theory topics continues
in this Chapter. For application in Insurance, we are preparing to value
uncertain payment streams in which times of payment may also be uncertain.
The interest theory allows us to express the present values of deterministic or
certain payment streams compactly, while the probability material prepares
us to find and interpret average or expected values of present values expressed
as functions of random lifetime variables.

This installment of the course covers: (a) further formulas and topics in
the pure (i.e., non-probabilistic) theory of interest, and (b) more discussion
of lifetime random variables, in particular of force of mortality or hazard-
rates, and theoretical families of life distributions.

2.1 More on Theory of Interest

In this Section, we define notations and find compact formulas for present
values of some standard payment streams. To this end, newly defined pay-
ment streams are systematically expressed in terms of previously considered
ones. There are two primary methods of manipulating one payment-stream
to give another for the convenient calculation of present values:

33
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• First, if one payment-stream can be obtained from a second one pre-
cisely by delaying all payments by the same amount t of time, then
the present value of the first one is vt multiplied by the present value
of the second.

• Second, if a payment-stream A can be obtained as the superposition of
payment streams B and C, i.e., can be obtained by paying the sum of
the timed payment amounts defining the streams B and C, then the
present value of stream A is the sum of the present values of B and C.

The following subsection contains several useful applications of these meth-
ods. For another simple illustration, see Worked Example 2 at the end of the
Chapter.

2.1.1 Annuities & Actuarial Notation

The general present value formulas above will now be specialized to the case
of constant (instantaneous) interest rate r(t) ≡ i ≡ eδ at all times t ≥ 0,
and some very particular streams of payments sj at times tj, related
to periodic premium and annuity payments. The effective interest rate is
always denoted by i = ieff , and as before the m-times-per-year equivalent
nominal interest rate is denoted by i(m). Also, from now on the standard
and convenient notation

v ≡ 1/(1 + i) = 1 /

(
1 +

i(m)

m

)m

will be used for the present value of a payment of 1 one year later.

(i) If s0 = 0 and s1 = · · · = snm = 1/m in the discrete setting, where
m ≥ 1 denotes the number of payments per year, and tj = j/m, then the
payment-stream is called an immediate annuity, and its present value Gn

is given the notation a
(m)
n and is equal, by the geometric-series summation

formula, to

m−1
nm∑

j=1

(
1 +

i(m)

m

)−j

=
(
1 +

i(m)

m

)−1 1 − (1 + i(m)/m)−nm

m(1 − (1 + i(m)/m)−1)
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which shows that

a
(m)
n =

1 − ((1 + i(m)/m)−m)n

m (1 + i(m)/m − 1)
=

1 − vn

i(m)
(2.1)

All of these immediate annuity values, for fixed v, n but varying m, are
roughly comparable because all involve a total payment of 1 per year.
Formula (2.1) shows that all of the values a

(m)
n differ only through the factors

i(m), which differ by only a few percent for varying m and fixed i, as shown
in Table 2.1. Recall from formula (1.9) that i(m) = m{(1 + i)1/m − 1}.

If, instead of the payment stream defining the immediate annuity, s0 =
1/m but snm = 0, then nm deposits of 1/m are made at an arithmetic
progression of times from 1/m to n inclusive, and the present value notation

changes to ä
(m)
n . The payment stream is then called an annuity-due, and

the present valueis given by any of the equivalent formulas

ä
(m)
n = (1 +

i(m)

m
) a

(m)
n =

1 − vn

m
+ a

(m)
n =

1

m
+ a

(m)

n−1/m
(2.2)

The first of these formulas recognizes the annuity-due payment-stream as
identical to the annuity-immediate payment-stream shifted earlier by the
time 1/m and therefore worth more by the accumulation-factor (1+i)1/m =
1+ i(m)/m. The third expression in (2.2) represents the annuity-due stream
as being equal to the annuity-immediate stream with the payment of 1/m
at t = 0 added and the payment of 1/m at t = n removed. The final
expression says that if the time-0 payment is removed from the annuity-due,
the remaining stream coincides with the annuity-immediate stream consisting
of nm − 1 (instead of nm) payments of 1/m.

In the limit as m → ∞ for fixed n, the notation an denotes the
continuous annuity, that is, the present value of an annuity paid instanta-
neously at constant unit rate, with the limiting nominal interest-rate which
was shown in the previous chapter to be limm i(m) = i(∞) = δ. The limiting
behavior of the nominal interest rate can be seen rapidly from the formula

i(m) = m
(
(1 + i)1/m − 1

)
= δ · exp(δ/m) − 1

δ/m

since (ez − 1)/z converges to 1 as z → 0. Then by (2.1) and (2.2),

an = lim
m→∞

ä
(m)
n = lim

m→∞
a

(m)
n =

1 − vn

δ
(2.3)
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Table 2.1: Values of nominal interest rates i(m) (upper number) and
d(m) (lower number), for various choices of effective annual interest rate
i and number m of compounding periods per year.

i = .02 .03 .05 .07 .10 .15

m = 2 .0199 .0298 .0494 .0688 .0976 .145
.0197 .0293 .0482 .0665 .0931 .135

3 .0199 .0297 .0492 .0684 .0968 .143
.0197 .0294 .0484 .0669 .0938 .137

4 .0199 .0297 .0491 .0682 .0965 .142
.0198 .0294 .0485 .0671 .0942 .137

6 .0198 .0296 .0490 .0680 .0961 .141
.0198 .0295 .0486 .0673 .0946 .138

12 .0198 .0296 .0489 .0678 .0957 .141
.0198 .0295 .0487 .0675 .0949 .139

Remark 2.1 The definition and formulas for the immediate annuity a
(m)
n

and the annuity-due ä
(m)
n remain valid if nm but not necessarily n itself

is an integer. In the limit as m → ∞, the continuous annuity definition
an and formula remain valid with any positive real number n. 2

A handy formula for annuity-due present values follows easily by recalling
that

1 − d(m)

m
=
(
1 +

i(m)

m

)−1

implies d(m) =
i(m)

1 + i(m)/m

Then, by (2.2) and (2.1),

ä
(m)
n = (1 − vn) · 1 + i(m)/m

i(m)
=

1 − vn

d(m)
(2.4)

In case m is 1, the superscript (m) is omitted from all of the annuity
notations. In the limit where n → ∞, the notations become a

(m)
∞ and

ä
(m)
∞ , and the annuities are called perpetuities (respectively immediate and

due) with present-value formulas obtained from (2.1) and (2.4) as:

a
(m)
∞ =

1

i(m)
, ä

(m)
∞ =

1

d(m)
(2.5)
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We now build some more general annuity-related present values out of
the standard functions a

(m)
n and ä

(m)
n .

(ii). Consider first the case of the increasing perpetual annuity-due,

denoted (I(m)ä)
(m)
∞ , which is defined as the present value of a stream of

payments (k + 1)/m2 at times k/m, for k = 0, 1, . . . forever. Clearly the
present value is

(I(m)ä)
(m)
∞ =

∞∑

k=0

m−2 (k + 1)
(
1 +

i(m)

m

)−k

Here are two methods to sum this series, the first purely mathematical, the
second based on actuarial intuition. First, without worrying about the strict
justification for differentiating an infinite series term-by-term,

∞∑

k=0

(k + 1)xk =
d

dx

∞∑

k=0

xk+1 =
d

dx

x

1 − x
= (1 − x)−2

for 0 < x < 1, where the geometric-series formula has been used to sum
the second expression. Therefore, with x = (1 + i(m)/m)−1 and 1 − x =
(i(m)/m)/(1 + i(m)/m),

(I(m)ä)
(m)
∞ = m−2

( i(m)/m

1 + i(m)/m

)−2

=

(
1

d(m)

)2

=
(
ä

(m)
∞

)2

and (2.5) has been used in the last step. Another way to reach the same result
is to recognize the increasing perpetual annuity-due as 1/m multiplied by

the superposition of perpetuities-due ä
(m)
∞ paid at times 0, 1/m, 2/m, . . . ,

and therefore its present value must be ä
(m)
∞ · ä(m)

∞ . As an aid in recognizing

this equivalence, consider each annuity-due ä
(m)
∞ paid at a time j/m as

being equivalent to a stream of payments 1/m at time j/m, 1/m at
(j + 1)/m, etc. Putting together all of these payment streams gives a total
of (k+1)/m paid at time k/m, of which 1/m comes from the annuity-due
starting at time 0, 1/m from the annuity-due starting at time 1/m, up
to the payment of 1/m from the annuity-due starting at time k/m.

(iii). The increasing perpetual annuity-immediate (I(m)a)
(m)
∞ —

the same payment stream as in the increasing annuity-due, but deferred by
a time 1/m — is related to the perpetual annuity-due in the obvious way

(I(m)a)
(m)
∞ = v1/m (I(m)ä)

(m)
∞ = (I(m)ä)

(m)
∞

/
(1 + i(m)/m) =

1

i(m) d(m)
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(iv). Now consider the increasing annuity-due of finite duration

n years. This is the present value (I(m)ä)
(m)
n of the payment-stream of

(k + 1)/m2 at time k/m, for k = 0, . . . , nm− 1. Evidently, this payment-

stream is equivalent to (I(m)ä)
(m)
∞ minus the sum of n multiplied by an

annuity-due ä
(m)
∞ starting at time n together with an increasing annuity-

due (I(m)ä)
(m)
∞ starting at time n. (To see this clearly, equate the payments

0 = (k + 1)/m2 − n · 1
m

− (k − nm + 1)/m2 received at times k/m for
k ≥ nm.) Thus

(I(m)ä)
(m)
n = (I(m)ä)

(m)
∞

(
1 − vn

)
− nä

(m)
∞ vn

= ä
(m)
∞

(
ä

(m)
∞ − vn

[
ä

(m)
∞ + n

] )

= ä
(m)
∞

(
ä

(m)
n − n vn

)

where, in the last line, recall that v = (1 + i)−1 = (1 + i(m)/m)−m and that

ä
(m)
n = ä

(m)
∞ (1 − vn). The latter identity is easy to justify either by the

formulas (2.4) and (2.5) or by regarding the annuity-due payment stream as a
superposition of the payment-stream up to time n−1/m and the payment-
stream starting at time n. As an exercise, fill in details of a second, intuitive
verification, analogous to the second verification in pargraph (ii) above.

(v). The decreasing annuity (D(m) ä)
(m)
n is defined as (the present

value of) a stream of payments starting with n/m at time 0 and decreasing
by 1/m2 after every time-period of 1/m, with no further payments at or
after time n. The easiest way to obtain the present value is through the
identity

(I(m)ä)
(m)
n + (D(m)ä)

(m)
n = (n +

1

m
) ä

(m)
n (2.6)

Again, as usual, the method of proving this is to observe that in the payment-
stream whose present value is given on the left-hand side, the payment
amount at each of the times j/m, for j = 0, 1, . . . , nm − 1, is

j + 1

m2
+ (

n

m
− j

m2
) =

1

m
(n +

1

m
)
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2.1.2 Loan Repayment: Mortgage, Bond, Sinking Fund

Perhaps the most common application of interest theory is the calculation
of the payment amounts needed to repay a loan according to a few standard
repayment plans. In ordinary consumer purchases or long-term fixerd-rate
loans on the purchase of a house, the usual repayment plan is a series of level
or equal payments made m times yearly (usually with m = 12, and usually
with first payment at time 0) for a total duration of n years, so that at the
last payment (the nm’th payment, at time n− 1/m if the first payment was
made at time 0) the loan has been completely paid off. We refer to this kind
of repayment schedule with level payments as a mortgage loan. 1

Recall that the present value of a payment stream of amount c per year,
with c/m paid at times 1/m, 2/m, . . . , n − 1/m, n/m, is c a

(m)
n . Thus,

if an amount L has been borrowed for a term of n years, to be repaid by
equal installments at the end of every period 1/m , at fixed nominal interest
rate i(m), then the level payment c/m or installment payment amount

is obtained by equating L = c a
(m)
n

Mortgage Payment = L/(ma
(m)
n ) =

L i(m)

m (1 − vn)
(2.7)

where v = 1/(1 + i) = (1 + i(m)/m)−m.

A second kind of plan to repay a loan is to pay equal amounts to cover only
the interest amounts accrued every 1/m year on the principal for a duration
of n years, with first payment made at time 1/m and last at time n, with the
principal (the original amount borrowed) also repaid in a lump sum at time
n. This arrangement is used by corporations or government agencies which
issue bonds: the borrowing agency receives the loan amount from investors
at time 0, called the face amount of the bond, and regularly issues interest
payments after every period of 1/m year (usually with m = 2 or 4), and
finally repays or redeems the face or principal amount of the bond at the end
of the n year term of the bond. (The regular interest payments used to be
called coupon payments because of small paper coupons attached to the paper
bond document, and which the investor would regularly redeem at a bank, at
scheduled times, for the interest payment amount.) The reader should look

1In legal and historical terms, ‘mortgage’ refers to the way in which the promise to
repay is secured by the house or other property purchased with the amount borrowed.



40 CHAPTER 2. INTEREST & FORCE OF MORTALITY

back to Section 1.2.3 where loan repayment amounts were formally broken
down into interest and principal portions, in order to confirm the sense of this
bond repayment plan. Since each payment by the borrower at times k/m
for k = 1, 2, . . . , nm (apart from the final lump sum principal repayment)
consists of interest only (equal to the original face amount multiplied by
(1 + i)1/m − 1 = i(m)/m), each of the intermediate payments contains 0
principal portion, and the result of Exercise 1.A in Sec. 1.2.3 shows that the
original face amount or principal is also the principal or balance owed on the
loan just after each interest payment, up to the final redemption when the
principal is paid.

Now a corporation or governmental agency which borrows money from
investors by issuing a bond, will often obligate itself through a formal legal
arrangement to devote a certain category of income to a so-called sinking
fund, an investment account maintained by a trustee. Apart from the bond
interest payments at a contractual effective interst rate i made directly to
investors (the lenders), the borrowing agency will also pay regular amounts
at intervals of 1/m′ year to the sinking fund trustee for the same term of n
years as the bond, with the intention that the sinking fund will accumulate
at its own possibly different investment interest rate i′ to the principal or face
amount of the issued bond at time n, at which time the principal is repaid
directly to the bond investors. At (or just after) an intermediate times k/m,
the amount built up in the sinking fund is referred to as a reserve toward
the ultimate redemption of the principal of the bond. We will see, later in
this book, that insurance reserves generalize these deterministic reserves to
Insurances, where the future payouts are not determinstic but rather contin-
gent on the mortality experience of the portfolio of insured lives.

Remark 2.2 Note that, if a borrowed amount L is repaid by regular interest
payments and a sinking fund, and if the number of payments per year into
the fund is m′ = m and the effective interest rate for the sinking fund
is i′ = i, then evidently the sum of the regular m-times-yearly interest and
sinking fund payment at each time k/m is precisely the same as the mortgage
payment (2.7). For m′ 6= m or i′ 6= i, a separate calculation is needed,
leading to several exercises at the end of the Chapter. The following Exercise
with sketched solution gives an example.
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Exercise 2.A. A small city issues a bond for ten million dollars for ten years
at 4% nominal quarterly interest (m = 4) and creates a sinking fund into
which it will make annual deposits (m′ = 1), from tax receipts, on which its
financial advisors claim it can safely earn an effective annual rate of i′ = .055.
Find the amount of the level annual sinking fund deposit.

Solution of Exercise 2.A. Since the interest payments are made at the con-
tractual interest rate i (corresponding to i(4) = .04), the sinking fund must
appreciate to the loan amount of L = 107 at time t = 10. Therefore the
sinking fund present value at time 10 (equal to its present value at t = 0
accumulated by the factor (1 + i′)10 must be equated to L = 107. So the
annual sinking fund deposit D is found through the equality

L = 107 = (1 + i′)10 · D a′
10 = D

1 − (1.055)−10

.055
1.05510

where a′ indicates that the annuity is calculated at interest rate i′.

2.1.3 Loan Amortization & Mortgage Refinancing

We analyze next the breakdown between principal and interest in repaying
a mortgage loan by level payments (2.7). Of the payment made at time
(k + 1)/m, how much can be attributed to interest and how much to princi-
pal ? Consider the present value at time 0 of the debt for a unit (L = 1)
loan amount less the accumulated amounts paid through time k/m :

1 − (ma
(m)

k/m
) / (ma

(m)
n ) = 1 − 1 − vk/m

1 − vn
=

vk/m − vn

1 − vn

The remaining debt, per unit of loan amount, valued just after time k/m,
is denoted from now on by Bn, k/m. It is greater than the displayed present
value at 0 by a factor (1 + i)k/m, so is equal to

Bn, k/m = (1 + i)k/m vk/m − vn

1 − vn
=

1 − vn−k/m

1 − vn
(2.8)

The amount of interest for a loan amount of 1 after time 1/m is
(1 + i)1/m − 1 = i(m)/m. Therefore the interest included in the payment at
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(k + 1)/m is i(m)/m multiplied by the value Bn, k/m of outstanding debt
just after k/m. Thus the next total payment of i(m)/(m(1− vn)) consists
of the two parts

Amount of interest = m−1 i(m) (1 − vn−k/m)/(1 − vn)

Amount of principal = m−1i(m)vn−k/m/(1 − vn)

By definition, the principal included in each payment is the amount of the
payment minus the interest included in it. These formulas show in particular
that the amount of principal repaid in each successive payment increases
geometrically in the payment number, which at first seems surprising. Note
as a check on the displayed formulas that the outstanding balance Bn,(k+1)/m

immediately after time (k + 1)/m is re-computed as Bn, k/m minus the
interest paid at (k + 1)/m, or

1 − vn−k/m

1 − vn
− i(m)

m

vn−k/m

1 − vn
=

1 − vn−k/m(1 + i(m)/m)

1 − vn

=
1 − vn−(k+1)/m

1 − vn
=
(
1 − a

(m)

(k+1)/m

/
a

(m)
n

)
v−(k+1)/m (2.9)

as was derived above by considering the accumulated value of amounts paid.
The general definition of the principal repaid in each payment is the excess
of the payment over the interest since the past payment on the total balance
due immediately following that previous payment.

2.1.4 Illustration on Mortgage Refinancing

Suppose that a 30–year, nominal-rate 8%, $100, 000 mortgage payable
monthly is to be refinanced at the end of 8 years for an additional 15 years
(instead of the 22 which would otherwise have been remaining to pay it
off) at 6%, with a refinancing closing-cost amount of $1500 and 2 points.
(The points are each 1% of the refinanced balance including closing costs,
and costs plus points are then extra amounts added to the initial balance
of the refinanced mortgage.) Suppose that the new pattern of payments is
to be valued at each of the nominal interest rates 6%, 7%, or 8%, due
to uncertainty about what the interest rate will be in the future, and that
these valuations will be taken into account in deciding whether to take out
the new loan.
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The monthly payment amount of the initial loan in this example was
$100, 000(.08/12)/(1− (1+ .08/12)−360) = $733.76, and the present value as
of time 0 (the beginning of the old loan) of the payments made through the

end of the 8th year is ($733.76) · (12a(12)

8
) = $51, 904.69. Thus the present

value, as of the end of 8 years, of the payments still to be made under the
old mortgage, is $(100, 000 − 51, 904.69)(1 + .08/12)96 = $91, 018.31. Thus,
if the loan were to be refinanced, the new refinanced loan amount would be
$91, 018.31 + 1, 500.00 = $92, 518.31. If 2 points must be paid in order to
lock in the rate of 6% for the refinanced 15-year loan, then this amount
is (.02)92518.31 = $1850.37 . The new principal balance of the refinanced
loan is 92518.31 + 1850.37 = $94, 368.68, and this is the present value at a
nominal rate of 6% of the future loan payments, no matter what the term of
the refinanced loan is. The new monthly payment (for a 15-year duration) of
the refinanced loan is $94, 368.68(.06/12)/(1 − (1 + .06/12)−180) = $796.34.

For purposes of comparison, what is the present value at the current
going rate of 6% (nominal) of the continuing stream of payments under
the old loan ? That is a 22-year stream of monthly payments of $733.76,
as calculated above, so the present value at 6% is $733.76 · (12a

(12)

22
) =

$107, 420.21. Thus, if the new rate of 6% were really to be the correct
one for the next 22 years, and each loan would be paid to the end of its
term, then it would be a financial disaster not to refinance. Next, suppose
instead that right after re-financing, the economic rate of interest would be
a nominal 7% for the next 22 years. In that case both streams of payments
would have to be re-valued — the one before refinancing, continuing another
22 years into the future, and the one after refinancing, continuing 15 years

into the future. The respective present values (as of the end of the 8th

year) at nominal rate of 7% of these two streams are:

Old loan: 733.76 (12a
(12)

22
) = $98, 700.06

New loan: 796.34 (12a
(12)

15
) = $88, 597.57

Even with these different assumptions, and despite closing-costs and points,
it is well worth re-financing.
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Exercise 2.B. Suppose that you can forecast that you will in fact sell your
house in precisely 5 more years after the time when you are re-financing. At
the time of sale, you would pay off the cash principal balance, whatever it
is. Calculate and compare the present values (at each of 6%, 7%, and 8%
nominal interest rates) of your payment streams to the bank, (a) if you
continue the old loan without refinancing, and (b) if you re-finance to get
a 15-year 6% loan including closing costs and points, as described above.

2.1.5 Computational illustration in R

All of the calculations described above are very easy to program in any lan-
guage from Fortran to Mathematica, and also on a programmable calculator;
but they are also very handily organized within a spreadsheet, which seems
to be the way that MBA’s, bank-officials, and actuaries will learn to do them
from now on.

In this section, an R function (cf. Venables & Ripley 2002) is provided to
do some comparative refinancing calculations. Concerning the syntax of R,
the only explanation necessary at this point is that * denotes multiplication,
and ∧ denotes exponentiation.

The function RefExmp given below calculates mortgage payments, bal-
ances for purposes of refinancing both before and after application of ad-
ministrative costs and points, and the present value under any interest rate
(not necessarily the ones at which either the original or refinanced loans are
taken out) of the stream of repayments to the bank up to and including the
lump-sum payoff which would be made, for example, at the time of selling
the house on which the mortgage loan was negotiated. The output of the
function is a list which, in each numerical example below, is displayed in
‘unlisted’ form, horizontally as a vector. Lines beginning with the symbol #
are comment-lines.

The outputs of the function are as follows. Oldpayment is the monthly
payment on the original loan of face-amount Loan at nominal interest i(12) =
OldInt for a term of OldTerm years. NewBal is the balance Bn, k/m of for-
mula (2.8) for n = OldTerm, m = 12, and k/m = RefTim, and the
refinanced loan amount is a multiple 1+ Points of NewBal, which is equal
to RefBal + Costs. The new loan, at nominal interest rate NewInt, has
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R FUNCTION CALCULATING REFINANCE PAYMENTS & VALUES

RefExmp

function(Loan, OldTerm, RefTim, NewTerm, Costs, Points,

PayoffTim, OldInt, NewInt, ValInt)

{

# Function calculates present value of future payment stream

# underrefinanced loan.

# Loan = original loan amount;

# OldTerm = term of initial loan in years;

# RefTim = time in years after which to refinance;

# NewTerm = term of refinanced loan;

# Costs = fixed closing costs for refinancing;

# Points = fraction of new balance as additional costs;

# PayoffTim (no bigger than NewTerm) = time (from refinancing-

# time at which new loan balance is to be paid off in

# cash (eg at house sale);

# The three interest rates OldInt, NewInt, ValInt are

# nominal 12-times-per-year, and monthly payments

# are calculated.

vold = (1 + OldInt/12)^(-12)

Oldpaymt = ((Loan * OldInt)/12)/(1 - vold^OldTerm)

NewBal = (Loan * (1 - vold^(OldTerm - RefTim)))/

(1 - vold^OldTerm)

RefBal = (NewBal + Costs) * (1 + Points)

vnew = (1 + NewInt/12)^(-12)

Newpaymt = ((RefBal * NewInt)/12)/(1 - vnew^NewTerm)

vval = (1 + ValInt/12)^(-12)

Value = (Newpaymt * 12 * (1 - vval^PayoffTim))/ValInt +

(RefBal * vval^PayoffTim * (1 - vnew^(NewTerm -

PayoffTim)))/(1 - vnew^NewTerm)

list(Oldpaymt = Oldpaymt, NewBal = NewBal,

RefBal = RefBal, Newpaymt = Newpaymt, Value = Value)

}
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monthly payments Newpaymt for a term of NewTerm years. The loan is to
be paid off PayoffTim years after RefTim when the new loan commences,
and the final output of the function is the present value at the start of the
refinanced loan with nominal interest rate ValInt of the stream of payments
made under the refinanced loan up to and including the lump sum payoff.

We begin our numerical illustration by reproducing the quantities calcu-
lated in the previous subsection:

> unlist(RefExmp(100000, 30, 8, 15, 1500, 0.02, 15,

0.08, 0.06, 0.06))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 94368 796.33 94368

Note that, since the payments under the new (refinanced) loan are here
valued at the same interest rate as the loan itself, the present value Value of
all payments made under the loan must be equal to the the refinanced loan
amount RefBal.

The comparisons of the previous Section between the original and refi-
nanced loans, at (nominal) interest rates of 6, 7, and 8 %, are all recapitulated
easily using this function. To use it, for example, in valuing the old loan at
7%, the arguments must reflect a ‘refinance’ with no costs or points for a
period of 22 years at nominal rate 6%, as follows:

> unlist(RefExmp(100000,30,8,22,0,0,22,0.08,0.08,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 91018 733.76 98701

(The small discrepancies between the values found here and in the previous
subsection are due to the rounding used there to express payment amounts
to the nearest cent.)

We consider next a numerical example showing break-even point for refi-
nancing by balancing costs versus time needed to amortize them.

Suppose that you have a 30-year mortage for $100,000 at nominal rate
i(12) = 9%, with level monthly payments, and that after 7 years of payments
you refinance to obtain a new 30-year mortgage at 7% nominal interest ( =
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i(m) for m = 12), with closing costs of $1500 and 4 points (i.e., 4% of the
total refinanced amount including closing costs added to the initial balance),
also with level monthly payments. Figuring present values using the new
interest rate of 7%, what is the time K (to the nearest month) such that
if both loans — the old and the new — were to be paid off in exactly K
years after the time (the 7-year mark for the first loan) when you would have
refinanced, then the remaining payment-streams for both loans from the time
when you refinance are equivalent (i.e., have the same present value from
that time) ?

We first calculate the present value of payments under the new loan.
As remarked above in the previous example, since the same interest rate is
being used to value the payments as is used in figuring the refinanced loan,
the valuation of the new loan does not depend upon the time K to payoff.
(It is figured here as though the payoff time K were 10 years.)

> unlist(RefExmp(1.e5, 30,7,30, 1500,.04, 10, 0.09,0.07,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 98946 658.29 98946

Next we compute the value of payments under the old loan, at 7% nominal
rate, also at payoff time K = 10. For comparison, the value under the
old loan for payoff time 0 (i.e., for cash payoff at the time when refinancing
would have occurred) coincides with the New Balance amount of $93640.

> unlist(RefExmp(1.e5, 30,7,23, 0,0, 10, 0.09,0.09,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 93640 804.62 106042

The values found in the same way when the payoff time K is successively
replaced by 4, 3, 3.167, 3.25 are 99979, 98946, 98593, 98951. Thus, the
payoff-time K at which there is essentially no difference in present value
at nominal 7% between the old loan or the refinanced loan with costs and
points (which was found to have Value 98946), is 3 years and 3 months
after refinancing.
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2.2 Force of Mortality & Analytical Models

Up to now, the function S(t) called the survivor or survival function has
been defined to be equal to the life-table ratio lx/l0 at all integer ages t = x,
and to be piecewise continuously differentiable for all positive real values of
t. Intuitively, for all positive real y and t, S(y)−S(y + t) is the fraction
of the initial life-table cohort which dies between ages y and y + t, and
(S(y)−S(y + t))/S(y) represents the fraction of those alive at exact age y
who fail before y + t. An equivalent representation is S(y) =

∫∞
y

f(t) dt ,

where f(t) ≡ −S ′(t) is called the failure density. If T denotes the random
variable which is the age at death for a newly born individual governed by
the same causes of failure as the life-table cohort, then Pr(T ≥ y) = S(y),
and according to the Fundamental Theorem of Calculus,

lim
ε→0+

P (y ≤ T ≤ y + ε)

ε
= lim

ε→0+

1

ε

∫ y+ε

y

f(t) dt = f(y)

as long as the failure density is a continuous function.

Two further useful actuarial notations, often used to specify the theoret-
ical lifetime distribution, are:

tpy = P
(
T ≥ y + t |T ≥ y

)
= S(y + t)/S(y)

and

tqy = 1 − tpy = P
(
T ≤ y + t |T ≥ y

)
= (S(y) − S(y + t))/S(y)

The quantity tqy is referred to as the age-specific death rate for periods
of length t. In the most usual case where t = 1 and y = x is an integer,
the notation 1qx is replaced by qx, and 1px is replaced by px. The
rate qx would be estimated from the cohort life table as the ratio dx/lx of
those who die between ages x and x+1 as a fraction of those who reached
age x. The way in which this quantity varies with x is one of the most
important topics of study in actuarial science. For example, one important
way in which numerical analysis enters actuarial science is that one wishes
to interpolate the values 1qy smoothly as a function of y. The topic called
“Graduation Theory” among actuaries is the mathematical methodology of
Interpolation and Spline-smoothing applied to the raw function qx = dx/lx.
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To give some idea what a realistic set of death-rates looks like, Figure 2.1
pictures the age-specific 1-year death-rates qx for the simulated life-table
given as Table 1.1 on page 4. Additional granularity in the death-rates can
be seen in Figure 2.2, where the logarithms of death-rates are plotted. After
a very high death-rate during the first year of life (26.3 deaths per thousand
live births), there is a year-by-year decline in death-rates roughly from 1.45
per thousand in the second year to 0.34 per thousand in the eleventh year.
(But there were small increases in rate from ages 4 to 7 and from 8
to 9, which are as likely due to statistical irregularity as to real increases
in risk.) Between ages 11 and 40, there is an erratic but roughly linear
increase of death-rates per thousand from 0.4 to 3.0. However, at ages
beyond 40 there is a rapid increase in death-rates as a function of age.
As can be seen from Figure 2.2, the values qx seem to increase roughly
as a power cx where c ∈ [1.08, 1.10]. (Compare this behavior with the
Gompertz-Makeham Example (v) below.) This exponential behavior of the
age-specific death-rate for large ages suggests that the death-rates pictured
could reasonably be extrapolated to older ages using the formula

qx ≈ q78 · (1.0885)x−78 , x ≥ 79 (2.10)

where the number 1.0885 was found as log(q78/q39)/(78 − 39).

Now consider the behavior of εqx as ε gets small. It is clear that εqx

must also get small, roughly proportionately to ε, since the probability of
dying between ages x and x + ε is approximately ε f(x) when ε gets
small.

Definition: The limiting death-rate εqx/ε per unit time as ε ↘ 0 is
called by actuaries the force of mortality µ(x). In reliability theory or
biostatistics, the same function is called the failure intensity, failure rate, or
hazard intensity.

The reasoning above shows that for small ε,

εqy

ε
=

1

εS(y)

∫ y+ε

y

f(t) dt −→ f(y)

S(y)
, ε ↘ 0

Thus

µ(y) =
f(y)

S(y)
=

−S ′(y)

S(y)
= − d

dy
ln(S(y))
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Figure 2.1: Plot of age-specific death-rates qx versus x, for the simulated
illustrative life table given in Table 1.1, page 4.
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Figure 2.2: Plot of logarithm log(qx) of age-specific death-rates as a function
of age x, for the simulated illustrative life table given in Table 1.1, page 4.
The rates whose logarithms are plotted here are the same ones shown in
Figure 2.1.
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where the chain rule for differentiation was used in the last step. Replacing
y by t and integrating both sides of the last equation between 0 and y,
we find ∫ y

0

µ(t) dt =
(
− ln(S(t))

)y

0
= − ln(S(y))

since S(0) = 1. Similarly,

∫ y+t

y

µ(s) ds = lnS(y)− lnS(y + t)

Now exponentiate to obtain the useful formulas

S(y) = exp
{
−
∫ y

0

µ(t) dt
}

, tpy =
S(y + t)

S(y)
= exp

{
−
∫ y+t

y

µ(s) ds
}

Examples:

(i) If S(t) = (ω − t)/ω for 0 ≤ t ≤ ω (the uniform failure distribution
on [0, ω] ), then µ(t) = (ω − t)−1. Note that this hazard function increases
to ∞ as t increases to ω.

(ii) If S(t) = e−µt for t ≥ 0 (the exponential failure distribution on
[0,∞) ), then µ(t) = µ is constant.

(iii) If S(t) = exp(−λtγ) for t ≥ 0, then mortality follows the Weibull
life distribution model with shape parameter γ > 0 and scale parameter λ.
The force of mortality takes the form

µ(t) = λ γ tγ−1

This model is very popular in engineering reliability. It has the flexibility
that by choice of the shape parameter γ one can have

(a) (γ > 1) failure rate increasing as a function of x

(b) ( γ = 1) constant failure rate (exponential model), or

(c) (0 < γ < 1) decreasing failure rate.
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But what one cannot have, in the examples considered so far, is a force-of-
mortality function which decreases on part of the time-axis and increases
elsewhere.

(iv) Two other models for positive random variables which are popular
in various statistical applications are the Gamma, with

S(y) =

∫ ∞

y

βα tα−1 e−βt dt /

∫ ∞

0

zα−1 e−z dz , α, β > 0

and the Lognormal, with

S(y) = 1 − Φ
( ln y −m

σ

)
, m real, σ > 0

where

Φ(z) ≡ 1

2
+

∫ z

0

e−u2/2 du√
2π

is called the standard normal distribution function. In the Gamma case,
the expected lifetime is α/β, while in the Lognormal, the expectation is
exp(m + σ2/2). Neither of these last two examples has a convenient or
interpretable force-of-mortality function.

Increasing force of mortality intuitively corresponds to aging, where the
causes of death operate with greater intensity or effect at greater ages. Con-
stant force of mortality, which is easily seen from the formula S(y) =
exp(−

∫ y

0
µ(t) dt) to be equivalent to exponential failure distribution, would

occur if mortality arose only from pure accidents unrelated to age. Decreas-
ing force of mortality, which really does occur in certain situations, reflects
what engineers call “burn-in”, where after a period of initial failures due to
loose connections and factory defects the nondefective devices emerge and
exhibit high reliability for a while. The decreasing force of mortality reflects
the fact that the devices known to have functioned properly for a short while
are known to be correctly assembled and are therefore highly likely to have a
standard length of operating lifetime. In human life tables, infant mortality
corresponds to burn-in: risks of death for babies decrease markedly after the
one-year period within which the most severe congenital defects and diseases
of infancy manifest themselves. Of course, human life tables also exhibit an
aging effect at high ages, since the high-mortality diseases like heart disease
and cancer strike with greatest effect at higher ages. Between infancy and
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late middle age, at least in western countries, hazard rates are relatively flat.
This pattern of initial decrease, flat middle, and final increase of the force-
of-mortality, seen clearly in Figure 2.1, is called a bathtub shape and requires
new survival models.

As shown above, the failure models in common statistical and reliability
usage either have increasing force of mortality functions or decreasing force of
mortality, but not both. Actuaries have developed an analytical model which
is somewhat more realistic than the preceding examples for human mortalty
at ages beyond childhood. While the standard form of this model does not
accommodate a bathtub shape for death-rates, a simple modification of it
does.

Example (v). (Gompertz-Makeham forms of the force of mortality). Sup-
pose that µ(y) is defined directly to have the form A + B cy. (The Bcy

term was proposed by Gompertz, the additive constant A by Makeham.
Thus the Gompertz force-of-mortality model is the special case with A = 0,
or µ(y) = Bcy.) By choice of the parameter c as being respectively
greater than or less than 1, one can arrange that the force-of-mortality
curve either be increasing or decreasing. Roughly realistic values of c for
human mortality will be only slightly greater than 1: if the Gompertz
(non-constant) term in force-of-mortality were for example to quintuple in
20 years, then c ≈ 51/20 = 1.084, which may be a reasonable value except
for very advanced ages. (Compare the comments made in connection with
Figures 2.1 and 2.2: for middle and higher ages in the simulated illustrative
life table of Table 1.1, which corresponds roughly to US male mortality of
around 1960, the figure of c was found to be roughly 1.09.) Note that in
any case the Gompertz-Makeham force of mortality is strictly convex (i.e.,
has strictly positive second derivative) when B > 0 and c 6= 1. The
Gompertz-Makeham family could be enriched still further, with further ben-
efits of realism, by adding a linear term Dy. If D < −B ln(c), with
0 < A < B, c > 1, then it is easy to check that

µ(y) = A + B cy + Dy

has a bathtub shape, initially decreasing and later increasing.

Figures 2.3 and 2.4 display the shapes of force-of-mortality functions (iii)-
(v) for various parameter combinations chosen in such a way that the ex-
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pected lifetime is 75 years. This restriction has the effect of reducing the
number of free parameters in each family of examples by 1. One can
see from these pictures that the Gamma and Weibull families contain many
very similar shapes for force-of-mortality curves, but that the lognormal and
Makeham families are quite different.

Figure 2.5 shows survival curves from several analytical models plotted on
the same axes as the 1959 US male life-table data from which Table 1.1 was
simulated. The previous discussion about bathtub-shaped force of mortality
functions should have made it clear that none of the analytical models pre-
sented could give a good fit at all ages, but the Figure indicates the rather
good fit which can be achieved to realistic life-table data at ages 40 and
above. The models fitted all assumed that S(40) = 0.925 and that for lives
aged 40, T − 40 followed the indicated analytical form. Parameters for all
models were determined from the requirements of median age 72 at death
(equal by definition to the value tm for which S(tm) = 0.5) and probability
0.04 of surviving to age 90. Thus, all four plotted survival curves have been
designed to pass through the three points (40, 0.925), (72, 0.5), (90, 0.04).
Of the four fitted curves, clearly the Gompertz agrees most closely with the
plotted points for 1959 US male mortality. The Gompertz curve has param-
eters B = 0.00346, c = 1.0918, the latter of which is close to the value
1.0885 used in formula (2.10) to extrapolate the 1959 life-table death-rates
to older ages.

2.2.1 Comparison of Forces of Mortality

What does it mean to say that one lifetime, with associated survival function
S1(t), has hazard (i.e. force of mortality) µ1(t) which is a constant multiple
κ at all ages of the force of mortality µ2(t) for a second lifetime with
survival function S2(t) ? It means that the cumulative hazard functions are
proportional, i.e.,

− lnS1(t) =

∫ t

0

µ1(x)dx =

∫ t

0

κµ2(x)dx = κ(− lnS2(t))

and therefore that

S1(t) = (S2(t))
κ , all t ≥ 0
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Figure 2.3: Force of Mortality Functions for Weibull and Gamma Probability
Densities. In each case, the parameters are fixed in such a way that the
expected survival time is 75 years.
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Lognormal(mu,sigma^2)

Age (years)

H
az

ar
d

0 20 40 60 80 100

0.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

sigma=0.2
sigma=0.4
sigma=0.6
sigma=1.6
sigma=2

Makeham(A,B,c)
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Figure 2.4: Force of Mortality Functions for Lognormal and Makeham Den-
sities. In each case, the parameters are fixed in such a way that the expected
survival time is 75 years.
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Plots of Theoretical Survival Curves

Age (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

• • • • • • • • • • • • • • • • • • • • • •
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

Plotted points from US 1959 male life-table

Lognormal(3.491, .246^2)
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Figure 2.5: Theoretical survival curves, for ages 40 and above, plotted as
lines for comparison with 1959 US male life-table survival probabilities plot-
ted as points. The four analytical survival curves — Lognormal, Weibull,
Gamma, and Gompertz — are taken as models for age-at-death minus 40,
so if Stheor(t) denotes the theoretical survival curve with indicated parame-
ters, the plotted curve is (t, 0.925 · Stheor(t − 40)). The parameters of each
analytical model were determined so that the plotted probabilities would be
0.925, 0.5, 0.04 respectively at t = 40, 72, 90.
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This remark is of especial interest in biostatistics and epidemiology when
the factor κ is allowed to depend (e.g., by a regression model ln(κ) = β ·Z )
on other measured variables (covariates) Z. This model is called the (Cox)
Proportional-Hazards model and is treated at length in books on survival data
analysis (Cox and Oakes 1984, Kalbfleisch and Prentice 1980) or biostatistics
(Lee 1992).

Example. Consider a setting in which there are four subpopulations of the
general population, categorized by the four combinations of values of two
binary covariates Z1, Z2 = 0, 1. Suppose that these four combinations have
respective conditional probabilities for lives aged x (or relative frequencies in
the general population aged x)

Px(Z1 = Z2 = 0) = 0.15 , Px(Z1 = 0, Z2 = 1) = 0.2

Px(Z1 = 1, Z2 = 0) = 0.3 , Px(Z1 = Z2 = 1) = 0.35

and that for a life aged x and all t > 0,

Pr(T ≥ x + t |T ≥ x, Z1 = z1, Z2 = z2) = exp(−2.5 e0.7z1−.8z2 t2/20000)

It can be seen from the conditional survival function just displayed that the
forces of mortality at ages greater than x are

µ(x + t) = (2.5 e0.7z1−.8z2) t/10000

so that the force of mortality at all ages is multiplied by e0.7 = 2.0138 for
individuals with Z1 = 1 versus those with Z1 = 0, and is multiplied by
e−0.8 = 0.4493 for those with Z2 = 1 versus those with Z2 = 0. The effect
on age-specific death-rates is approximately the same. Direct calculation
shows for example that the ratio of age-specific death rate at age x+20 for
individuals in the group with (Z1 = 1, Z2 = 0) versus those in the group with
(Z1 = 0, Z2 = 0) is not precisely e0.7 = 2.014, but rather

1 − exp(−2.5e0.7((212 − 202)/20000)

1 − exp(−2.5((212 − 202)/20000)
= 2.0085

Various calculations, related to the fractions of the surviving population at
various ages in each of the four population subgroups, can be performed
easily . For example, to find

Pr(Z1 = 0, Z2 = 1 |T ≥ x + 30)
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we proceed in several steps (which correspond to an application of Bayes’
rule, viz. Hogg and Tanis 1997, sec. 2.5, or Devore 2007):

Pr(T ≥ x+30, Z1 = 0Z2 = 1|T ≥ x) = 0.2 exp(−2.5e−0.8 302

20000
) = 0.1901

and similarly

Pr(T ≥ x + 30 |T ≥ x) = 0.15 exp(−2.5(302/20000)) + 0.1901 +

+ 0.3 exp(−2.5 ∗ e0.7 302

20000
) + 0.35 exp(−2.5e0.7−0.8 302

20000
) = 0.8795

Thus, by definition of conditional probabilities (restricted to the cohort of
lives aged x), taking ratios of the last two displayed quantities yields

Pr(Z1 = 0, Z2 = 1 |T ≥ x + 30) =
0.1901

0.8795
= 0.2162

2

In biostatistics and epidemiology, the measured variables Z = (Z1, . . . , Zp)
recorded for each individual in a survival study might be: indicator of a spe-
cific disease or diagnostic condition (e.g., diabetes, high blood pressure, spe-
cific electrocardiogram anomaly), quantitative measurement of a risk-factor
(dietary cholesterol, percent caloric intake from fat, relative weight-to-height
index, or exposure to a toxic chemical), or indicator of type of treatment or
intervention. In these fields, the objective of such detailed models of covari-
ate effects on survival can be: to correct for incidental individual differences
in assessing the effectiveness of a treatment; to create a prognostic index for
use in diagnosis and choice of treatment; or to ascertain the possible risks and
benefits for health and survival from various sorts of life-style interventions.
The multiplicative effects of various risk-factors on age-specific death rates
are often highlighted in the news media.

In an insurance setting, categorical variables for risky life-styles, occupa-
tions, or exposures might be used in risk-rating, i.e., in individualizing insur-
ance premiums. While risk-rating is used routinely in casualty and property
insurance underwriting, for example by increasing premiums in response to
recent claims or by taking location into account, it can be politically sensi-
tive in a life-insurance and pension context. In particular, while differences
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in mortality by gender and to some extgent by family health history can
be used in calculating insurance and annuity premiums, as can certain life-
style factors like smoking, it is currently illegal to use racial differences and
differences based on genetic testing in this way.

All life insurers must be conscious of the extent to which their policyhold-
ers as a group differ from the general population with respect to mortality.
Insurers can collect special mortality tables on special groups, such as em-
ployee groups or voluntary organizations, and regression-type models like the
Cox proportional-hazards model may be useful in quantifying group mortal-
ity differences when the special-group mortality tables are not based upon
large enough cohorts for long enough times to be fully reliable. See Chapter
6, Section 4, for discussion about the modification of insurance premiums for
select groups.

2.3 Exercise Set 2

(1). The sum of the present value of $1 paid at the end of n years and
$1 paid at the end of 2n years is $1. Find (1+ r)2n, where r = annual
interest rate, compounded annually.

(2). Suppose that an individual aged 20 has random lifetime Z with
continuous density function

f(t) =
1

360

(
1 +

t

10

)
, for 20 ≤ t ≤ 80

and 0 for other values of t. (The random variable Z in this problem is a
particular type of age-at-death variable T conditioned on being ≥ 20.)

(a) If this individual has a contract with your company that you must
pay his heirs 106 · (1.4−Z/50) dollars at the exact date of his death if this
occurs between ages 20 and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08 · (Z − 20)), i.e. by the nominal interest
rate of e0.08 − 1 per year) to calculate the present value of the payment,
then what is the expected present value of the payment under the insurance
contract ?
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(3). Suppose that a continuous random variable T has hazard rate function
(= force of mortality)

h(t) = 10−3 ·
[
7.0 − 0.5t + 2et/20

]
, t > 0

This is a legitimate hazard rate of Gompertz-Makeham type since its mini-
mum, which occurs at t = 20 ln(5), is (17−10 ln(5)) ·10−4 = 9.1 ·10−5 > 0.

(a) Construct a cohort life-table with h(t) as “force of mortality”,
based on integer ages up to 70 and cohort-size (= radix ) l0 = 105. (Give
selected numerical entries, preferably calculated by means of a little computer
program. If you do the arithmetic using hand-calculators and/or tables, give
only the values for ages which are multiples of 10.)

(b) Find the probability that the random variable T exceeds 30, given
that it exceeds 3. Hint: find a closed-form formula for S(t) = P (T ≥ t).

(4). Do the Mortgage-Refinancing exercise given as Exercise 2.B in the
Illustration on mortgage refinancing at the end of Section 2.1.

(5). (a) The mortality pattern of a certain population may be described as
follows: out of every 98 lives born together, one dies annually until there
are no survivors. Find a simple function that can be used as S(x) for this
population, and find the probability that a life aged 30 will survive to attain
age 35.

(b) Suppose that for x between ages 12 and 40 in a certain population,
10% of the lives aged x die before reaching age x+1 . Find a simple function
that can be used as S(x) for this population, and find the probability that
a life aged 30 will survive to attain age 35.

(6). Suppose that a survival distribution (i.e., survival function based on
a cohort life table) has the property that 1px = γ · (γ2)x for some fixed γ
between 0 and 1, for every real ≥ 0. What does this imply about S(x) ?
(Give as much information about S as you can.)

(7). If the instantaneous interest rate is r(t) = 0.01 · t for 0 ≤ t ≤ 3,
then find the equivalent single effective rate of interest for money invested at
interest throughout the interval 0 ≤ t ≤ 3.
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(8). Find the accumulated value of $100 at the end of 15 years if the
nominal interest rate compounded quarterly (i.e., i(4) ) is 8% for the first 5
years, if the effective rate of discount is 7% for the second 5 year interval (i.e.
the interval ranging from time 5 to 10), and if the nominal rate of discount
compounded semiannually (m = 2) is 6% for the third 5 year interval.

(9). Suppose that you borrow $1000 for 3 years at 6% effective rate, to be
repaid in level payments every six months (twice yearly).

(a) Find the level payment amount P .

(b) What is the present value of the payments you will make if you skip
the 2nd and 4th payments ? (You may express your answer in terms of P . )

(10). A survival function has the form S(t) = max(0, c−t
c+t

). If a mortality
table is derived from this survivalfunction with a radix l0 of 100,000 at
age 0, and if l35 = 44, 000 :

(i) What is the terminal age of the table ?

(ii) What is the probability of surviving from birth to age 60 ?

(iii) What is the probability of a person at exact age 10 dying between
exact ages 30 and 45 ?

(11). A separate life table has been constructed for each calendar year of
birth, Y , beginning with Y = 1950. The mortality functions for the
various tables are denoted by the appropriate superscript Y . For each Y
and for all ages t

µY (t) = A · k(Y ) + B ct , pY +1
t = (1 + r) pY

t

where k is a function of Y alone and A, B, r are constants (with r > 0).
If k(1950) = 1, then derive a general expression for k(Y ).

(12). A standard mortality table follows Makeham’s Law with force of
mortality

µ(t) = A + B ct at all ages t

A separate, higher-risk mortality table also follows Makeham’s Law with
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force of mortality

µ∗(t) = A∗ + B∗ ct at all ages t

with the same constant c. If for all starting ages the probability of surviving
6 years according to the higher-risk table is equal to the probability of
surviving 9 years according to the standard table, then express each of A∗

and B∗ in terms of A, B, c.

(13). A homeowner borrows $100, 000 at effective annual rate 7% from
a bank, agreeing to repay by 30 equal yearly payments beginning one year
from the time of the loan.

(a) How much is each payment ?

(b) Suppose that after paying the first 3 yearly payments, the homeowner

misses the next two (i.e. pays nothing on the 4th and 5th anniversaries of

the loan). Find the outstanding balance at the 6th anniversary of the loan,
figured at 7% ). This is the amount which, if paid as a lump sum at time
6, has present value together with the amounts already paid of $100, 000 at
time 0.

(14). A deposit of 300 is made into a fund at time t = 0. The fund pays
interest for the first three years at a nominal monthly rate d(12) of discount.
From t = 3 to t = 7, interest is credited according to the force of interest
δt = 1/(3t + 3). As of time t = 7, the accumulated value of the fund is
574. Calculate d(12).

(15). Calculate the price at which you would sell a $10, 000 30-year coupon
bond with nominal 6% semi-annual coupon (n = 30, m − 2, i(m) = 0.06),
15 years after issue, if for the next 15 years, the effective interest rate for
valuation is ieff = 0.07.

(16). A 6% ‘zero-coupon’ 30-year bond was issued exactly 15 years ago for
a face amount of $10, 000. This bond contractually entitles the bearer to
receive 30 years after the issue date the amount accumulated at i = ieff =
0.06 on the face amount. Calculate the fair price at which you would sell
this zero-coupon bond, if for the next 15 years, the effective interest rate will
be i′

eff
= 0.07.
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(17). Suppose that the borrower of a $100, 000 30-year loan with half-
yearly payments (m = 2) start in six months from the time of borrowing, and
with nominal interest rate i(2) = .04, has made all payments except for two
that he skipped, the 23’rd and 56’th payments. What lump-sum payment
did the borrower have to make at the end of 30 years, in addition to his final
payment, in order to pay off the loan completely ?

(18). In Problem (17), the missed payments did not result in any additional
fees or charges, only in continuing accrued interest on the amounts of the
missed payments. Suppose that the missed payments in (17) actually result
in late fees of $200 each of which is added to the balance at the time(s)
of missed payments. Now answer the same question as in (17) about the
amount of the final lump-sum payment required.

(19). One of the curves plotted in the first part of Figure 2.3 is the
lognormal(m,σ2) hazard intensity where σ = 1.3 is fixed and where m
was determined from it by the requirement that the expectation of survival
time was 75 years. Now find the value m associated with σ = 1.3 if the
median survival time is fixed at 72 years, and find the force of mortality for
this lognormal at 65 years.

(20). A small city issues a bond for twenty million dollars for ten years
at 5% nominal half-yearly interest (m = 2) and creates a sinking fund into
which it will make twice-yearly deposits (m′ = 2), from its tax revenue.

(a) Find the amount of the level payment the city must make into the
sinking fund if the interest it earns on that fund is 5%, and find the reserve,
or accumulated balance, in the sinking fund after 6 years.

(b) Answer the same questions if the city knows it can earn 6% on the
money it deposits into its sinking fund.

2.4 Worked Examples

Example 1. How large must a half-yearly payment be in order that the stream
of payments starting immediately be equivalent (in present value terms) at
6% interest to a lump-sum payment of $5000, if the payment-stream is to
last (a) 10 years, (b) 20 years, or (c) forever ?
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If the payment size is P , then the balance equation is

5000 = 2P · ä
(2)
n = 2P (1 − 1.06−n)/d(2)

Since d(2) = 2(1 − 1/
√

1.06) = 2 · 0.02871, the result is

P = (5000 · 0.02871)/(1 − 1.06−n) = 143.57/(1 − 1.06−n)

So the answer to part (c), in which n = ∞, is $143.57. For parts (a) and
(b), respectively with n = 10 and 20, the answers are $325.11, $208.62.

Example 2. Assume m is divisible by 2. Express in two differ-
ent ways the present value of the perpetuity of payments 1/m at times
1/m, 3/m, 5/m, . . . , and use either one to give a simple formula.

This example illustrates the general methods enunciated at the beginning
of Section 2.1. Observe first of all that the specified payment-stream is
exactly the same as a stream of payments of 1/m at times 0, 2/m, 4/m, . . .
forever, deferred by a time 1/m. Since this payment-stream starting at 0

is exactly one-half that of the stream whose present value is ä
(m/2)
∞ , a first

present value expression is

v1/m (1/2) ä
(m/2)
∞

A second way of looking at the payment-stream at odd multiples of 1/m
is as the perpetuity-due payment stream ( 1/m at times k/m for all
k ≥ 0) minus the payment-stream discussed above of amounts 1/m at
times 2k/m for all nonnegative integers k. Thus the present value has the
second expression

ä
(m)
∞ − (1/2) ä

(m/2)
∞

Equating the two expressions allows us to conclude that

(1/2) ä
(m/2)
∞ = ä

(m)
∞

/
(1 + v1/m)

Substituting this into the first of the displayed present-value expressions, and
using the simple expression 1/d(m) for the present value of the perpetuity-
due, shows that that the present value requested in the Example is

1

d(m)
· v1/m

1 + v1/m
=

1

d(m) (v−1/m + 1)
=

1

d(m) (2 + i(m)/m)

and this answer is valid whether or not m is even.
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Example 3. Suppose that you are negotiating a car-loan of $10, 000. Would
you rather have an interest rate of 4% for 4 years, 3% for 3 years, 2% for
2 years, or a cash discount of $500 ? Show how the answer depends upon
the interest rate with respect to which you calculate present values, and give
numerical answers for present values calculated at 6% and 8%. Assume that
all loans have monthly payments paid at the beginning of the month (e.g., the
4 year loan has 48 monthly payments paid at time 0 and at the ends of 47
succeeding months).

The monthly payments for an n-year loan at interest-rate i is 10000/

(12 ä
(12)
n ) = (10000/12) d(12)/(1 − (1 + i)−n). Therefore, the present value

at interest-rate r of the n-year monthly payment-stream is

10000 · 1 − (1 + i)−1/12

1 − (1 + r)−1/12
· 1 − (1 + r)−n

1 − (1 + i)−n

Using interest-rate r = 0.06, the present values are calculated as follows:

For 4-year 4% loan: $9645.77

For 3-year 3% loan: $9599.02

For 2-year 2% loan: $9642.89

so that the most attractive option is the cash discount (which would make
the present value of the debt owed to be $9500). Next, using interest-rate
r = 0.08, the present values of the various options are:

For 4-year 4% loan: $9314.72

For 3-year 3% loan: $9349.73

For 2-year 2% loan: $9475.68

so that the most attractive option in this case is the 4-year loan. (The cash
discount is now the least attractive option.)

Example 4. Suppose that the force of mortality µ(y) is specified for exact
ages y ranging from 5 to 55 as

µ(y) = 10−4 · (20 − 0.5|30 − y|)

Then find analytical expressions for the survival probabilities S(y) for exact
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ages y in the same range, and for the (one-year) death-rates qx for integer
ages x = 5, . . . , 54, assuming that S(5) = 0.97.

The key formulas connecting force of mortality and survival function are
here applied separately on the age-intervals [5, 30] and [30, 55], as follows.
First for 5 ≤ y ≤ 30,

S(y) = S(5) exp(−
∫ y

5

µ(z) dz) = 0.97 exp
(
−10−4(5(y−5)+0.25(y2−25))

)

so that S(30) = 0.97 e−0.034375 = 0.93722, and for 30 ≤ y ≤ 55

S(y) = S(30) exp
(
− 10−4

∫ y

30

(20 + 0.5(30 − z)) dz
)

= 0.9372 exp
(
− .002(y − 30) + 2.5 · 10−5(y − 30)2

)

The death-rates qx therefore have two different analytical forms: first, in
the case x = 5, . . . , 29,

qx = S(x + 1)/S(x) = exp
(
− 5 · 10−5 (10.5 + x)

)

and second, in the case x = 30, . . . , 54,

qx = exp
(
− .002 + 2.5 · 10−5(2(x − 30) + 1)

)
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2.5 Useful Formulas from Chapter 2

v = 1/(1 + i)

p. 34

a
(m)
n =

1 − vn

i(m)
, ä

(m)
n =

1 − vn

d(m)

pp. 35–35

a
(m)
n = v1/m ä

(m)
n

p. 35

ä
(∞)
n = a

(∞)
n = an =

1 − vn

δ

p. 35

a
(m)
∞ =

1

i(m)
, ä

(m)
∞ =

1

d(m)

p. 36

(I(m)ä)
(m)
n = ä

(m)
∞

(
ä

(m)
n − n vn

)

p. 38

(D(m)ä)
(m)
n = (n +

1

m
) ä

(m)
n − (I(m)ä)

(m)
n

p. 38

n-yr m’thly Mortgage Paymt :
Loan Amt

mä
(m)
n



70 CHAPTER 2. INTEREST & FORCE OF MORTALITY

p. 39

n-yr Mortgage Bal. amt
k

m
+ : Bn,k/m =

1 − vn−k/m

1 − vn

p. 42

tpy =
S(y + t)

S(y)
= exp

(
−
∫ t

0

µ(y + s) ds

)

p. 48

tqy = 1 − tpy

p. 48

qx = 1qx =
dx

lx
, px = 1px = 1 − qx

p. 48

µ(y + t) =
f(y + t)

S(y + t)
= − ∂

∂t
lnS(y + t)

p. 49

S(y) = exp(−
∫ y

0

µ(t) dt)

p. 52

Unif. Failure Dist.: S(t) =
ω − t

ω
, f(t) =

1

ω
, 0 ≤ t ≤ ω

p. 52

Expon. Dist.: S(t) = e−µt , f(t) = µe−µt , µ(t) = µ , t > 0

p. 52
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Weibull. Dist.: S(t) = e−λtγ , µ(t) = λγtγ−1 , t > 0

p. 52

Makeham: µ(t) = A + Bct , t ≥ 0

Gompertz: µ(t) = Bct , t ≥ 0

S(t) = exp

(
−At− B

ln c
(ct − 1)

)

p. 54
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Chapter 3

More Probability Theory for
Life Tables

This Chapter introduces several key ideas in Probability Theory which are
essential for an understanding of the book’s core actuarial topics in Chapter
4 and 5. The first of these ideas is that survival from one year to the next can
be regarded for each member of a population as a coin-toss experiment, with
survival probability px for a life aged x, independently of all other members
of the population. This point of view also provides a convenient vehicle for
conducting computer simulations of population survival experience for large
or small life-table populations. Since the life-table summarizes outcomes
on a large number of coin-toss experiments, we study next through limit
theorems (law of large numbers and central limit theorem) the high degree of
predictability of these outcomes at the population level. This predictability
will be used in later chapters to justify consideration of expected present
values of contractual payouts to describe an insurer’s liability, so we prepare
the ground by presenting background theory and rules of manipulation for
expectations of discrete-valued random variables. Finally, we complete our
probability background with further material on interpreting, approximating
and calculating with probabilities and expectations using theoretical models
of survival between successive years of age.

73



74 CHAPTER 3. PROBABILITY & LIFE TABLES

3.1 Binomial Variables and Limit Theorems

This Section develops basic machinery for the theory of random variables
which count numbers of successes in large numbers of independent biased
coin-tosses. The motivation is that in large life-table populations, the number
lx+t who survive t time-units after age x can be regarded as the number
of successes or heads in a large number lx of independent coin-toss trials
corresponding to the further survival of each of the lx lives aged x , which for
each such life has probability tpx. The one preliminary mathematical result
that the student is assumed to know is the Binomial Theorem stating that
(for positive integers N and arbitrary real numbers x, y, z),

(1 + x)N =
N∑

k=0

(
N

k

)
xk , (y + z)N =

N∑

k=0

(
N

k

)
yk zN−k

Recall that the first of these assertions follows by equating the kth deriv-
iatives of both sides at x = 0, where k = 0, . . . , N . The second assertion
follows immediately, in the nontrivial case when z 6= 0, by applying the first
assertion with x = y/z and multiplying both sides by zN . This Theo-
rem also has a direct combinatorial consequence. Consider the two-variable
polynomial

(y + z)N = (y + z) · (y + z) · · · (y + z) N factors

expanded by making all of the different choices of y or z from each of
the N factors (y + z), multiplying each combination of choices out to
get a monomial yj zN−j, and adding all of the monomials together. Each
combined choice of y or z from the N factors (y+ z) can be represented
as a sequence (a1, . . . , an) ∈ {0, 1}N , where ai = 1 would mean that y

is chosen and ai = 0 would mean that z is chosen in the ith factor. Now
this combinatorial fact is immediately deduced from the Binomial Theorem:
since the coefficient

(
N
k

)
is the total number of monomial terms yk zN−k

which are collected when (y+z)N is expanded as described, and since these
monomial terms arise only from the combinations (a1, . . . , aN) of {y, z}
choices in which precisely k of the values aj are 1’s and the rest are 0’s,

The number of symbol-sequences (a1, . . . , aN) ∈ {0, 1}N such
that

∑N
j=1 aj = k is given, for each k = 0, 1, . . . , N , by
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(
N
k

)
= N(N − 1) · · · (N − k + 1)/ k! . This number

(
N
k

)
, spoken

as ‘N choose k’, therefore counts all of the ways of choosing k
element subsets (the positions j from 1 to N where 1’s occur)
out of N objects.

The random experiment of interest in this Section consists of a number
N of independent tosses of a coin, with probability p of coming up heads
each time. Such coin-tossing experiments — independently replicated two-
outcome experiments with probability p of one of the outcomes, designated
‘success’ — are called Bernoulli(p) trials. The space of possible heads-
and-tails configurations, or sample space for this experiment, consists of the
strings of N zeroes and ones, with each string a = (a1, . . . , aN) ∈ {0, 1}N

being assigned probability pa (1 − p)N−a, where a ≡
∑N

j=1 aj. Because
of the finite additivity axiom of probabilities (saying that Pr(A ∪ B) =
Pr(A) + Pr(B) for disjoint events A,B), the rule by which probabilities
are assigned to sets or events A of more than one string a ∈ {0, 1}N is
to add the probabilities of all individual strings a ∈ A. We are particularly
interested in the event (denoted [X = k]) that precisely k of the coin-
tosses are heads, i.e., in the subset [X = k] ⊂ {0, 1}N consisting of all
strings a such that

∑N
j=1 aj = k. Since each such string has the same

probability pk (1 − p)N−k, and since, according to the discussion following
the Binomial Theorem above, there are

(
N
k

)
such strings, the probability

which is necessarily assigned to the event of k successes is

Pr( k successes in N Bernoulli(p) trials ) = P (X = k) =

(
N

k

)
pk (1−p)N−k

By virtue of this result, the random variable X equal to the number of suc-
cesses in N Bernoulli(p) trials, is said to have the Binomial distribution
with probability mass function pX(k) =

(
N
k

)
pk (1 − p)N−k.

With the notion of Bernoulli trials and the binomial distribution in hand,
we now begin to regard the ideal probabilities S(x + t)/S(x) as true but
unobservable probabilities tpx = p with which each of the lx lives aged x
will survive to age x + t . Since the mechanisms which cause those lives
to survive or die can ordinarily be assumed to be acting independently in a
probabilistic sense, we can regard the number lx+t of lives surviving to the
(possibly fractional) age x+t as a Binomial random variable with parameters
N = lx, p = tpx. From this point of view, if derived from an actual cohort
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dataset of size equal to the radix , the observed life-table counts lx would
be treated as random data which reflect but do not define the underlying
probabilities xp0 = S(x) of survival to age x. However, common sense
and experience suggest that, when l0 is large, and therefore the other life-
counts lx for moderate values x are also large, the observed ratios lx+t/lx
should reliably be very close to the ‘true’ probability tpx. In other words,
the ratio lx+t/lx is a statistical estimator of the unknown constant tpx .
The good property, called consistency, of this estimator to be close with very
large probability (based upon large life-table size) to the heads-probability it
estimates, is established in the famous Law of Large Numbers. We state
and prove the result here only in the setting of binomial random variables,
sketching in Section 3.3 how it implies a more general result for finite-valued
discrete random variables. A more precise quantitative inequality concerning
binomial probabilities, a Large Deviation Inequality which is important in its
own right but more difficult, is stated and proved in the Appendix to this
Chapter, Section 3.9.

Theorem 3.1 (Coin-toss Law of Large Numbers) Suppose that X is
a Binomial(N, p) random variable, denoting the number of successes in N
Bernoulli(p) trials. Law of Large Numbers. For arbitrarily small fixed
δ, ε > 0, not depending upon N , the number N of Bernoulli trials can be
chosen so large that

Pr
(
|X/N − p | ≥ δ

)
≤ ε

Proof. Since the event [ |X/N − p| ≥ δ ] = [ |X −Np| ≥ Nδ ] is the union
of the disjoint events [X = k] for |k − Np| ≥ Nδ, which in turn consist
of all outcome-strings (a1, . . . , aN) ∈ {0, 1}N for which

∑N
j=1 aj = k with

|k −Np| ≥ Nδ, the subset of the binomial probability mass function values
pX (k) with |k − Np| ≥ Nδ are summed to provide

Pr(|X/N−p| ≥ δ) =
∑

k: |k−Np|≥Nδ

Pr(X = k) =
∑

k: |k−Np|≥Nδ

(
N

k

)
pk (1−p)N−k

This summation is term-by-term less than or equal to

∑

k: |k−Np|≥Nδ

(
N

k

)
pk (1−p)N−k (k − Np)2

(Nδ)2
≤

N∑

k=0

(
N

k

)
pk (1−p)N−k (k − Np)2

(Nδ)2

(3.1)
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where we have made the second some larger by including more nonnegative
terms in it. However, direct summation shows

N∑

k=0

k

(
N

k

)
pk (1 − p)N−k =

N∑

k=1

kp
N · (N − 1)!

k(k − 1)!(N − k)!
pk−1 (1 − p)N−k

which after replacing k − 1 by l, becomes with the aid of the Binomial The-
orem

= Np

N−1∑

l=0

(
N − 1

l

)
pl (1 − p)N−1−l = Np

and similarly (now with j = k − 2)

N∑

k=0

k(k−1)

(
N

k

)
pk (1−p)N−k =

N∑

k=2

p2 N(N − 1) (N − 2)!

(k − 2)!(N − k)!
pk−2 (1−p)N−k

= N(N − 1)p2

N−2∑

j=0

(
N − 2

j

)
pj (1 − p)N−2−j = N(N − 1) p2

Putting together the last calculations, and simplifying algebraically, it is easy
to check via the equality (k −Np)2 = k(k − 1)− (2Np− 1)k +(Np)2, that

N∑

k=0

(k − Np)2

(
N

k

)
pk (1 − p)N−k = N p(1 − p)

Substituting this final relation into (3.1) now shows that

Pr(|X/N − p| ≥ δ) ≤ Np(1 − p)

(Nδ)2
=

p(1 − p)

Nδ2

The assertion of the Theorem now follows by taking N ≥ (p(1−p)/(εδ2). 2

3.1.1 Probability Bounds & Approximations

Theorem 3.1 provides only a very crude upper bound to the probability with
which |X/N − p| ≥ δ. A much more accurate upper bound in given in
Theorem 3.2 of the Appendix to the Chapter (Sec. 3.9). To see why more
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accurate bounds are needed, consider the case where N = 1000, p = 0.1,
and δ = 0.03. The exact Binomial(1000, 0.1) probability of (number of
successes in N Bernoulli(p) trials falling in) [0, N(p − δ)]∪ [N(p + δ), N ] =
[0, 70] ∪ [130, 1000] is 0.001916, while the upper bound established in the
proof of Theorem 3.1 is (.1)(.9)/(1000(.03)2) = 0.1, more than fifty times
larger ! On the other hand, the upper bound provided by the inequalities of
Theorem 3.2, as in formula (3.30), is 0.0198.

Much closer approximations to the exact probabilities for Binomial(N, p)
random variables to fall in intervals around Np are obtained from the Normal
distribution approximation

Pr(a ≤ X ≤ b) ≈ Φ

(
b −Np√
Np(1 − p)

)
− Φ

(
a − Np√
Np(1 − p)

)
(3.2)

where Φ is the standard normal distribution function given explicitly in
integral form in formula (3.29) below. This approximation is the DeMoivre-
Laplace Central Limit Theorem (Feller vol. 1, 1957, pp. 168-73), which
says precisely that the difference between the left- and right-hand sides of
(3.2) converges to 0 when p remains fixed, as n → ∞. Moreover, the
refined form of the DeMoivre-Laplace Theorem given in the Feller (1957,
p. 172) reference says that each of the ratios of probabilities

Pr(X < a)
/

Φ
( a− Np√

Np(1 − p)

)
, Pr(X > b)

/[
1 −Φ

( b − Np√
Np(1 − p)

)]

converges to 1 if the ‘deviation’ ratios (b − Np)/
√

Np(1 − p) and

(a − Np)/
√

Np(1 − p) are of smaller order than N−1/6 when N gets
large. This result suggests the approximation

Normal approx. = Φ

(
Nδ√

Np(1 − p)

)
− Φ

(
−Nδ√

Np(1 − p)

)
(3.3)

for the true binomial probability Pr(|X/N − p| ≤ δ). In the example
discussed above, with N = 1000, p = 0.1, δ = 0.03, where the exact
Binomial(N, p) probability of |X/N −p| ≤ δ was 1− .00192 = .99808, the
normal approximation (3.3) is 0.99843.

To give a feeling for the probabilities with which observed life-table ra-
tios reflect the true underlying survival-rates, we have collected in Table 3.1
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Table 3.1: Probabilities (in col. 6) with which various Binomial(lx, kpx)
random variables lie within a factor 1 ± ε of their expectations, together
with lower bounds (in Col. 7) for these probabilities derived from the large-
deviation inequalities (3.30)-(3.31). The final column contains the normal
approximations based on (3.3) to the exact probabilities in column 6.

Cohort Age Time Prob. Toler. Pr. within Lower Normal
n = lx x k p = kpx ε factor 1 ± ε bound approx.
10000 40 3 0.99 .003 .9969 .9760 .9972
10000 40 5 0.98 .004 .9952 .9600 .9949
10000 40 10 0.94 .008 .9985 .9866 .9985
1000 40 10 0.94 .020 .9863 .9120 .9877

10000 70 5 0.75 .020 .9995 .9950 .9995
1000 70 5 0.75 .050 .9938 .9531 .9938

10000 70 10 0.50 .030 .9973 .9778 .9973
1000 70 10 0.50 .080 .9886 .9188 .9886

various exact binomial probabilities and their counterparts from the approx-
imation of (3.3) and the inequality (3.30) of Section 3.9. The illustration
concerns cohorts of lives aged x of various sizes lx, together with ‘theo-
retical’ probabilities kpx with which these lives will survive for a period of
k = 1, 5, or 10 years. The probability experiment determining the size of
the surviving cohort lx+k is modelled as the tossing of lx independent coins
with common heads-probability kpx : then the surviving cohort-size lx+k

is viewed as the Binomial(lx, kpx) random variable equal to the number of
heads in those coin-tosses. In Table 3.1 are given various combinations of
x, lx, k, kpx which might realistically arise in an insurance-company life-
table, together, with the true and estimated (from Theorem 3.2 and from
(3.3)) probabilities with which the ratios lx+k/lx agree with kpx to within
a fraction ε of the latter. Columns 6 and 7 in the Table show how likely the
life-table ratios are to be close to the ‘theoretical’ values, but also show that
the lower bounds, while also often close to 1, are still noticeably smaller
than the actual values.

Although the deviation-ratios in estimating life-table probabilities are
often close to or larger than N−1/6, not smaller as they should be for appli-
cability of (3.3), the normal approximations in the final column of Table 3.1
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below are sensationally close to the correct binomial probabilities in column
6. A still more refined theorem which justifies this is given by Feller (1972,
section XVI.7 leading up to formula 7.28, p. 553).

3.2 Simulation of Discrete Lifetimes

We began by regarding life-table ratios lx/l0 in large cohort life-tables as
defining integer-age survival probabilities S(x) = xp0. We said that if the
life-table was representative of a larger population of prospective insureds,
then we could imagine a newly presented life aged x as being randomly
chosen from the life-table cohort itself. We motivated the conditional prob-
ability ratios in this way, and similarly expectations of functions of life-table
death-times were averages over the entire cohort. Although we found the
calculus-based formulas for life-table conditional probabilities and expec-
tations to be useful, at that stage they were only ideal approximations of
the more detailed but still exact life-table ratios and sums. At the next
stage of sophistication, we began to describe the (conditional) probabilities

tpx ≡ S(x+ t)/S(x) based upon a smooth survival function S(x) as a true
but unknown survival distribution, hypothesized to be of one of a number
of possible theoretical forms, governing each member of the life-table cohort
and of further prospective insureds. Finally, the life-table can also be viewed
as in Appendix A as an idealized set of data, with each ratio lx+t/lx equal to
the relative frequency of success among a set of lx imagined Bernoulli(tpx)
trials which Nature performs upon the cohort of lives aged x . With the
mathematical justification of the Law of Large Numbers, we come full circle:
these relative frequencies are random variables, but they are not very ran-
dom. That is, if the size lx of the cohort of surviving lives aged x is large,
the later fractions lx+t/lx of survivors at x+ t to those at x are extremely
likely to lie within a very small tolerance of tpx. The Law of Large Num-
bers applies equally when the age-x survivors have been sampled by some
more complicated method than simply watching a cohort from birth. Thus,
in the realistic data-collection scenarios discussed in Appendix A, where the
sizes lx of lives under observation at age x are large but the probabilities
px are unknown, the life-table ratios lx+1/lx are highly accurate statistical
estimators of the life-table probabilities .
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Table 3.2: Illustrative Real and Simulated Life-Table Data

Age x lx in 1959-61 Life-Table Simulated l∗x
9 96801 96753
19 96051 95989
29 94542 94428
39 92705 92576
49 88178 87901
59 77083 76793
69 56384 56186
79 28814 28657

To make this discussion more concrete, we illustrate the difference be-
tween the entries in a life-table and the entries one would observe as data
in a randomly generated life-table of the same size using the initial life-table
ratios as exact survival probabilities. We used as a source of life-table counts
the Mortality Table for U.S. White Males 1959-61 reproduced as Table 2 on
page 11 of C. W. Jordan’s (1967) book on Life Contingencies. That is, using
this Table with radix l0 = 105 , with counts lx given for integer ages x from
1 through 80, we treated the probabilities px = lx+1/lx for x = 0, . . . , 79 as
the correct one-year survival probabilities for a second, computer-simulated
cohort life-table with radix l∗0 = 105. Using simulated random variables
generated in R, we successively generated, as x runs from 1 to 79, random
variables l∗x+1 ∼ Binomial (l∗x, px). In other words, the mechanism of sim-
ulation of the sequence l∗0, . . . , l

∗
79 was to make the variable l∗x+1 depend

on previously generated l∗1, . . . , l
∗
x only through l∗x, and then to generate

l∗x+1 as though it counted the heads in l∗x independent coin-tosses with
heads-probability px. A comparison of the actual and simulated life-table
counts for ages 9 to 79 in 10-year intervals, is given below. The complete
simulated life-table was given earlier as Table 1.1.

The implication of Table 3.2 is unsurprising: with radix as high as 105,
the agreement between the initial and randomly generated life-table counts
is extremely good. The Law of Large Numbers guarantees good agreement,
with very high probability, between the ratios lx+10/lx (which here play
the role of the probability 10px of success in l∗x Bernoulli trials) and the
corresponding simulated random relative frequencies of success l∗x+10/l

∗
x. For

example, with x = 69, the final simulated count of l∗79 = 28657 lives
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aged 79 is the success-count in l∗69 = 56186 Bernoulli trials with success-
probability 28814/56384 = .51103. With this success-probability, the nor-
mal approximation (3.3) says that the simulated count l∗79 will differ from
.51103 · 56186 = 28712.8 by 300 or more in either direction with probability
approximately 0.0115. (The exact binomial probabilty of the same event is
0.0113.).

The R code used to generate Table 3.2 is very simple. If lvec denotes a
vector of values (l0, lx(1), lx(2), . . . , lx(K)) of numbers of surviving lives in a
cohort life-table with radix l0, where the integer ages 0, x(1), x(2), . . . , x(K)
are not necessarily evenly spaced, then the statements

K = length(lvec)-1 ; pvec = lvec[2:(K+1)]/lvec[1:K]

create the vector of hypothetical survival probabilities, pvec[j]= lx(j+1)/lxj , j =
0, . . . ,K − 1, and here is a small function to generate the (K + 1)-vector
tt lstar consisting of l∗0 ≡ l0 together with the output simulated values
l∗x(1), . . . , lx(K) :

LifTabSim = function(lvec) {

K = length(lvec)-1

lstar = c(lvec[1],rep(0,K))

for (j in 1:K) lstar[j+1] =

rbinom(1,lstar[j],lvec[j+1]/lvec[j])

lstar }

The syntax to generate a vector like the third column of Table 3.2 from the
second, where lvec consists of the radix l0 = 105 concatenated with column
2, is: LifTab(lvec)[2:9]. As a further example of such a simulation,
suppose that 1000 individuals aged 40 have successive probabilities 10px =
0.85, 0.77, 0.70, 0.65, 0.4 for x = 40, 50, 60, 70, 80, then we can simulate
twice, independently and output in R the numbers of surviving lives at these
ages, as follows:

pvec = c(0.85, 0.77, 0.70, 0.65, 0.4)

Lvec = 1000*cumprod(c(1,pvec))

matrix(c(seq(40,80,10), pvec, LifTabSim(Lvec)[2:6],

LifTabSim(Lvec)[2:6]), nrow=4, ncol=5, byrow=T,
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dimnames=list(c("Ages","10_p_x","Sim#1 l_x",

"Sim#2 l_x"), NULL))

[,1] [,2] [,3] [,4] [,5]

Ages 40.00 50.00 60.0 70.00 80.0

10_p_x 0.85 0.77 0.7 0.65 0.4

Sim#1 l_x 842.00 638.00 450.0 296.00 133.0

Sim#2 l_x 854.00 662.00 483.0 344.00 129.0

From small experiments like this, we can see that the variability in the sim-
ulated numbers l∗x is considerable for l0 of 1000 or less.

Exercise 3.A. With the same probabilities 10px use R to simulate 10 times
independently the numbers of survivors at ages 40, 50, . . . , 80.

(a). What is the spread between the smallest and largest number surviv-
ing at each age across your 10 simulations ?

(b). Regarding your 10 sets of simulated numbers of survivors as indepen-
dent datasets, if the underlying life-table probabilities were unknown, what
would be your best estimate of the probability 20p40 ?

(c). Combining the 10 simulated datasets you generated in (b), what is
your best estimate of the probability 20p40 ?
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3.3 Expectation of Discrete Random Variables

The Binomial random variables discussed in this Chapter are examples of
so-called discrete random variables, that is, random variables Z with a
discrete (usually finite) list of possible outcomes z, with a corresponding list
of probabilities or probability mass function values pZ(z) with which each of
those possible outcomes occur. These probabilities pZ(z) must be positive
numbers which summed over all possible values z add to 1. In an insur-
ance context, think for example of Z as the unforeseeable future damage or
liability upon the basis of which an insurer has to pay some scheduled claim
amount c(Z) to fulfill a specific property or liability insurance policy. The
Law of Large Numbers says that we can have a frequentist operational inter-
pretation of each of the probabilities pZ(z) with which a claim of size c(z)
is presented. In a large population of N independent policyholders, each
governed by the same probabilities pZ(·) of liability occurrences, for each
fixed damage-amount z we can imagine a series of N Bernoulli(pZ (z))
trials, in which the jth policyholder is said to result in a ‘success’ if he
sustains a damage amount equal to z , and to result in a ‘failure’ otherwise.
The Law of Large Numbers (Theorem 3.7) for these Bernoulli trials says that
the number out of these N policyholders who do sustain damage z is for
large N extremely likely to differ by no more than δN from N pZ(z).

Returning to a general discussion, suppose that Z is a discrete random
variable with a finite list of possible values z1, . . . , zm, and let c(·) be a
real-valued (nonrandom) cost function such that c(Z) represents an eco-
nomically meaningful cost incurred when the random variable value Z is
given. Suppose that a large number N of independent individuals give rise
to respective values Zj, j = 1, . . . , N and costs c(Z1), . . . , c(ZN ). Here in-
dependent means that the mechanism causing different individual Zj values
is such that information about the values Z1, . . . , Zj−1 does not change the
(conditional) probabilities with which Zj takes on its values, so that for all
j, i, and b1, . . . , bj−1,

P (Zj = zi |Z1 = b1, . . . , Zj−1 = bj−1 ) = pZ(zi)

Then the Law of Large Numbers, applied as above, says that out of the
large number N of individuals it is extremely likely that approximately
pZ(k) · N will have their Z variable values equal to k, where k ranges
over {z1, . . . , zm}. It follows that the average costs c(Zj) over the N
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independent individuals — which can be expressed exactly as

N−1

N∑

j=1

c(Zj) = N−1

m∑

i=1

c(zi) · #{j = 1, . . . , N : Zj = zi}

— is approximately given by

N−1

m∑

i=1

c(zi) · (N pZ(zi)) =
m∑

i=1

c(zi) pZ(zi)

In other words, the Law of Large Numbers implies that the average cost
per trial among the N independent trials resulting in random variable
values Zj and corresponding costs c(Zj) has a well-defined approximate
(actually, a limiting) value for very large N

Expectation of cost = E(c(Z)) =
m∑

i=1

c(zi) pZ(zi) (3.4)

As an application of the formula for expectation of a discrete random
variable, consider the expected value of a cost-function g(T ) of a lifetime
random variable which is assumed to depend on T only through the function
g([T ]) of the integer part of T . This expectation was interpreted earlier as
the average cost over all members of the specified life-table cohort. Now the
expectation can be verified to coincide with the life-table average previously
given, if the probabilities S(j) in the following expression are replaced by
the life-table estimators lj/l0. Since P ([T ] = k) = S(k) − S(k + 1), the
general expectation formula (3.4) yields

E(g(T )) = E(g([T ]) =
ω−1∑

k=0

g(k) (S(k) − S(k + 1)) (3.5)

which, after replacing S(k) − S(k + 1) =
∫ k+1

k
f(t) dt and [t] = k for

k ≤ t < k + 1, becomes

ω−1∑

k=0

g(k)

∫ k+1

k

f(t) dt =
ω−1∑

k=0

∫ k+1

k

g([t]) f(t) dt =

∫ ω

0

g([t]) f(t) dt

agreeing precisely with formula (1.3). Similarly, evaluating the discrete con-
ditional expectation given T ≥ x means applying the formula (3.4) to the
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function c(Z) = g(Z) of the discrete random variable Z = [T ] using
the conditional probability mass function P (Z = k) = P ([T ] = k |T ≥
x) = (S(k) − S(k + 1))/S(x) for all integers k ≥ x (and with probability
0 assigned to all integers k < x.) Then the conditional expectation is

E(g([T ]) |T ≥ x) =
ω−1∑

k=x

S(k) − S(k + 1)

S(x)
g(k) =

ω−1∑

k=x

g(k)

S(x)

∫ k+1

k

f(t) dt

or

E(g([T ] |T ≥ x) =

ω−1∑

k=x

∫ k+1

k

g([t])

S(x)
f(t) dt =

∫ ω

0

g([t])
f(t)

S(x
) dt

agreeing precisely with formula (1.5).

The preceding discussion shows that expectations or conditional expec-
tations of functions of whole-year ages can equivalently be calculated using
the expectation formulas for discrete or continuous random variables. In the
discrete case, however, the expressions require knowledge only of the prob-
abilities S(y) of survival for whole-year or integer ages y. Indeed, in the
preceding (discrete-version) formula, for E(g([T ]) |T ≥ x), let k ≥ x be
replaced by k = x + j, and express

S(k) − S(k + 1)

S(x)
=

S(x + j)

S(x)

(
1 − S(x + j + 1

S(x + j)

)
= jpx (1 − px+j)

Then

E(g([T ]) |T ≥ x) =

ω−1∑

k=x

S(k)− S(k + 1)

S(x)
g(k) =

ω−x−1∑

j=0

jpx (1−px+j ) g(x+j)

(3.6)

Just as we did in the context of expectations of functions of the life-
table waiting-time random variable T , we can interpret the Expectation as a
weighted average of values (costs, in this discussion) which can be incurred in
each trial, weighted by the probabilities with which they occur. There is an
analogy in the continuous-variable case, where Z would be a random variable
whose approximate probabilities of falling in tiny intervals [z, z + dz] are
given by fZ(z)dz, where fZ(z) is a nonnegative density function integrating
to 1. In this case, the weighted average of cost-function values c(z) which
arise when Z ∈ [z, z + dz], with approximate probability-weights fZ(z)dz,
is written as a limit of sums or an integral, namely

∫
c(z) f(z) dz.
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3.3.1 Rules for Manipulating Expectations

We have separately defined expectation for continuous and discrete random
variables. In the continuous case, we treated the expectation of a specified
function g(T ) of a lifetime random variable governed by the survival function
S(x) of a cohort life-table, as the approximate numerical average of the values
g(Ti) over all individuals i with data represented through observed lifetime
Ti in the life-table. The discrete case was handled more conventionally,
along the lines of a ‘frequentist’ approach to the mathematical theory of
probability. First, we observed that our calculations with Binomial(n, p)
random variables justified us in saying that the sum X = Xn of a large
number n of independent coin-toss variables ε1, . . . , , εn, each of which is
1 with probability p and 0 otherwise, has a value which with very high
probability differs from n·p by an amount smaller than δn, where δ > 0 is
an arbitrarily small number not depending upon n. The Expectation p of
each of the variables εi is recovered approximately as the numerical average
X/n = n−1

∑n
i=1 εi of the independent outcomes εi of independent trials.

This Law of Large Numbers extends to arbitrary sequences of independent
and identical finite-valued discrete random variables, saying that

if Z1, Z2, . . . are independent random variables, in the sense
that for all k ≥ 2 and all numbers r,

P (Zk ≤ r |Z1 = z1, . . . , Zk−1 = zk−1 ) = P (Z1 ≤ r)

regardless of the precise values z1, . . . , zk−1, then for each δ > 0,
as n gets large

P
(
|n−1

n∑

i=1

c(Zi) − E(c(Z1))| ≥ δ
)

−→ 0 (3.7)

where, in terms of the finite set S of possible values of Z ,

E(c(Z1)) =
∑

z∈S

c(z)P (Z1 = z) (3.8)

We do not give any further proof here, but the motivating arguments given,
together with straightforward manipulations using the result of Theorem 3.7,
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are an essentially complete proof of (3.7). It is also a fact that the Law of
Large Numbers given in equation (3.7) continues to hold if the definition
of independent sequences of random variables Zi is suitably generalized, as
long as either

Zi are discrete with infinitely many possible values defining a
set S, and the expectation is as given in equation (3.8) above
whenever the function c(z) is such that

∑

z∈S

|c(z)|P (Z1 = z) < ∞

or

the independent random variables Zi are continuous, all with
the same density f(t) such that P (q ≤ Z1 ≤ r) =

∫ r

q
f(t) dt,

and expectation is defined by

E(c(Z1)) =

∫ ∞

−∞
c(t) f(t) dt (3.9)

whenever the function c(t) is such that

∫ ∞

−∞
|c(t)| f(t) dt < ∞

All of this shows that there really is no choice in devising an appropri-
ate definition of expectations of cost-functions defined in terms of random
variables Z, whether discrete or continuous. For the rest of this book, and
more generally in applications of probability within actuarial science, we are
interested in evaluating expectations of various functions of random variables
related to the contingencies and uncertain duration of life. Many of these
expectations concern superpositions of random amounts to be paid out after
random durations. The following rules for the manipulation of expectations
arising in such superpositions considerably simplify the calculations. Assume
in what follows that all random payments and times are functions of a single
lifetime random variable T .
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(1). If a payment consists of a nonrandom multiple (e.g., face-amount
F ) times a random amount c(T ), then the expectation of the payment is
the product of F and the expectation of c(T ):

Discrete case: E(Fc(T )) =
∑

t

F c(t)P (T = t)

= F
∑

t

c(t)P (T = t) = F · E(c(T ))

Continuous case: E(Fc(T )) =

∫
F c(t)f(t) dt = F

∫
c(t)f(t) dt = F ·E(c(T ))

(2). If a payment consists of the sum of two separate random payments
c1(T ), c2(T ) (which may occur at different times, taken into account by
treating both terms ck(T ) as present values as of the same time), then the
overall payment has expectation which is the sum of the expectations of the
separate payments:

Discrete case: E(c1(T ) + c2(T )) =
∑

t

(c1(t) + c2(t))P (T = t)

=
∑

t

c1(t)P (T = t) +
∑

t

c2(t)P (T = t) = E(c1(T )) + E(c2(T ))

Continuous case: E(c1(T ) + c2(T )) =

∫
(c1(t) + c2(t)) f(t) dt

=

∫
c1(t) f(t) dt +

∫
c2(t) f(t) dt = E(c1(T )) + E(c2(T ))

Thus, if an uncertain payment under an insurance-related contract, based
upon a continuous lifetime variable T with density fT , occurs only if
a ≤ T < b and in that case consists of a payment of a fixed amount F
occurring at a fixed time h, then the expected present value under a fixed
nonrandom interest-rate i with v = (1 + i)−1, becomes by rule (1) above,

E(vh F I[a≤T<b]) = vh F E(I[a≤T<b])

where the indicator-notation I[a≤T<b] denotes a random quantity which is
1 when the condition [a ≤ T < b] is satisfied and is 0 otherwise. Since
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an indicator random variable has the two possible outcomes {0, 1} like the
coin-toss variables εi above, we conclude that E(I[a≤T<b]) = P (a ≤ T <

b) =
∫ b

a
fT (t) dt, and the expected present value above is

E(vh F I[a≤T<b]) = vh F

∫ b

a

fT (t) dt

(3). The expectation of a nonnegative-integer-valued random variable
can sometimes be simplified considerably by means of the following useful
Lemma.

Lemma 3.1 Let Z be a nonnegative-integer-valued random variable. Then

EZ =
∞∑

j=1

P (Z ≥ j) (3.10)

The Lemma is proved using the rule (Fubini-Tonelli theorem for double
summation) that the order of a double summation of nonnegative summands
can always be reversed:

EZ =

∞∑

k=0

k pZ(k) =

∞∑

k=1

k∑

j=1

pX(k) =

∞∑

j=1

∞∑

k=j

pZ(k) =

∞∑

j=1

P (Z ≥ j)

3.3.2 Curtate Expectation of Life

One example of a function of the number [T ] of whole years of life, whose
conditional expectation is useful and interpretable, is the whole-year residual
life [T ]−x for a life aged x, where x is an integer age. The expectation, nec-
essarily conditional on the attained age x, is called curtate mean residual
life or curtate life expectancy,

ex = E( [T ]− x |T ≥ x ) =
ω−1∑

t=x

P (t ≤ T < t + 1)

P (T ≥ x)
(t− x) (3.11)
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Substituting the formula (3.6) with g(t) = t − x gives this formula in
the alternative form

ex = E( [T ]− x |T ≥ x ) =
ω−x−1∑

j=0

jpx (1 − px+j) j (3.12)

A third useful version of this formula can be found by applying formula
(3.10) of Lemma 3.1 to the nonnegative integer valued random variable Z =
[T ]− x with probability masses calculated conditionally given T ≥ x. This
yields

ex = E( [T ]− x |T ≥ x ) =
ω−x−1∑

j=1

P ([T ]− x ≥ j |T ≥ x) =
ω−x−1∑

j=1

jpx

(3.13)

The extension of these expectation formulas to give mean residual life-
times which are not truncated to whole years rests on survival function and
density formulas which specify mortality rates between birthdays. The fol-
lowing two sections are devoted to a deeper study of continuous mortality
models and interpolation approximations.

3.4 Interpreting Force of Mortality

This Section consists of remarks, relating the force of mortality for a con-
tinuously distributed lifetime random variable T (with continuous density
function f ) to conditional probabilities for discrete random variables. In-
deed, for m large (e.g. as large as 4 or 12), the discrete random variable
[Tm]/m gives a close approximation to T and represents the attained age
at death measured in whole-number multiples of fractions h = one mth

of a year. (Here [·] continues to denote the greatest integer less than or
equal to its real argument.) Since surviving an additional time t = nh can
be viewed as successively surviving to reach times h, 2h, 3h, . . . , nh, and
since (by the definition of conditional probability)

P (A1 ∩ · · · ∩ An) = P (A1) · P (A2|A1) · · ·P (An|A1 ∩ · · · ∩ An−1)

we have (with the interpretation Ak = {T ≥ x + kh} )

nhpx = hpx · hpx+h · hpx+2h · · · hpx+(n−1)h
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The form in which this formula is most often useful is the case h = 1: for
integers k ≥ 2,

kpx = px · px+1 · px+2 · · · px+k−1 (3.14)

Every continuous waiting-time random variable can be approximated by
a discrete random variable with possible values which are multiples of a
fixed small unit h of time, and therefore the random survival time can
be viewed as the (first failure among a) succession of results of a sequence
of independent coin-flips with successive probabilities hpkh of heads. By
the Mean Value Theorem applied up to second-degree terms on the function
S(x + h) expanded about h = 0,

S(x+h) = S(x) + hS ′(x) +
h2

2
S ′′(x+τh) = S(x) − hf(x) − h2

2
f ′(x+τh)

for some 0 < τ < 1, if f is continuously differentiable. Therefore, using
the definition of µ(x) as f(x)/S(x) given on page 49,

hpx = 1 − h ·
[S(x)− S(x + h)

hS(x)

]
= 1 − h

(
µ(x) +

h

2

f ′(x + τh)

S(x)

)

Going in the other direction, the previously derived formula

hpx = exp

(
−
∫ x+h

x

µ(y) dy

)

can be interpreted by considering the fraction of individuals observed to reach
age x who thereafter experience hazard of mortality µ(y) dy on successive
infinitesimal intervals [y, y+dy] within [x, x+h). The lives aged x survive
to age x + h with probability equal to a limiting product of infinitesimal
terms (1−µ(y) dy) ∼ exp(−µ(y) dy), yielding an overall conditional survival
probability equal to the negative exponential of accumulated hazard over
[x, x + h).

3.5 Interpolation Between Integer Ages

Cohort life-table data lx and the probability quantities jpx derived from
them (for integers j) depend on and are determined by the survival func-
tion S(k) values only at integer arguments k. Yet many expectations of
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functions important in actuarial applications necessarily involve the survival
function values between integer ages. It is possible to approximate these only
because, for all but the very youngest and oldest ages, the survival function
for human lives is very smooth within years of age, with derivatives that are
not dramatically large and themselves do not change rapidly. In terms of
calculus concepts, the function value S(x + t) for integer x and 0 ≤ t < 1
is given approximately by the Taylor series formula

S(x + t) = S(x) + t S ′(x) +
1

2
t2 S ′′(x + θt)

= S(x) − t f ′(x) − 1

2
t2 f ′(x + θt) (3.15)

where θ ∈ (0, 1) in the argument of S ′′ in the third term (the mean-value
type remainder) of the first line, and where the second line uses the definition
f(x + t) = −S ′(x + t) valid at all nonnegative integers x and t ∈ [0, 1).

While we will later use Taylor expansions like (3.15) to approximate
expectations E(g(T )) and conditional expectations E(g(T ) |T ≥ x), for
now we focus on understanding what (3.15) says about the approximate
probability distribution of the lifetime variable T within years of age. If
S ′′ = −f ′ is small, as is undoubtedly true for human lifetime between ages
2 and 75 in modern public health conditions, then it is tempting to im-
pose the direct modelling assumption S(x + t) ≡ S(x) − tf(x) for integer
x and t ∈ [0, 1), together with continuity of S at all integer points.
This assumption, often called the actuarial approximation, says that for any
0 ≤ a < b < 1,

P (T ∈ [x+a, x+b) | [T ] = x) =
S(x + a) − S(x + b)

(S(x) − S(x + 1)
=

(b − a) f(x)

f(x)
= b−a

In other words, the ‘actuarial approximation’ says that failures known to
occur within the year between the x and x+1 birthdays are actually uniformly
distributed (have constant conditional density of 1) within that year.

The ‘actuarial-approximation’ assumption can be understood either as
piecewise linearity, on exact-age intervals [x, x + 1), of the continuous sur-
vival function S(y) or equivalently as piecewise constancy of the density
function f(y) = −S ′(y). This assumption is by far the most commonly
used one in actuarial work. Two other related possible approximations can
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be obtained by Taylor expanding not S(x+t) itself but rather the functions
log S(x + t) or 1/S(x + t). It turns out that the first of these alternative
assumptions, piecewise linearity of log S(x + t) or equivalently piecewise
constancy within intervals x, x + 1) of d

dy
log S(y) = −f(y)/S(y) ≡ µ(y)

is well known and has historically been widely used by biostatisticians. Many
models in biostatistics or reliability have been formulated with piecewise con-
stant hazards (recall that biostatisticians call µ(y) the hazard function while
actuaries call it force of mortality). The third assumption introduced here,
that of piecewise linearity of 1/S(y), is called the Balducci hypothesis,
and is studied by actuarial students largely for historical reasons and as a
source of examination problems, since it will be seen immediately below for-
mula (3.22) to have properties which make it unsuitable as a realistic model
for survival.

To proceed formally, assume that values S(x) for x = 0, 1, 2, . . . have
been specified or estimated. Approximations to S(y), f(y) and µ(y)
between integers are usually based on one of the following assumptions:

(i) (Piecewise-uniform density) f(x + t) is constant for 0 ≤ t < 1 ;

(ii) (Piecewise-constant hazard) µ(x + t) is constant for 0 ≤ t < 1 ;

(iii) (Balducci hypothesis) 1/S(x + t) is linear for 0 ≤ t < 1 .

For integers x and 0 ≤ t ≤ 1,

S(x + t)
− lnS(x + t)
1/S(x + t)



 is linear in t under





assumption (i)
assumption (ii)
assumption (iii)

(3.16)

Under assumption (i), the slope of the linear function S(x + t) at t = 0 is
− f(x), which implies easily that S(x + t) = S(x)− tf(x), i.e.,

f(x) = S(x) − S(x + 1) , and µ(x + t) =
f(x)

S(x) − tf(x)
(3.17)

so that under (i),

µ(x +
1

2
) = fT (x +

1

2
)
/

ST (x +
1

2
) (3.18)

Under (ii), where µ(x + t) = µ(x), (3.18) also holds, and

S(x + t) = S(x) e−t µ(x) , and pk =
S(x + 1)

S(x)
= e−µ(x)
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Under (iii), for 0 ≤ t < 1,

1

S(x + t)
=

1

S(x)
+ t
( 1

S(x + 1)
− 1

S(x)

)
(3.19)

When equation (3.19) is multiplied through by S(x + 1) and terms are
rearranged, the result is

S(x + 1)

S(x + t)
= t + (1 − t)

S(x + 1)

S(x)
= 1 − (1 − t) qx (3.20)

Recalling that tqx = 1 − (S(x + t)/S(x)), reveals assumption (iii) to be
equivalent to

1−tqx+t = 1 − S(x + 1)

S(x + t)
= (1 − t)

(
1 − S(x + 1)

S(x)

)
= (1 − t) qx (3.21)

Next differentiate the logarithm of the formula (3.20) with respect to t, to
show (still under (iii)) that

µ(x + t) = − ∂

∂t
ln S(x + t) =

qx

1 − (1 − t)qx
(3.22)

Apart from any other property which the Balducci interpolation assump-
tion (iii) might have, formula (3.19) immediately shows that the within-year
force of mortality µ(x + t), 0 ≤ t < 1, is actually a decreasing function
a feature which seems particularly unrealistic from middle to advanced ages
within human lifetimes. By contrast, the within-year force of mortality un-
der assumption (i) as given in (3.17) is evidently increasing, and almost by
definition the piecewise-constant hazard assumption (ii) entails within-year
constancy of the force of mortality.

The most frequent insurance application for the interpolation assump-
tions (i)-(iii) and associated survival-probability formulas is to express prob-
abilities of survival for fractional years in terms of probabilities of whole-year
survival. In terms of the notations tpx and qx for integers x and 0 < t < 1,
the formulas are:

tpx = 1 − (S(x) − t(S(x + 1) − S(x))

S(x)
= 1 − t qx under (i) (3.23)

tpx =
S(x + t)

S(x)
=
(
e−µ(x)

)t
= (1 − qx)

t under (ii) (3.24)
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tpx =
S(x + t)

S(x + 1)

S(x + 1)

S(x)
=

1 − qx

1 − (1 − t)qx

under (iii) (3.25)

The application of all of these formulas can be understood in terms of the
formula for expectation of a function g(T ) of the lifetime random variable T .
(For a concrete example, think of g(T ) = (1 + i)−T as the present value to
an insurer of the payment of $1 which it will make instantaneously at the
future time T of death of a newborn which it undertakes to insure.) Then
assumptions (i), (ii), or (iii) via respective formulas (3.23), (3.24), and (3.25)
are used to substitute into the final expression of the following formulas:

E
(
g(T )

)
=

∫ ∞

0

g(t) f(t) dt =
ω−1∑

x=0

∫ 1

0

g(t + x) f(t + x) dt

=
ω−1∑

x=0

S(x)

∫ 1

0

g(t + x)
(
− ∂

∂t
tpx

)
dt

3.5.1 Life Expectancy – Definition and Approximation

In terms of a survival function f and S modelling the distribution of
exact age at death within years of integer age, we can extend the notion of
expected remaining life from the curtate to the complete expectation for a
life aged x of (T − x) :

complete expectation of life = e̊x = E(T − x |T ≥ x) (3.26)

This quantity is also called expected residual life or, in demography, life ex-
pectancy. This quantity is larger than the the curtate life expectancy ex

because, for a life just completing its x’th year and surviving to exact age
x + j + t , with x, j integers and 0 ≤ t < 1 the complete residual life
is T − x = j + t while the curtate residual life is [T ] − x = j. Thus by
definition

e̊x − ex = E(T − [T ] |T ≥ x ) ∈ [0, 1)

since this difference is the expectation or weighted average of a quantity
between 0 and 1.

The integral formula for life expectancy can be written in any of the three
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ways

e̊x =

∫ ω

x

(y − x)
f(y)

S(x)
dy =

∫ ω−x

0

t tpx µ(x + t) dt =

∫ ω−x

0
tpx (3.27)

Of these expressions, the first is the basic conditional expectation formula
(1.5) with g(T ) = T − x. The second is obtained from it by the change of
variable t = y − x, using the identities

f(x + t)/S(x) = µ(x + t)S(x + t)/S(x) = µ(x + t) tpx

The third is a continuous-time analogue of Lemma 3.1, obtained from the
second expression in (3.27) via integration by parts, using u = t and dv =
µ(x + t) tpx dt = −(1/S(x)) d(S(x + t)).

Under the ”actuarial approximation” (assumption (i)) of uniform lifetime
distribution within whole years of age, we saw above that T−[T ] is a random
variable with values in [0, 1) which is uniformly distributed (with constant
density 1). Therefore, using the formula (1.4) for expectation, we find

under (i): e̊x − ex =

∫ 1

0

t dt =
1

2
(3.28)

There are no formulas nearly as simple for the difference between complete
and curtate life expectancies under interpolation assumptions (ii) or (iii).

3.6 Some Special Integrals

While actuaries ordinarily do not allow themselves to represent real life-table
survival distributions by simple finite-parameter families of theoretical distri-
butions (for the good reason that such distributions never approximate the
real large-sample life-table data well enough), it is important for the student
to be conversant with several integrals which would arise by substituting
some of the theoretical models into formulas for various net single premiums
and expected lifetimes.

Consider first the Gamma functions and integrals arising in connection
with Gamma survival distributions. The Gamma function Γ(α) is defined
by

Γ(α) =

∫ ∞

0

xα−1 e−x dx , α > 0
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This integral is easily checked to be equal to 1 when α = 1, giving
the total probability for an exponentially distributed random variable, i.e.,
a lifetime with constant force-of-mortality 1. For α = 2, the integral
is the expected value of such a unit-exponential random variable, and it is
a standard integration-by-parts exercise to check that it too is 1. More
generally, the integral Gamma(α + 1) for positive integer α is the αth

moment of the Exponential distribution with parameters λ = 1. Integration
by parts in the Gamma integral with u = xα and dv = e−x dx immediately
yields the famous recursion relation for the Gamma integral, first derived
by Euler, and valid for all α > 0 :

Γ(α + 1) =

∫ ∞

0

xα e−x dx =
(
−xα e−x

) ∣∣∣
∞

0
+

∫ ∞

0

α xα−1 e−x dx = α · Γ(α)

This relation, applied inductively, shows that for all positive integers n,

Γ(n + 1) = n · (n − 1) · · · 2 · Γ(1) = n!

The only other simple-to-derive formula explicitly giving values for (non-
integer) values of the Gamma function is Γ( 1

2
) =

√
π, obtained as follows:

Γ(
1

2
) =

∫ ∞

0

x−1/2 e−xdx =

∫ ∞

0

e−z2/2
√

2 dz

Here we have made the integral substitution x = z2/2, x−1/2 dx =
√

2 dz.
The last integral can be given by symmetry, using the change of variable
u = −z and the fact that the integrand is an even function, to show that

∫ 0

−∞
e−z2/2 dz =

∫ ∞

0

e−u2/2 du =
1

2

∫ ∞

−∞
e−x2/2 dx =

1

2

√
2π =

√
π√
2

where the last equality is equivalent to the fact (proved in most calculus
texts as an exercise in double integration using change of variable to polar
coordinates) that the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz (3.29)

is a bona-fide distribution function with limit equal to 1 as x → ∞. The
symmetry of the normal density guarantees that half of its probability is
assigned to each of (−∞, 0) and [0,∞), so that Φ(0) = 1/2.



3.6. SOME SPECIAL INTEGRALS 99

One of the integrals which arises in calculating expected remaining life-
times for Weibull-distributed variables is a Gamma integral, after integration-
by-parts and a change-of-variable. Recall that the Weibull density with pa-
rameters λ, γ is

f(t) = λ γ tγ−1 e−λ tγ , t > 0

so that S(x) = exp(−λxγ). The expected remaining life for a Weibull-
distributed life aged x is calculated, via an integration by parts with u =
t− x and dv = f(t)dt = −S ′(t)dt, as

∫ ∞

x

(t − x)
f(t)

S(x)
dt =

1

S(x)

[
− (t − x) e−λtγ

∣∣∣
∞

x
+

∫ ∞

x

e−λtγ dt
]

The first term in square brackets evaluates to 0 at the endpoints, and the
second term can be re-expressed via the change-of-variable w = λ tγ with
(1/γ)w1/γ−1 dw = λ1/γ dt, to give in the Weibull example,

E(T − x |T ≥ x) = eλxγ 1

γ
λ−1/γ

∫ ∞

λ xγ

w(1/γ)−1 e−w dw

= Γ(
1

γ
) eλxγ 1

γ
λ−1/γ

(
1 −G1/γ(λxγ)

)

where we denote by Gα(z) the Gamma distribution function with shape
parameter α,

Gα(z) =
1

Γ(α)

∫ z

0

vα−1 e−v dv

and the integral on the right-hand side is called the incomplete Gamma
function. Values of Gα(z) can be found either in published tables which
are now quite dated, or among the standard functions of many mathemati-
cal/statistical computer packages, such as Matlab or R. One particular case
of these integrals, the case α = 1/2 , can be re-cast in terms of the standard
normal distribution function Φ(·). We change variables by v = y2/2 to
obtain for z ≥ 0,

G1/2(z) =
1

Γ(1/2)

∫ z

0

v−1/2 e−v dv =
1√
π

∫ √
2z

0

√
2 e−y2/2 dy

=

√
2

π
·
√

2π · (Φ(
√

2z) − Φ(0)) = 2Φ(
√

2z) − 1
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One further expected-lifetime calculation with a common type of distri-
bution gives results which simplify dramatically and become amenable to
numerical calculation. Suppose that the lifetime random variable T is as-
sumed lognormally distributed with parameters m, σ2. Then the expected
remaining lifetime of a life aged x is

E(T − x |T ≥ x ) =
1

S(x)

∫ ∞

x

t
d

dt
Φ(

log(t) − log(m)

σ
) dt − x

Now change variables by y = (log(t) − log(m))/σ = log(t/m)/σ, so that
t = meσy, and define in particular

x′ =
log(x)− log(m)

σ

Recalling that Φ′(z) = exp(−z2/2)/
√

2π , we find

E(T − x |T ≥ x ) =
1

1 − Φ(x′)

∫ ∞

x′

m√
2π

eσy−y2/2 dy − x

The integral simplifies after completing the square σy − y2/2 =
σ2/2 − (y − σ)2/2 in the exponent of the integrand and changing variables
by z = y − σ. The result is:

E(T − x |T ≥ x ) =
meσ2/2

1 −Φ(x′)

(
1 −Φ(x′ − σ)

)
− x , x′ =

log(x/m)

σ

3.7 Exercise Set 3

(1). Show that: ∂
∂x tpx = tpx · (µx − µx+t) .

(2). For a certain value of x, it is known that tqx = kt over the time-
interval t ∈ [0, 3], where k is a constant. Express µx+2 as a function of
k.

(3). Suppose that an individual aged 20 has random lifetime (= exact age
at death) T with continuous density function

fT (t) = 0.02 (t − 20) e−(t−20)2/100 , t > 20
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(a) If this individual has a contract with your company that you must
pay his heirs $106 · (1.4 − T/50) on the date of his death between ages 20
and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08(T − 20)) (i.e. by the effective interest
rate of e.08−1 per year) to calculate the present value of the payment, then
what is the expected present value of the insurance contract ?

Hint for both parts: After a change of variables, the integral in (a)
can be evaluated in terms of incomplete Gamma integrals

∫∞
c

sα−1 e−s ds,
where the complete Gamma integrals (for c=0) are known yield the Gamma
function Γ(α) = (α − 1)!, for integer α > 0.

(4). Suppose that a life-table mortality pattern is this: from ages 20 through
60, twice as many lives die in each 5-year period as in the previous five-year
period. Find the probability that a life aged 20 will die between exact ages 40
and 50. If the force of mortality can be assumed constant over each five-year
age period (20-24, 25-29, etc.), and if you are told that l60/l20 = 0.8, then
find the probability that a life aged 20 will survive at least until exact age
48.0 .

(5). Obtain an expression for µx if lx = k sx wx2
gcx

, where k, s, w, g, c
are positive constants.

(6). Show that:
∫∞

0
lx+t µx+t dt = lx .

(7). A man wishes to accumulate $50, 000 in a fund at the end of 20 years.
If he deposits $1000 in the fund at the end of each of the first 10 years and
$1000+x in the fund at the end of each of the second 10 years, then find x
to the nearest dollar, where the fund earns an effective interest rate of 6% .

(8). Express in terms of annuity-functions a
(m)
Ne the present value of an

annuity of $100 per month paid the first year, $200 per month for the second
year, up to $1000 per month the tenth year. Find the numerical value of the
present value if the effective annual interest rate is 7% .

(9). Find upper bounds for the following Binomial probabilities, and com-
pare them with the exact values calculated via computer (e.g., using a spread-
sheet or exact mathematical function such as pbinom in Splus) :

(a). The probability that in 1000 Bernoulli trials with success-
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probability 0.4, the number of successes lies outside the (inclusive) range
[364, 446].

(b). The probability that of 1650 lives aged exactly 45, for whom

20p45 = 0.72, no more than 1075 survive to retire at age 65.

(10). If the force of mortality governing a cohort life-table is such that

µt =
2

1 + t
+

2

100 − t
for real t , 0 < t < 100

then find the number of deaths which will be expected to occur between ages
1 and 4, given that the radix l0 of the life-table is 10, 000.

(11). Find the expected present value at 5% APR of an investment whose
proceeds will with probability 1/2 be a payment of $10, 000 in exactly 5
years, and with the remaining probability 1/2 will be a payment of $20, 000
in exactly 10 years.
Hint: calculate the respective present values V1, V2 of the payments in each
of the two events with probability 0.5, and find the expected value of a discrete
random variable which has values V1 or V2 with probabilities 0.5 each.

(12). Derive the formula for the 2’nd and 3’rd moments (that is,
∫

f(t) g(t) dt
for g(t) = tr, r = 2, 3,) of the Gamma(α, λ) density

f(t) = (λα/Γ(α!)) tα−1 e−λ t I[t≥0]

as a function of parameters α and λ. Hint: change variables by y = λt.

(13). Derive the formula for the 2’nd and 3’rd moments of the

Weibull(α, β) density f(t) = β α tα−1 e−β tα I[t≥0]

as a function of parameters α and β. Hint: change variables appropriately
and use the Gamma function.
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3.8 Worked Examples

Example 1. Assume that a cohort life-table population satisfies l0 = 104

and

dx =





200 for 0 ≤ x ≤ 14
100 for 15 ≤ x ≤ 48
240 for 49 ≤ x ≤ 63

(a) Suppose that an insurer is to pay an amount $100 ·(64−X) (without
regard to interest or present values related to the time-deferral of the payment)
for a newborn in the life-table population, if X denotes the attained integer
age at death. What is the expected amount to be paid ?

(b) Find the expectation requested in (a) if the insurance is purchased for
a life currently aged exactly 10 .

(c) Find the expected present value at 4% interest of a payment of $1000
to be made at the end of the year of death of a life currently aged exactly 20.

The first task is to develop an expression for survival function and density
governing the cohort life-table population. Since the numbers of deaths are
constant over intervals of years, the survival function is piecewise linear, and
the life-distribution is piecewise uniform because the the density is piecewise
constant. Specifically for this example, at integer values y,

ly =





10000 − 200y for 0 ≤ y ≤ 15
7000 − 100(y − 15) for 16 ≤ y ≤ 49
3600 − 240(y − 49) for 50 ≤ y ≤ 64

It follows that the terminal age for this population is ω = 64 for this
population, and S(y) = 1 − 0.02 y for 0 ≤ y ≤ 15, 0.85 − 0.01 y for
15 ≤ y ≤ 49, and 1.536− .024 y for 49 ≤ y ≤ 64. Alternatively, extending
the function S linearly, we have the survival density f(y) = −S ′(y) = 0.02
on [0, 15), = 0.01 on [15, 49), and = 0.024 on [49, 64].

Now the expectation in (a) can be written in terms of the random lifetime
variable with density f as

∫ 15

0

0.02 · 100 · (64 − [y]) dy +

∫ 49

15

0.01 · 100 · (64 − [y]) dy
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+

∫ 64

49

0.024 · 100 · (64 − [y]) dy

The integral has been written as a sum of three integrals over different ranges
because the analytical form of the density f in the expectation-formula∫

g(y)f(y)dy is different on the three different intervals. In addition, observe
that the integrand (the function g(y) = 100(64− [y]) of the random lifetime
Y whose expectation we are seeking) itself takes a different analytical form
on successive one-year age intervals. Therefore the integral just displayed can
immediately be seen to agree with the summation formula for the expectation
of the function 100(64−X) for the integer-valued random variable X whose
probability mass function is given by

P (X = k) = dk/l0

The formula is

E(g(Y )) = E(100(64 − X)) =

14∑

k=0

0.02 · 100 · (64 − k) +

48∑

k=15

0.01 · 100 · (64 − k) +

63∑

k=49

0.024 · 100 · (64 − k)

Thus the solution to (a) is given (after the change-of-variable j = 64 − k),
by

2.4

15∑

j=1

j +

49∑

j=16

j + 2

64∑

j=50

j

The displayed expressions can be summed either by a calculator program or
by means of the easily-checked formula

∑n
j=1 j = j(j + 1)/2 to give the

numerical answer $3103 .

The method in part (b) is very similar to that in part (a), except that
we are dealing with conditional probabilities of lifetimes given to be at least
10 years long. So the summations now begin with k = 10, or alterna-
tively end with j = 64 − k = 54, and the denominators of the conditional
probabilities P (X = k|X ≥ 10) are l10 = 8000. The expectation in (b)
then becomes

14∑

k=10

200

8000
·100 · (64−k) +

48∑

k=15

100

8000
·100 · (64−k) +

63∑

k=49

240

8000
·100 · (64−k)
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which works out to the numerical value

3.0
15∑

1

j + 1.25
49∑

16

j + 2.5
54∑

50

j = $2391.25

Finally, we find the expectation in (c) as a summation beginning at k =
20 for a function 1000 · (1.04)−X+19 of the random variable X with
conditional probability distribution P (X = k|X ≥ 20) = dk/l20 for k ≥ 20.
(Note that the function 1.04−X+19 is the present value of a payment of 1
at the end of the year of death, because the end of the age- X year for an
individual currently at the 20th birthday is X − 19 years away.) Since
l20 = 6500, the answer to part (c) is

1000
{ 48∑

k=20

100

6500
(1.04)19−k +

63∑

k=49

240

6500
(1.04)19−k

}

= 1000
( 1

65

1 − 1.04−29

0.04
+

24

650
1.04−29 1 − (1.04)−15

0.04

)
= 392.92

Example 2. Find the change in the expected lifetime of a cohort life-table
population governed by survival function S(x) = 1− (x/ω) for 0 ≤ x ≤ ω
if ω = 80 and

(a) the force of mortality µ(y) is multiplied by 0.9 at all exact ages
y ≥ 40, or

(b) the force of mortality µ(y) is decreased by the constant amount 0.1
at all ages y ≥ 40.

The force of mortality here is

µ(y) = − d

dy
ln(1 − y/80) =

1

80 − y

So multiplying it by 0.9 at ages over 40 changes leaves unaffected the
density of 1/80 for ages less than 40, and for ages y over 40 changes
the density from f(y) = 1/80 to

f∗(y) = − d

dy

(
S(40) exp(−0.9

∫ y

40

(80 − z)−1 dz)
)
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= − d

dy

(
0.5 e0.9 ln((80−y)/40)

)
= −0.5

d

dy

(
80 − y

40

)0.9

=
0.9

80
(2 − y/40)−0.1

Thus the expected lifetime changes from
∫ 80

0
(y/80) dy = 40 to

∫ 40

0

(y/80) dy +

∫ 80

40

y
0.9

80
(2 − y/40)−0.1 dy

Using the change of variable z = 2 − y/40 in the last integral gives the
expected lifetime = 10 + .45(80/.9 − 40/1.9) = 40.53.

Example 3. Suppose that you have available to you two investment possi-
bilities, into each of which you are being asked to commit $5000. The first
investment is a risk-free bond (or bank savings-account) which returns com-
pound interest of 5% for a 10-year period. The second is a ‘junk bond’
which has probability 0.6 of paying 11% compound interest and returning
your principal after 10 years, probability 0.3 of paying yearly interest at
11% for 5 years and then returning your principal of $5000 at the end
of the 10th year with no further interest payments, and probability 0.1
of paying yearly interest for 3 years at 11% and then defaulting, paying
no more interest and not returning the principal. Suppose further that the
going rate of interest with respect to which present values should properly
be calculated for the next 10 years will either be 4.5% or 7.5%, each
with probability 0.5. Also assume that the events governing the junk bond’s
paying or defaulting are independent of the true interest rate’s being 4.5%
versus 7.5% for the next 10 years. Which investment provides the better
expected return in terms of current (time-0) dollars ?

There are six relevant events, named and displayed along with their prob-
abilities in the following table, corresponding to the possible combinations
of true interest rate (Low versus High) and payment scenarios for the junk
bond (Full payment, Partial interest payments with return of principal, and
Default after 3 years’ interest payments):
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Event Name Description Probability

A1 Low ∩ Full 0.30
A2 Low ∩ Partial 0.15
A3 Low ∩ Default 0.05
A4 High ∩ Full 0.30
A5 High ∩ Partial 0.15
A6 High ∩ Default 0.05

Note that because of independence (first defined in Section 1.1), the prob-
abilities of intersected events are calculated as the products of the separate
probabilities, e.g.,

P (A2) = P (Low) · P (Partial) = (0.5) · (0.30) = 0.15

Now, under each of the events A1, A2, A3, the present value of the first
investment (the risk-free bond) is

5000
{ 10∑

k=1

0.05 (1.045)−k + (1.045)−10
}

= 5197.82

On each of the events A4, A5, A6, the present value of the first investment
is

5000
{ 10∑

k=1

0.05 (1.075)−k + (1.075)−10
}

= 4141.99

Thus, since

P (Low) = P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3) = 0.5

the overall expected present value of the first investment is

0.5 · (5197.82 + 4141.99) = 4669.90

Turning to the second investment (the junk bond), denoting by PV the
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present value considered as a random variable, we have

E(PV |A1)/5000 = 0.11
10∑

k=1

(1.045)−k + (1.045)−10 = 1.51433

E(PV |A4)/5000 = 0.11
10∑

k=1

(1.075)−k + (1.075)−10 = 1.24024

E(PV |A2)/5000 = 0.11
5∑

k=1

(1.045)−k + (1.045)−10 = 1.12683

E(PV |A5)/5000 = 0.11
5∑

k=1

(1.075)−k + (1.075)−10 = 0.93024

E(PV |A3)/5000 = 0.11
3∑

k=1

(1.045)−k = 0.302386

E(PV |A6)/5000 = 0.11
3∑

k=1

(1.075)−k = 0.286058

Therefore, we conclude that the overall expected present value E(PV ) of
the second investment is

6∑

i=1

E(PV · IAi) =
6∑

i=1

E(PV |Ai)P (Ai) = 5000 · (1.16435) = 5821.77

So, although the first-investment is ‘risk-free’, it does not keep up with infla-
tion in the sense that its present value is not even as large as its starting value.
The second investment, risky as it is, nevertheless beats inflation (i.e., the
expected present value of the accumulation after 10 years is greater than the
initial face value of $5000) although with probability P (Default ) = 0.10
the investor may be so unfortunate as to emerge (in present value terms)
with only 30% of his initial capital.
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3.9 Appendix to Chapter 3:

Large Deviation Probabilities

Theorem 3.2 (Large Deviation Inequalities) Suppose that X is a Bi-
nomial(N, p) random variable, denoting the number of successes in N
Bernoulli(p) trials. If 1 > b > p > c > 0, then

P (X ≥ Nb) ≤ exp
{
− N

[
b ln

(
b

p

)
+ (1 − b) ln

(
1 − b

1 − p

)]}

P (X ≤ Nc) ≤ exp
{
− N

[
c ln

(
c

p

)
+ (1 − c) ln

(
1 − c

1 − p

)]}

Proof. After the first inequality in (a) is proved, the second inequality will
be derived from it. Since the event [X ≥ Nb] is the union of the disjoint
events [X = k] for k ≥ Nb, which in turn consist of all outcome-strings
(a1, . . . , aN) ∈ {0, 1}N for which

∑N
j=1 aj = k ≥ Nb, a suitable subset of

the binomial probability mass function values pX(k) are summed to provide

P (X ≥ Nb) =
∑

k:Nb≤k≤N

P (X = k) =
∑

k≥Nb

(
N

k

)
pk (1 − p)N−k

For every s > 1, this probability is

≤
∑

k≥Nb

(
N

k

)
pk (1 − p)N−k sk−Nb = s−Nb

∑

k≥Nb

(
N

k

)
(ps)k (1 − p)N−k

≤ s−Nb

N∑

k=0

(
N

k

)
(ps)k (1 − p)N−k = s−Nb (1 − p + ps)N

Here extra terms (corresponding to k < Nb) have been added in the next-
to-last step, and the binomial theorem was applied in the last step. The trick
in the proof comes now: since the left-hand side of the inequality does not
involve s while the right-hand side does, and since the inequality must be
valid for every s > 1, it remains valid if the right-hand side is minimized
over s. The calculus minimum does exist and is unique, as you can check by
calculating that the second derivative in s is always positive. The minimum
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occurs where the first derivative of the logarithm of the last expression is 0,
i.e., at s = b(1 − p)/(p(1 − b)). Substituting this value for s yields

P (X ≥ Nb) ≤
(

b (1 − p)

p (1 − b)

)−Nb (
1 − p

1 − b

)N

= exp

(
−N

[
b ln

( b

p

)
+ (1 − b) ln

(1 − b

1 − p

)])

as desired.

The second inequality follows from the first. Replace X by Y = N −X.
Since Y also is a count of ‘successes’ in Bernoulli(1 − p) trials, where the
‘successes’ counted by Y are precisely the ‘failures’ in the Bernoulli trials
defining X, it follows that Y also has a Binomial(N, q) distribution, where
q = 1 − p. Note also that c < p implies b = 1 − c > 1 − p = q. Therefore,
the first inequality applied to Y instead of X with q = 1−p replacing p
and b = 1 − c, gives the second inequality for P (Y ≥ Nb) = P (X ≤ Nc).

Note that for all r between 0, 1, the quantity r ln r
p
+(1−r) ln 1−r

1−p
as a

function of r is convex and has a unique minimum of 0 at r = p. Therefore
when b > p > c, the upper bound for N−1 lnP ([X ≥ bN ] ∪ [X ≤ cN ]) is
strictly negative and does not involve N . For an improved estimate of the
probability bounded in Theorem 3.1, let δ ∈ (0, min(p, 1−p)) be arbitrarily
small, choose b = p+ δ, c = p− δ, and combine the inequalities of part (a)
to give the precise estimate:

P (|X
N

− p| ≥ δ) ≤ 2 · exp(−Na) (3.30)

where

a = min
(
(p + δ) ln(1 + δ

p
) + (1 − p − δ) ln(1 − δ

1−p
) ,

(p − δ) ln(1 − δ
p
) + (1 − p + δ) ln(1 + δ

1−p
)
)

> 0 (3.31)

This last inequality gives a much stronger and numerically more useful upper
bound than Theorem 3.1 on the probability with which th relative frequency
of success X/N differs from the true probability p of success by as much
as δ. The probabilities of such large deviations between X/N and δ are
in fact exponentially small as a function of the number N . 2
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If the probabilities P (|X/N −p| ≥ δ) in Theorem 3.1 are generally much
smaller than the upper bounds given for them, then why are those bounds
of interest ? (These are 1 minus the probabilities illustrated in Table 1.)
First, they provide relatively quick hand-calculated estimates showing that
large batches of independentcoin-tosses are extremely unlikely to yield rela-
tive frequencies ofheads much different from the true probability or limiting
relative frequency of heads. Another, more operational, way to render this
conclusion of Theorem 3.1 is that two very large insured cohorts with the
same true survival probabilities are very unlikely to have materially different
survival experience. However, as Table 1 illustrates, for practical purposes
the normal approximation to the binomial probabilities of large discrepancies
from the expectation is generally much more precise than the large deviation
bounds of Theorem 3.2.

The bounds given in Theorem 3.2 get small with large N much more
rapidly than the simpler bounds based on the Chebychev inequality used
in proving Theorem 3.1 (cf. Hogg and Tanis 1997). We can tolerate the
apparent looseness in the bounds because in actuarial applications involving
really extreme tail probabilities (e.g. Slud and Hoesman 1989), it can be
shown that the exponential rate of decay as a function of N in the true tail-
probabilities PN = P (X ≥ Nb) or P (X ≤ Nc) in Theorem 3.2 (i.e., the
constants appearing in square brackets in the exponents on the right-hand
sides of the bounds) are exactly the right ones: no larger constants replacing
them could give correct bounds.
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3.10 Useful Formulas from Chapter 3

Binomial(N, p) probability P (X = k) =

(
N

k

)
pk (1 − p)N−k

p. 75

Discrete r.v. Expectation E(c(Z)) =
m∑

i=1

c(zi) pZ(zi)

p. 85

Non-neg. integer-valued r.v. Expectation E(Z) =
∞∑

j=1

P (Z ≥ j)

p. 90

Curtate life expectancy ex =
ω−x−1∑

j=1

jpx

p. 91

kpx = px px+1 px+2 · · · px+k−1 , k ≥ 1 integer

p. 92

k/mpx =
k−1∏

j=0

1/mpx+j/m , k ≥ 1 integer

p. 92

(i) Piecewise Unif. S(x+t) = tS(x+1)+(1−t)S(x) , x integer , t ∈ [0, 1]

p. 94
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(ii) Piecewise Const. µ : lnS(x + t) = t lnS(x + 1) + (1 − t) lnS(x)

p. 94

(iii) Balducci hypothesis
1

S(x + t)
=

t

S(x + 1)
+

1 − t

S(x)

p. 94

tpx =
S(x) − t(S(x + 1) − S(x))

S(x)
= 1 − t qx under (i)

p. 95

tpx =
S(x + t)

S(x)
=
(
e−µ(x)

)t
= (1 − qx)

t under (ii)

p. 95

tpx =
S(x + t)

S(x + 1)

S(x + 1)

S(x)
=

1 − qx

1 − (1 − t)qx
under (iii)

p. 96

Complete life expectancy e̊x =

∫ ω−x

0
spx ds

p. 97

Γ(α) =

∫ ∞

0

xα−1 e−x dx

p. 98

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz

p. 98
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Chapter 4

Expected Present Values of
Insurance Contracts

We are now ready to draw together the main strands of the development so
far: (A) expectations of discrete and continuous random variables defined
as functions of a life-table waiting time T until death, and (B) discounting
of future payment (streams) based on interest-rate assumptions. We first
define the contractual terms of and discuss relations between the major sorts
of insurance, endowment and life annuity contracts, and next to use interest
theory to define the present value of the contractual payment stream by the
insurer as a nonrandom function of the random individual lifetime T . In
each case, this leads to a formula for the expected present value of the payout
by the insurer, an amount called the net single premium or net single
risk premium of the contract because it is the single cash payment by
the insured at the beginning of the insurance period which would exactly
compensate for the average of the future payments which the insurer will
have to make.

The details of the further mathematical discussion fall into two parts:
first, the specification of formulas in terms of cohort life-table quantities for
net single premiums of insurances and annuities which pay only at whole-year
intervals; and second, the application of the various survival assumptions con-
cerning interpolation between whole years of age, to obtain the corresponding
formulas for insurances and annuities which have m payment times per year.
We close this Chapter with a discussion of instantaneous-payment insurance,

115
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continuous-payment annuity, and mean-residual-life formulas, all of which
involve continuous-time expectation integrals. We also relate these expecta-
tions with their m-payment-per-year discrete analogues, and compare the
corresponding integral and summation formulas.

Similar discussions can be found in the books Life Contingencies by Jor-
dan (1967) and Actuarial Mathematics by Bowers et al. (1997). The ap-
proach here differs in unifying concepts by discussing together all of the
different contracts, first in the whole-year case, next under the interpolation
assumption (i) with m payment periods per year, and finally in the instan-
taneous case.

4.1 Preliminaries

The topic of study in this Chapter is contracts resulting in contingent pay-
ment streams depending on the age at death T of a single individual. There
are three major types of contracts to consider: insurance, life annuities, and
endowments. More complicated kinds of contracts — which we do not dis-
cuss in detail — can be obtained by combining (superposing or subtracting)
these in various ways. Of course, other types of insurances on lives do exist,
which pay only when a single life terminates due to a specified cause or set of
causes (insurances based on multiple decrement tables), or which contractu-
ally involve more than one life (for example husband-wife pairs), insurances
and annuities on joint lives. For these further topics, we refer the reader to
Bowers et al. (1997). Only single life contracts without distinctions between
causes of mortality are discussed here.

In what follows, we adopt several uniform notations and assumptions.
Let x denote the initial integer age of the holder of the insurance, life
annuity, or endowment contract, assuming for convenience that the contract
is initiated on the holder’s birthday. Fix a nonrandom effective interest rate
i , and retain the notation v = (1+ i)−1, together with the other notations
previously discussed for annuities of nonrandom duration. Next, denote by
m the number of payment-periods per year, all times being measured from
the date of policy initiation. Thus, for given m, an insurance will pay
off at the end of the fraction 1/m of a year during which death occurs,
and life-annuities pay regularly m times per year until the annuitant dies.
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The term or duration n of the contract will always be assumed to be an
integer multiple of 1/m. Note that policy durations are all measured from
policy initiation, and therefore are smaller by x than the exact age of the
policyholder at termination. Thus, we refer to policy time for the life aged
x as the time scale with origin at policy initiation, assumed to be the x
birthday of the policy-holder, and at chronological age t for the policyholder,
we say the policy age is t − x.

The random exact age at which the policyholder dies is denoted by T ,
and all of the contracts under discussion have the property that T is the
only random variable upon which either the amount or time of payment can
depend. In examples based on m payment periods per year, the amount of
the payment will be assumed to depend on T only through the greatest
integer less than or equal to mT .

If
k

m
≤ T − x <

k + 1

m
, then Tm ≡ [mT ]

m
= x +

k

m
(4.1)

denotes the attained age at death measured in completed (1/m)’th years.

As before, the survival function of T is denoted S(t), and the density by
f(t). The probabilities of the various possible occurrences under the policy
are therefore calculated using the conditional probability distribution of T
given that T ≥ x, which has continuous probability density f(t)/S(x) at
all times t ≥ x. When the amounts and times of payments under a contract
depend only on the whole-year age at death (m = 1), all probabilities and
conditional expectations refer only to the discrete random variable [T ] = T1

and are calculated in terms of the conditional probability mass function,
given for nonnegative integers x, k by

P ([T ] = x + k | [T ] ≥ x) = P (k ≤ T − x < k + 1 |T ≥ x)

= kpx − k+1px = kpx qx+k (4.2)

and depends only on the cohort life-table entries, since the displayed condi-
tional probability is precisely dx+k/lx.

In the setting where the insurance and annuity contracts are formulated
in terms of m possible death and payment periods per year, the probability
calculations necessarily involve interpolations of the survival function S(t)
within whole years of age, but only to values t of the form x + k/m, k
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an integer. Then all conditional expecations are calculated in terms of the
probability mass function of the random variable Tm given as in (4.1):

P (Tm = x +
k

m

∣∣∣Tm ≥ x) = P (
k

m
≤ T − x <

k + 1

m

∣∣∣T ≥ x)

=
1

S(x)

[
S(x +

k

m
) − S(x +

k + 1

m
)

]
= k/mpx − (k+1)/mpx

= P (T ≥ x +
k

m

∣∣∣T ≥ x) · P (T < x +
k + 1

m

∣∣∣T ≥ x +
k

m
)

= k/mpx · 1/mqx+k/m (4.3)

4.2 Insurance & Life Annuity Contracts

An Insurance contract is an agreement to pay a face amount — perhaps
modified by a specified function of the time until death — if the insured, a
life aged x, dies at any time during a specified period, the term of the policy,
with payment to be made at the end of the 1/m year within which the death
occurs. Usually the payment will simply be the face amount F (0), but for
example in decreasing term policies the payment will decrease linearly as a
function of Tm over the term of the policy. The insurance is said to be a
whole-life policy if the duration n = ∞, and a term insurance otherwise.)
The general form of this contract, for a specified term n ≤ ∞, payment-
amount function F (·), and number m of possible payment-periods per
year, is to

pay F (T − x) at Tm − x + 1
m

time units following
policy initiation, if T ∈ [x, x + n). (Insm)

Specializing to the case m = 1, so that Tm = [T ] is the whole-year age
at death, the present value of the insurance company’s payment under the
contract (Ins) or (Ins1) is

{
F ([T − x]) v[T−x]+1 if x ≤ T < x + n

0 otherwise
(4.4)
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The simplest and most common case of this contract and formula arise
when the face-amount F (0) = F is the constant amount paid whenever
a death within the term occurs. Then the payment is F , with present value
F v[T ]−x+1, if x ≤ T < x + n, and both the payment and present value
are 0 otherwise. In this case, with F ≡ 1, the net single premium has the
standard notation A1

x:n . When the insurance is whole-life (n = ∞), the
subscript n and bracket n and superscript 1 over x are dropped, so
that A1

x:∞ ≡ Ax.

A Life Annuity contract is an agreement to pay a scheduled payment to
the policyholder at every interval 1/m of a year while the annuitant is alive,
up to a maximum number of nm payments. Again the payment amounts are
ordinarily constant, but in principle any nonrandom time-dependent schedule
of payments F (k/m) can be used, where F (s) is a fixed function and s
ranges over multiples of 1/m. To avoid ambiguity, we adopt the convention
that in the finite-term or temporary life annuities, either F (0) = 0 or
F (n) = 0. In this general setting, the life annuity contract requires the
insurer to

pay amounts F (k/m) at policy times k
m

,
0 ≤ k

m
≤ T − x, at most nm payments. (LifAnnm)

As in the case of annuities certain (the nonrandom annuities discussed in
Chapter 1), we refer to life annuities with first payment at time 0 as (life)
annuities-due and to those with first payment at time 1/m (and therefore
last payment at time n in the case of a finite term n over which the
annuitant survives) as (life) annuities-immediate.

Again specialize to the case m = 1: under the contract (LifAnn) or
(LifAnn1), up to n payments are made (since F (0) = 0 or F (n) = 0), and
the present value of the insurance company’s payment under the life annuity
contract is

[T−x]∑

k=0

F (k) vk (4.5)

Here the situation is definitely simpler in the case where the payment amounts
F (k) are level or constant, either F (k) ≡ F for k = 0, 1, . . . , n − 1, or
F (k) ≡ F for k = 1, 2, . . . , n. In the first of these cases, the life-annuity-
due payment stream becomes an annuity-due certain (the kind discussed
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previously under the Theory of Interest) as soon as the random variable T
is fixed. Indeed, if we replace F (k) by 1 for k = 0, 1, . . . , n − 1, and
by 0 for larger indices k, then the present value in equation (4.5) is
ämin([T ]−x+1, n) , and its expected present value (= net single premium) is
denoted äx:n . In the case of temporary life annuities-immediate, which have
payments commencing at policy time 1 and continuing annually either until
death or for a total of n payments, the present value formula as a function of
[T ] is the certain annuity immediate amin([T ]−x,n) , since this is the present
value of the pattern of annual unit payments starting at policy time 1 up to
[T − x] or n, whichever comes first. The expected-present value notation for
temporary life annuities immediate is ax:n .

The third major type of insurance contract is the Endowment, which
pays a contractual face amount F = F (0) at the end of n policy years if
the policyholder initially aged x survives to age x+n. This contract is the
simplest, since neither the amount nor the time of payment, only whether the
payment is made at all, is uncertain. The pure endowment contract commits
the insurer to

pay an amount F at policy time n if T ≥ x+n (Endow)

The present value of the pure endowment contract payment is

F vn if T ≥ x + n, 0 otherwise (4.6)

The net single premium or expected present value for a pure endowment
contract with face amount F = 1 is denoted A 1

x:n or nEx and is evidently
equal to

A 1
x:n = nEx = vn

npx (4.7)

The other contract frequently referred to in actuarial texts is the Endow-
ment Insurance, which for a life aged x and term n is simply the sum
of the pure endowment and the term insurance, both with term n and the
same face amount 1. Here the standard contract with m payment periods
per year and unit level face amount calls for the insurer to

pay 1 at policy time

{
Tm − x + 1/m if T < x + n
n if T ≥ x + n

(EndInsm)
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Simplifying to the case of a single payment per year (m = 1), we express the
present value of this contract as vn on the event [T ≥ n] and as v[T−x]+1

on the complementary event [T < n]. Note that [T −x] + 1 ≤ n whenever
T − x < n. Thus, in both cases, the present value is given by

vmin([T−x]+1, n) (4.8)

The expected present value of the unit endowment insurance (still in the case
m = 1) is denoted Ax:n . The notations for the net single premium of the
term insurance and of the pure endowment are intended to be mnemonic,
respectively denoting the portions of the endowment insurance net single
premium respectively triggered by the expiration of life — in which case the
superscript 1 is positioned above the x —or by the expiration of the fixed
term, in which case the superscript 1 is positioned above the term n.

Another example of an insurance contract which does not need separate
treatment, because it is built up simply from the contracts already described,
is the n-year deferred insurance. This policy pays a constant face amount
at the end of the current fraction 1/m year containing the policy time
T − x, but only if death occurs after the deferral time n , i.e., after age
x+ n for a new policyholder aged precisely x. When the face amount is 1,
the contractual payout is precisely the difference between the unit whole-life
insurance and the n-year unit term insurance. When m = 1, the notation
and formula for the net single premium is

nAx = Ax − A1
x:n (4.9)

4.2.1 Formal Relations between Risk Premiums, m = 1

In this subsection, we collect a few useful identities connecting the different
types of risk premiums for contracts with m = 1 payment period per year.
These identities therefore hold and can be used in computational formulas
without regard to particular life-table interpolation assumptions. The first,
which we have already seen, is the definition of endowment insurance as the
superposition of a constant-face-amount term insurance with a pure endow-
ment of the same face amount and term. In terms of net single premiums,
this identity is

Ax:n = A1
x:n + A 1

x:n (4.10)
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Another important identity concerns the relation between expected present
values of endowment insurances and life annuities. The great generality ofthe
identity arises from the fact we saw in the discussion following (4.5) that, for
a fixed value of the random lifetime T , the present value of the life annuity-
due payout coincides with the annuity-due certain, and is given by

ämin([T−x]+1, n) =
1 − vmin([T−x]+1, n)

d

where the second expression follows from the first via formula (2.4). Thus,
the unit life annuity-due has present value which is a simple linear function of
vmin([T−x]+1,n) which we saw in (4.8) is the present value of the unit endow-
ment insurance. Taking expectations (over values of the random variable T ,
conditionally given T ≥ x) in the present value formula, and substituting

A
(m)
x:n as expectation of (4.8), then yields:

äx:n = Ex

(1 − vmin([T−x]+1, n)

d

)
=

1 − Ax:n

d
(4.11)

where recall that Ex( · ) denotes the conditional expectation E( · |T ≥ x).
A more common and algebraically equivalent form of the identity (4.11) is

d äx:n + Ax:n = 1 (4.12)

To obtain a corresponding identity relating net single premiums for life
annuities-immediate to those of endowment insurances, we need to relate
the risk premiums for life annuities-immediate to those of life annuities-due.
Unlike the case of annuities-certain (i.e., nonrandom-duration annuities), one
cannot simply multiply the present value of the life annuity-due for fixed
T by the discount-factor v in order to obtain the corresponding present
value for the life annuity-immediate with the same term n. The difference
arises because the payment streams (for the life annuity-due deferred 1 year
and the life-annuity immediate) end at the same time rather than with the
same number of payments when death occurs before time n. The correct
conversion-formula is obtained by treating the life annuity-immediate of term
n as paying, in all circumstances, a present value of 1 (equal to the cash
payment at policy initiation) less than the life annuity-due with term n+ 1.
Taking expectations leads to the formula

ax:n = äx:n+1 − 1 (4.13)
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Now, combining this conversion-formula with the identity (4.11), we find

ax:n = äx:n+1 − 1 =
1 − Ax:n+1

d
− 1 =

1

i
− 1

d
Ax:n+1 (4.14)

and

d ax:n + Ax:n+1 =
d

i
= v (4.15)

In these formulas, we have made use of the definition 1/d = (1 + i)/i,
leading to the simplifications

1/d = 1/i + 1 , i/d = 1 + i = v−1

Since the n-year deferred insurance with risk premium (4.9) pays a benefit
only if the insured survives at least n years, it can alternatively be viewed
as an endowment with benefit equal to a whole life insurance to the insured
(then aged x + n) after n years if the insured lives that long. With
this interpretation, the n-year deferred insurance has net single premium
= nEx · Ax+n. This expected present value must therefore be equal to

(4.9), providing the identity:

Ax − A1
x:n = vn

npx · Ax+n (4.16)

4.2.2 Formulas for Net Single Premiums

All of the net single premiums (or risk premiums) considered so far are com-
putable completely in terms of of life-table quantities jpx and qx+j. To
emphasize the fact that these risk premiums depend on cohort life table
quantities alone, this subsection collects the formulas for risk premiums of
the insurance, annuity, and endowment contracts defined above, written ex-
plicitly as sums for the case m = 1. Recall for this purpose the conditional
probability mass function (4.2) of [T − x] given T ≥ x.

Here and from now on, for an event B depending on the random lifetime
T , the notation IB denotes the so-called indicator random variable which is
equal to 1 whenever T has a value such that the condition B is satisfied
and is equal to 0 otherwise.
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IB = 1 if condition B holds , = 0 if not

First, the expectation of the present value (4.4) of the random term in-
surance payment (with level face value F (0) ≡ 1) is

A1
x:n = Ex

(
v[T−x]+1 I{T≤x+n}

)
=

n−1∑

k=0

v(k+1)/m
kpx qx+k (4.17)

The index k in the summation formula denotes the year of policy time
within which death occurs, k ≤ T − x < k +1. The summation itself is the
weighted sum, over all indices k such that k < n, of the present values
vk+1 to be paid by the insurer in the event that the policy age at death falls
in [k, k +1), multiplied by the probability, given in formula (4.2), that this
event occurs.

Putting together the formula (4.17) with the previous identity (4.10) pro-
vides us with a formula for the net single premium of the endowment insur-
ance,

Ax:n =

n−1∑

k=0

vk+1
(

kpx − k+1px

)
+ vn

npx (4.18)

Next, to figure the expected present value of the life annuity-due with term
n, note that payments of 1 occur at all policy ages k, k = 0, . . . , n − 1,
for which T − x ≥ k. Therefore, since the present values of these payments
are vk and the payment at policy time k is made with probability kpx ,

äx:n = Ex

( n−1∑

k=0

vk I{T−x≥k}

)
=

n−1∑

k=0

vk
kpx (4.19)

Finally the pure endowment has present value

nEx = Ex

(
vn I[T−x≥n]

)
= vn

xpn (4.20)

Most generally of all, a contract which pays G(k) at policy time k if the
insured life initially aged x survives to age x + k, and which pays F (k) at
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policy time k+1 if the insured life aged x dies at age T ∈ [x+k, x+k+1),
has net single (risk) premium equal to

Ex

( ω−x−1∑

k=0

[
G(k) vk I{T≥x+k} + F (k) vk+1 I{[T−x]=k}

])

=
ω−x−1∑

k=0

kpx

[
G(k) vk + F (k) vk+1 qx+k

]
(4.21)

where P ([T − x] = k |T ≥ x) has been expressed as in (4.2). This setting,
where both functions G(k) and F (k) could depend on a finite term param-
eter n, encompasses all of the insurances, life annuities, and endowments
introduced so far in this Chapter.

The formulas (4.17) and (4.19) and (4.21) are benchmarks in the sense
that they represent a complete solution to the problem of determining net
single premiums without the need for interpolation of the life-table survival
function between integer ages. However the insurance, life-annuity, and
endowment-insurance contracts payable only at whole-year intervals are all
slightly impractical as insurance vehicles. In the next section, we approach
the calculation of net single premiums for the more realistic context of m-
period-per-year insurances and life annuities, using only the standard cohort
life-table data collected by integer attained ages.

4.3 Risk Premiums & Relations, m > 1

At this point, we return to the basic definitions of the standard insurance,
annuity, and endowment contracts defined above, in order to extend the
theoretical formulas, and identities to cover the case of general m-payment-
period per year contracts.

The pure endowment contract (Endow) with present value formula (4.6),
and net single premium notation and formula (4.7), does not require any
separate discussion here, since it involved only a single potential payment
at an integer policy time. It is therefore no different for general m than for
m = 1.
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Next we consider the pure term insurance (Insm) with term n and m
payment periods per year, and level face amount. Recall that this contract,
with unit face amount, pays 1 at the end of the 1/m year of death, if
death occurs before policy time n. That is, the payment of 1 occurs at
policy time k/m if k/m ≤ T − x < (k + 1)/m, k/m < n. Accordingly,
the present value of the insurer’s payment is

nm−1∑

k=0

v(k+1)/m I{k/m≤T−x<(k+1)/m} (4.22)

and the net single premium or expected present value is

A(m)1
x:n =

nm−1∑

k=0

v(k+1)/m
k/mpx 1/mqx+k/m (4.23)

Here k/m in the summation formula denotes the beginning of the 1/m
year of policy time within which death is to occur. Again the risk premium
summation is the weighted sum, over all indices k such that k/m < n, of
the present values v(k+1)/m to be paid by the insurer in the event that the
policy age at death falls in [k/m, (k + 1)/m) multiplied by the probability,
given in formula (4.3), that this event occurs.

To figure the expected present value of the life annuity-due with term n,
note that payments of 1/m occur at all policy ages k/m, k = 0, . . . , nm−1,
for which T − x ≥ k/m. Therefore, since the present values of these
payments are (1/m) vk/m and the payment at k/m is made with probability

k/mpx ,

ä
(m)
x:n = Ex

(
nm−1∑

k=0

1

m
vk/m I[T−x≥k/m]

)
=

1

m

nm−1∑

k=0

vk/m
k/mpx (4.24)

The useful identities described in Section 4.2.1 above, connecting the
different types of risk premiums for contracts with m = 1 payment period
per year, all have extensions to general m payment per year contracts.

The first extension, analogous to (4.10), is the definition of endowment
insurance as the superposition of a constant-face-amount term insurance with
a pure endowment of the same face amount and term. Recall that the m-
payment-period per year endowment insurance with term n and unit face
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amount pays 1 at policy time (k +1)/m if k/m ≤ T −x < (k +1)/m for
k = 0, 1, . . . , nm − 1, and pays 1 at policy time n if T ≥ x + n. The
present value of the payout clearly has the single epxression vmin(Tm−x+1/m, n).
In terms of net single premiums, the notational identity is

A
(m)
x:n = A(m)1

x:n + A(m) 1
x:n =

m(ω−x)−1∑

k=0

vmin((k+1)/m,n)
k/mpx 1/mqx+k/m

(4.25)

=

nm−1∑

k=0

v(k+1)/m
k/mpx 1/mqx+k/m + vn

npx

Again we find a formula for the endowment insurance by a combining the
identity (4.25) with the formula (4.23) for Insurance:

A
(m)
x:n =

nm−1∑

k=0

v(k+1)/m
(

k/mpx − (k+1)/mpx

)
+ vn

npx (4.26)

The general identity (4.11) concerning the relation between expected
present values of endowment insurances and life annuities also extends straight-
forwardly. With m payments per year, and the individual payments of 1/m
again totalling 1 per year, the term-n life annuity-due payout is given via
formula (2.4) by

ä
(m)

min(Tm−x+1/m, n)
= (1 − vmin(Tm−x+1/m, n)) / d(m)

Again the unit life annuity-due has present value which is a simple linear func-
tion of the present value vmin(Tm−x+1/m, n) of the unit endowment insurance.
Taking expectations (over values of the random variable T , conditionally
given T ≥ x) in the present value formula, and substituting the notation

A
(m)
x:n then yields:

ä
(m)
x:n = Ex

(1 − vmin(Tm−x+1/m, n)

d(m)

)
=

1 − A
(m)
x:n

d(m)
(4.27)

where recall that Ex( · ) denotes the conditional expectation E( · |T ≥ x).
An algebraically equivalent form of the identity (4.27) is

d(m) ä
(m)
x:n + A

(m)
x:n = 1 (4.28)
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For multiple payment periods per year, the idea for converting from risk
premiums of life annuities-due to life annuities immediate is very similar to
the idea behind the conversion formula (4.13) for m = 1. The payment
stream for the unit annuity-immediate to a life aged x with payment of 1 per
year, term n years, and m payments per year consists of payments 1/m
at each of the policy times k/m such that 1 ≤ k ≤ nm and k/n ≤ T −x.
The corresponding payment stream for an annuity-due with term n + 1/m
is exaxtly the same, except that the latter omits the initial payment of 1/m

at time 0. Therefore the respective expected present values a
(m)
x:n and

ä
(m)

x:n+1/m
differ by exactly the present value of that initial payment of 1/m,

establishing the identity

a
(m)
x:n = ä

(m)

x:n+1/m
− 1

m
= Ex

(
ä

(m)

min(Tm−x,n)+1/m

)
(4.29)

From this m-payment-period conversion formula, we directly obtain an iden-
tity relating the net single premium for life annuities-immediate with m
payment periods per year to that of the m payment period endowment
insurances. The result is

a
(m)
x:n = ä

(m)

x:n+1/m
− 1

m
=

1 −A
(m)

x:n+1/m

d(m)
− 1

m
=

1

i(m)
− 1

d(m)
A

(m)

x:n+1/m
(4.30)

and

d(m) a
(m)
x:n + A

(m)

x:n+1/m
=

d(m)

i(m)
= v1/m (4.31)

In these formulas, we have made use of the definition

m/d(m) = (1 + i(m)/m)
/

(i(m)/m)

leading to the simplifications

m

d(m)
=

m

i(m)
+ 1 ,

i(m)

d(m)
= 1 +

i(m)

m
= v−1/m

We conclude this section with a general formula extending (4.21). A
contract which, for all integers k = 0, 1, . . . , m(ω−x)−1, pays 1

m
Gx(k/m)

at policy time k/m if the insured life initially aged x survives to age x+k/m,
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and which pays Fx(k/m) at policy time (k + 1)/m if the insured life aged
x dies within the exact-age interval T ∈ [x + k/m, x + (k + 1)/m), has net
single (risk) premium equal to

Ex

(m(ω−x)−1∑

k=0

[ 1

m
Gx(k/m) vk/m I{T−x≥k/m} +Fx(k/m) v(k+1)/m I{Tm−x=k/m}

])

=

m(ω−x)−1∑

k=0

k/mpx

[ 1

m
Gx(k) vk/m + Fx(k/m) v(k+1)/m

1/mqx+k/m

]
(4.32)

See the Worked Examples (numbers 3 and 4) for illustrations of numerical
calculations with the standard formulas (4.22) and (4.24), as well as the
general formula (4.32).

The idea behind equation (4.32) can also be used to express the net single
premium of a life insurance or annuity in a varying interest rate environment.
Following the ideas of Sections 1.2.4 and 1.2.5, we know that the present
valueof a unit payment at policy time t under a time-varying instantaneous
interest rate r(s) ≡ exp(δ(s)) − 1 (expressed in terms of the policy time-
argument s) is 1/A(t) = exp(−

∫ t

0
δ(s) ds). Then the present value of a

term insurance of duration n with level payment amount F at policy
time (k + 1)/m if the insured life aged x dies within the exact-age interval
T ∈ [x + k/m, x + (k + 1)/m), 0 ≤ k < nm, is given by

F · exp
(
−
∫ (k+1)/m

0

δ(s) ds
)

I{Tm=x+k/m} =
F

A((k + 1)/m)
I{k/m≤T−x<(k+1)/m}

Similarly, the present value of a temporary life annuity due of duration n
which makes level payments of amount 1

m
G at all policy times k/m ≤

min(T − x, n), is

G

m
·

nm−1∑

j=0

exp
(
−
∫ j/m

0

δ(s) ds
)

I{j/m≤T−x} =
G

m

nm−1∑

j=0

1

A(k/m)
I{j/m≤T−x}

Then the net single premium of a contract which pays G/m at policy time
k/m ≤ n if the insured life initially aged x survives to age x + k/m, and
which pays F at policy time (k + 1)/m ≤ n if the insured life aged x
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dies within the exact-age interval T ∈ [x + k/m, x + (k + 1)/m), is the
expectation of the sum of the last two displayed expressions, and is given by

nm−1∑

k=0

k/mpx

[ G

m · A(k/m)
+

F

A((k + 1)/m)
1/mqx+k/m

]
(4.33)

4.4 Interpolation Formulas in Risk Premiums

A key issue in understanding the special nature of life insurances and annu-
ities with multiple payment periods is the calculation of these probabilities
from the underlying probabilities jpy (for integers j, y) which can be de-
duced or estimated from life-tables. In the present Section, we combine the
Actuarial Assumption — (i) of Chapter 3, saying that deaths are uniformly
distributed within whole year of age — with the insurance and (temporary)
life annuity-due risk premium formulas. In this setting, the number m of
payment periods per year is greater than 1, and by formula (3.23) for all
integers j = 0, 1, . . . ,m − 1:

j/mpx = 1 − j/mqx = 1 − (j/m) qx

so that

j/mpx 1/mqx+j/m = j/mpx − (j+1)/mpx = (1/m) qx

For any integer k = bm + j, where 0 ≤ l < m− 1 and b is an integer,

k/mpx 1/mqx+k/m = bpx ( j/mpx+b − (j+1)/mpx+b) = (1/m) bpx qx+b (4.34)

Substituting (4.34) into (4.23) with summation indices k = bm+j, gives

A(m)1
x:n =

n−1∑

b=0

m−1∑

j=0

vb+(j+1)/m
b+j/mpx 1/mqx+b+j/m

=
1

m

n−1∑

b=0

vb
bpx qx+b

m−1∑

j=0

v(j+1)/m

=
( 1

m

m−1∑

j=0

v(j+1)/m
)
· (1 + i)

( n−1∑

b=0

vb+1
bpx qx+b

)
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The two factors in parentheses in the final displayed expression are respec-
tively the one-year annuity-immediate present value a

(m)

1
and the one-

payment-per-year term insurance risk-premium A1
x:n . Since

(1 + i) a
(m)

1
= (1 + i) (1 − v)/i(m) = i/i(m)

it follows that under interpolation assumption (i),

A(m)1
x:n = (i/i(m))

n−1∑

b=0

vb+1
bpx qx+b = (i/i(m))A1

x:n (4.35)

Similarly, formula (4.34) substituted into the temporary life annuity for-
mula (4.24) with summation index k = bm + j gives

ä
(m)
x:n =

1

m

n−1∑

b=0

m−1∑

j=0

vb+j/m
j/mpx+b · bpx =

1

m

n−1∑

b=0

vb
bpx

m−1∑

j=0

vj/m (1− j

m
qx+b)

=
1

m

m−1∑

j=0

vj/m äx:n − 1 + i

m2

(m−1∑

j=0

j vj/m
)

A1
x:n (4.36)

This formula can be reduced further in either of two ways. First, one can
appeal to the definition of increasing temporary annuity-due and refer to the
formula given in paragraph (iv) of Section 2.1.1:

1

m2

m−1∑

j=0

j vj/m =
1

m2

m−1∑

j=0

(j + 1) vj/m − 1

m
ä

(m)

1

= (I(m)ä)
(m)

1
− 1 − v

md(m)
=

1

d(m)

(1 − v

d(m)
− v − 1 − v

m

)
(4.37)

Alternatively, using the identity

A
(m)
x:n = A(m)1

x:n + vn
npx

within (4.27), and directly substituting (4.35), yields under (i)

ä
(m)
x:n =

1

d(m)

(
1 − i

i(m)
A1

x:n − vn
npx

)
(4.38)

We leave as an Exercise for the interested reader to verify algebraically, using
(4.37) together with (4.11), that the formulas (4.36) and (4.38) are equal.
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4.5 Continuous Risk Premium Formulas

The present chapter has developed formulas for the net single premiums or
risk premiums of the principal life insurance and annuity contracts, first in
the setting of one payment period per year (m = 1) and then in the case
of multiple payment periods (m > 1) per year. In the limit as m gets
large, the risk premium formulas become expected present values calculated
as continuous integrals with respect to survival densities. To recall why this
limit exists, note that for any function g(T ) which depends on T only
through the last completed 1/m’th year Tm = [Tm]/m,

Ex(g(T )) =

m(ω−x)−1∑

k=0

g(x + k/m) k/mpx 1/mpx+k/m

where we have used (4.3) as the probability mass function for Tm. The
displayed expectation formula is then also valid with m replaced by any
integer multiple M = mn, n ≥ 1, and has the equivalent expression

M(ω−x)−1∑

k=0

g(x + k/M)

S(x)

∫ x+(k+1)/M

x+k/M

f(t) dt

=
1

S(x)

M(ω−x)−1∑

k=0

∫ x+(k+1)/M

x+k/M

g(t) f(t) dt =

∫ ω−x

0

g(x + s)
f(x + s)

S(x)
ds

Assume now that the function g(t) is continuous (and therefore uniformly
continuous) on the bounded lifetime interval [0, ω], so that g(t)−g([tM ]/M
can be made uniformly small by choice of a sufficiently large multiple M of
m. Since the displayed expectation formulas are exactly valid when applied
to the function g([tM ]/M , it follows also for the general continuous function
g that

Ex(g(T )) = lim
M→∞

Ex(g(TM)) =

∫ ω−x

0

g(x + s)
f(x + s)

S(x)
ds (4.39)

or, with the substitution f(x + s) = µ(x + s)S(x + s),

Ex(g(T )) =

∫ ω−x

0

g(x + s)µ(x + s)
S(x + s)

S(x)
ds (4.40)
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Similar justifications can be given for these expectation formulas also when-
ever g is piecewise continuous. These integral formulas can be used either
to calculate the limiting values of expected present values for insurance con-
tracts with large m, or to calculate other expectations of demographic and
biostatistical interest, such as life expectancies.

4.5.1 Continuous Insurance Contracts

So far in this Chapter, all of the expectations considered have been associ-
ated with the discretized random lifetime variables [T ] and Tm = [mT ]/m.
However, Insurance and Annuity contracts can also be defined with re-
spectively instantaneous and continuous payments, as follows. First, an
instantaneous-payment or continuous insurance with face-value F
is a contract which pays an amount F at the instant of death of the in-
sured. (In practice, this means that when the actual payment is made at
some later time, the amount paid is F together with interest compounded
from the instant of death.) As a function of the random lifetime T for
the insured life initially with exact integer age x, the present value of the
amount paid is F · vT−x for a whole-life insurance and F · vT−x · I[T<x+n]

for an n-year term insurance. The expected present values or net single pre-
miums on a life aged x are respectively denoted Ax for a whole-life contract
and A1

x:n for an n-year term insurance. The continuous life annuity is
a contract which provides continuous payments at rate 1 per unit time for
duration equal to the smaller of the remaining lifetime of the annuitant or
the term of n years. Here the present value of the contractual payments,
as a function of the exact age T at death for an annuitant initially of exact
integer age x, is amin(T−x,n) where n is the (possibly infinite) duration
of the life annuity. Recall that

aK =

∫ ∞

0

vt I[t≤K] dt =

∫ K

0

vt dt = (1 − vK)/δ

is the present value of a continuous payment stream of 1 per unit time of
duration K units, where v = (1 + i)−1 and δ = ln(1 + i) . The actuarial
notation for the net single premium of the temporary continuous life annuity
is āx:n which simplifies to āx when n = ∞.

The objective of this section is to develop and interpret formulas for the
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continuous-time net single premiums, along with one further quantity which
has been defined as a continuous-time expectation of the lifetime variable T ,
namely the mean residual life (also called complete life expectancy)
e̊x = Ex(T − x) for a life aged x.

4.5.2 Integral Formulas

We apply the continuous conditional expectation formulas (4.39) or (4.40)
directly for the three choices

g(y) = y − x , vy−x , or vy−x · I{y−x<n}

which respectively have the conditional Ex(·) expectations

e̊x , Ax , A1
x:n

For easy reference, the integral formulas for these three cases are:

e̊x = Ex(T − x) =

∫ ∞

0

s µ(x + s) spx ds (4.41)

Ax = Ex(v
T−x) =

∫ ∞

0

vs µ(x + s) spx ds (4.42)

A1
x:n = Ex

(
vT−x I{T−x≤n}

)
=

∫ n

0

vs µ(x + s) spx ds (4.43)

Next, we obtain two additional formulas, for continuous life annuities-due

ax and ax:n

which correspond to Ex{g(T )} for the two choices

g(t) =

∫ ω−x

0

vy I{y+x≤t} dy or

∫ n

0

vy I{y+x≤t} dy

where we naturally assume that x+n ≤ ω in the case of the temporary life
annuity.
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After switching the order of the integrals and the conditional expecta-
tions, and evaluating the conditional expectation of an indicator as a condi-
tional probability, in the form

Ex

(
I{y≤T−x}

)
= P (T ≥ x + s |T ≥ x) =

S(x + y)

S(x)
= ypx

the resulting two equations become

ax = Ex

(∫ ω−x

0

vy I{y≤T−x} dt

)
=

∫ ω−x

0

vy
ypx dy (4.44)

ax:n = Ex

(∫ n

0

vy I{y≤T−x} dy

)
=

∫ n

0

vy
ypx dy (4.45)

As seen above in (4.39), risk premiums for continuous insurance and an-
nuity contracts have a close relationship to the corresponding contracts with
m payment periods per year for large m. That is, the term insurance net
single premiums

A(m)1
x:n = Ex

(
vTm−x+1/m

)

approach the continuous insurance value (4.42) as a limit when m → ∞.
A simple direct proof can be given because the payments at the end of the
fraction 1/m of year of death are at most 1/m years later than the
continuous-insurance payment at the instant of death, so that the following
obvious inequalities hold:

A1
x:n ≤ A(m)1

x:n ≤ v1/m A1
x:n (4.46)

Since the right-hand term in the inequality (4.46) also converges for large m
to the leftmost term, the middle term which is sandwiched in between must
converge to the same limit (4.43).

For the continuous annuity, (4.45) can be obtained as a limit of formulas
(4.19) either from (4.39) or by using Riemann sums, as the number m of
payments per year goes to ∞, i.e.,

ax:n = lim
m→∞

ä
(m)
x:n = lim

m→∞

nm−1∑

k=0

1

m
vk/m

k/mpx =

∫ n

0

vt
tpx ds

The final formula coincides with (4.45), according with the intuition that the
limit as m → ∞ of the payment-stream which pays 1/m at intervals of time
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1/m between 0 and Tm − x inclusive is the continuous payment-stream
which pays 1 per unit time throughout the policy-age interval [0, T − x).

The limiting argument of the previous paragraph shows immediately that
under interpolation assumption (i), there are simple formulas relating Āx:n

and āx:n to A1
x:n . Indeed, by (4.35), under (i)

Āx:n = lim
m→∞

A(m)1
x:n = lim

m

i

i(m)
A1

x:n =
i

δ
A1

x:n (4.47)

and by (4.38), also under (i),

āx:n = lim
m→∞

ä
(m)
x:n = lim

m

1

d(m)

(
1 − i

i(m)
A1

x:n − vn
npx

)

or

āx:n =
1

δ

(
1 − i

δ
A1

x:n − vn
npx

)
(4.48)

Finally, it is easy to see by passing to the limit m → ∞ in (4.28) that

δ āx:n + Āx:n = 1 (4.49)

More elaborate relations will be given in the next Chapter between net
single premium formulas which do require interpolation-assumptions for prob-
abilities of survival to times between integer ages to formulas for m = 1,
which do not require such interpolation.

The expressions in formulas (4.41), (4.43), and (4.45) can be contrasted
with the respective expectations (3.12), (4.17) and (4.19) for a function of
the integer-valued random variable [T ] (taking m = 1). In particular,
the complete life expectancy e̊x in (4.41) is compared to the curtate life
expectancy ex under interplation assumption (i) in (3.28). The comparison
between complete and curtate life expectancies under more general within-
year survival distributions in subsection 4.5.4 below.

4.5.3 Risk Premiums under Theoretical Models

Let us work out examples of the multiple time-period per year and continuous
formulas analytically and numerically, under a particular theoretical survival
model.



4.5. CONTINUOUS RISK PREMIUM FORMULAS 137

Consider first the slightly artificial (but still useful) case where the
residual life T − x for a life aged x is precisely Weibull(γ, λ) distributed,
with force of mortality for T given by µ(x + s) = λ γ sγ−1, and

spx = e−λsγ

for all s ≥ 0 , qx+k = 1 − exp(−λ{(k + 1)γ − kγ})

Then respectively according to formulas (4.17), (4.23), and (4.42), we find
formulas for term-insurance finite-m net single premiums under Weibull
survival as follows:

A1
x:n =

n−1∑

k=0

vk+1 (e−λkγ − e−λ(k+1)γ

)

A(m)1
x:n =

n−1∑

k=0

vk+1/m
m−1∑

j=0

vj/m (e−λ(k+j/m)γ − e−λ(k+(j+1)/m)γ

)

According to formulas (4.19), (4.24), and (4.44), the special Weibull-lifetime
temporary life annuity-due risk premiums for finite m are:

äx:n =
n−1∑

k=0

vk e−λ kγ

, ä
(m)
x:n =

n−1∑

k=0

m−1∑

j=0

vk+j/m e−λ (k+j/m)γ

The continuous cases (m = ∞) of these formulas are as follows:

Ā1
x:n =

∫ n

0

vs λγ sγ−1 e−λsγ

ds , āx:n =

∫ n

0

vs e−λsγ

ds

Finally, according to formulas (3.11) and (4.41) the curtate and complete
life expectancies at integer ages y ≥ x for Weibull (residual) lifetimes are:

ex =
∞∑

k=0

k (e−λkγ − e−λ(k+1)γ

) , e̊x =

∫ ∞

0

s λγ sγ−1 eλsγ

ds

We next give R code and a table showing some numerical comparisons of
these insurance and life-annuity risk premiums, for m = 1, 4, ∞. First, we
give an R function for Weibull-lifetime term insurance risk premiums:
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> WeibIns = function(lambda, gamma, m, n, i) {

## Function to calculate term-n insurance risk prem

### for 1 paymt per year, m paymts, and continuous ins

v = 1/(1+i)

xk = 0:(n-1)

Ins1 = v*sum( v^xk*(exp(-lambda*xk^gamma)-

exp(-lambda*(xk+1)^gamma)) )

xkjm = (0:(n*m-1))/m

Insm = v^(1/m)* sum( v^xkjm*(exp(-lambda*xkjm^gamma) -

exp(-lambda*(xkjm+1/m)^gamma)) )

InsC = lambda*gamma*integrate(function(s,.v,.lam,.gam)

.v^s*s^(.gam-1)*exp(-.lam*s^(.gam)),0, n,

.v=v, .lam=lambda, .gam=gamma)$val

c(termIns.1 = Ins1, termIns.m = Insm, termIns.cont = InsC)

}

To illustrate the use of this function, we create a small Table of values
for a few different values of n, with parameters (λ, γ) similar to those
used in Chapter 2, but chosen successively so that (a) 32p40 = .5/.925 =
.5405, 50p40 = .04/.925 = .04324 as in Figure 2.5, (b) 32p40 = .6, 50p40 =
.047, or (c) 32p40 = .65, 50p40 = .05. In each case, the nominal age x is
40, in the R code to produce this Table, we begin by coding a function to
solve for λ, γ) when π1 = 32p40, π2 = 50p40 are given. The interest rates
considered here are 0.05 or 0.06, and n = 20.

> LamGam = function(pi1,pi2, age1, age2) {

### Function to solve for lambda and gamma Weibull

### parameters, when S(age1)=pi1, S(age2)=pi2 are fixed.

haz1 = -log(pi1) ; haz2 = -log(pi2)

gam = log(haz2/haz1)/log(age2/age1)

lam = haz1/age1^gam

c(lambda=lam, gamma=gam) }

> LamGam(.5/.925,.04/.925,32,50)

lambda gamma

1.952e-06 3.653e+00
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> WeibIns(1.952e-6,3.653,4,20,.05)

termIns.1 termIns.m termIns.cont

0.04844 0.04930 0.04960

> InsArr = array(0, dim=c(6,6), dimnames=list(NULL, c("lambda",

"gamma", "i", "Ins.1", "Ins.m", "Ins.C")))

intrat = c(.05, .06)

sprobs = rbind(c(.5/.925,.04/.925),c(.6,.047),c(.65,.05))

for(a in 1:2) for (b in 1:3) {

k = 2*(b-1)+a

> lamgam=LamGam(sprobs[b,1],sprobs[b,2],32,50)

InsArr[k,] = c(lamgam[1],lamgam[2],intrat[a],

WeibIns(lamgam[1],lamgam[2],4,20,intrat[a])) }

InsArr

lambda gamma i Ins.1 Ins.m Ins.C

[1,] 1.952e-06 3.653 0.05 0.04846 0.04932 0.04962

[2,] 1.952e-06 3.653 0.06 0.04189 0.04278 0.04309

[3,] 4.715e-07 4.009 0.05 0.03396 0.03457 0.03478

[4,] 4.715e-07 4.009 0.06 0.02924 0.02986 0.03008

[5,] 1.241e-07 4.345 0.05 0.02436 0.02479 0.02494

[6,] 1.241e-07 4.345 0.06 0.02091 0.02135 0.02151

The variations among the parameters and interest rates make much more
difference to the results than does the number m of payment periods per
year. Note that the overall size of the risk premium for a unit 20-year term
insurance is reasonable, because the probability it will pay anything at all is

20q40, which (for odd-numbered rows) takes the three values

> 1-exp(-AnnuArr[c(1,3,5),1]*20^AnnuArr[c(1,3,5),2])

[1] 0.10461 0.07467 0.05435

A similar Table of risk premiums for temporary life annuities-due, with
exactly the same parameters, is given below along with the R code for the
life-annuity function calculation.
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> WeibAnnD = function(lambda, gamma, m, n, i) {

## Function to calculate term-n insurance risk prem

### for 1 paymt per year, m paymts, and continuous ins

v = 1/(1+i)

xk = 0:(n-1)

Annu1 = sum( v^xk*exp(-lambda*xk^gamma) )

xkjm = (0:(n*m-1))/m

Annum = sum( v^xkjm*exp(-lambda*xkjm^gamma) )/m

AnnuC = integrate(function(s,.v,.lam,.gam)

.v^s*exp(-.lam*s^(.gam)),0, n,

.v=v, .lam=lambda, .gam=gamma)$val

c(tmpAnn.1 = Annu1, tmpAnn.m = Annum, tmpAnn.cont = AnnuC)

}

> AnnuArr = InsArr

dimnames(AnnuArr)[[2]][4:6]=c("Annu.1","Annu.m","Annu.C")

for(a in 1:2) for (b in 1:3) {

k = 2*(b-1)+a

lamgam=LamGam(sprobs[b,1],sprobs[b,2],32,50)

AnnuArr[k,4:6] = WeibAnnD(lamgam[1],lamgam[2],4,20,intrat[a]) }

AnnuArr

lambda gamma i Annu.1 Annu.m Annu.C

[1,] 1.952e-06 3.653 0.05 12.90 12.65 12.56

[2,] 1.952e-06 3.653 0.06 11.99 11.72 11.63

[3,] 4.715e-07 4.009 0.05 12.96 12.72 12.64

[4,] 4.715e-07 4.009 0.06 12.05 11.78 11.69

[5,] 1.241e-07 4.345 0.05 13.00 12.76 12.68

[6,] 1.241e-07 4.345 0.06 12.09 11.82 11.73

Life expectancy calculations and comparisons are done in the next sub-
section, for Gompertz survival. Examples of formula development for other
special parametric distributional families are contained in the Exercises.

4.5.4 Numerical Calculations of Life Expectancies

Formulas (4.41) or (3.12) respectively provide the complete and curtate age-
specific life expectancies, in terms respectively of survival densities and life-
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table data. Formula (3.28) provides the actuarial approximation for com-
plete life expectancy in terms of life-table data, based upon interpolation-
assumption (i) (Uniform mortality within year of age). In this Section, we
illustrate these formulas using the Illustrative simulated and extrapolated
life-table data of Table 1.1.

Life expectancy formulas necessarily involve life table data and/or sur-
vival distributions specified out to arbitrarily large ages. While life tables
may be based on large cohorts of insured for ages up to the seventies and even
eighties, beyond that they will be very sparse and very dependent on the par-
ticular small group(s) of aged individuals used in constructing the particular
table(s). On the other hand, the fraction of the cohort at moderate ages who
will survive past 90, say, is extremely small, so a reasonable extrapolation
of a well-established table out to age 105 or so may give sufficiently accu-
rate life-expectancy values at ages not exceeding 105. Life expectancies are
in any case forecasts based upon an implicit assumption of future mortality
following exactly the same pattern as recent past mortality. Life-expectancy
calculations necessarily ignore likely changes in living conditions and medi-
cal technology which many who are currently alive will experience. Thus an
assertion of great accuracy for a particular method of calculation would be
misplaced.

All of the numerical life-expectancy calculations produced for the Figure
of this Section are based on the extrapolation (2.10) of the illustrative life
table data from Table 1.1. According to that extrapolation, death-rates qx

for all ages 78 and greater are taken to grow exponentially, with log(qx/q78) =
(x − 78) ln(1.0885). This exponential behavior is approximately but not
precisely compatible with a Gompertz-form force-of-mortality function

µ(78 + t) = µ(78) ct

in light of the approximate equality µ(x) ≈ qx, an approximation which
progressively becomes less valid as the force of mortality gets larger. To see
this, note that under a Gompertz survival model,

µ(x) = Bcx , qx = 1 − exp

(
−Bcx c − 1

ln c

)

and with c = 1.0885 in our setting, (c − 1)/ ln c = 1.0436.
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Since curtate life expectancy (3.12) relies directly on (extrapolated) life-
table data, its calculation is simplest and most easily interpreted. Figure 4.1
presents, as plotted points, the age-specific curtate life expectancies for in-
teger ages x = 0, 1, . . . , 78. Since the complete life expectancy at each age
is larger than the curtate by exactly 1/2 under interpolation assumption
(i), we calculated for comparison the complete life expectancy at all (real-
number) ages, under assumption (ii) (from Chapter 3, as in equation 3.16)
of piecewise-constant force of mortality within years of age. Under this as-
sumption, by formula (3.24), mortality within year of age (0 < t < 1) is

tpx+k = (px+k)
t, and force of mortality is

µ(x + k + t) = − d

dt
ln tpx+k = − ln px+k

Using formulas (4.41), (3.12), and interpolation assumption (ii), the exact
formula for the difference between complete and curtate life expectancy be-
comes

e̊x − ex =

ω−x−1∑

k=0

kpx

{∫ k+1

k

s µ(x + s) s−kpx+k ds − k qx+k

}

=
ω−x−1∑

k=0

kpx

{
(− ln px+k)

∫ 1

0

(k + t) et lnpx+k dt − k qx+k

}

=

ω−x−1∑

k=0

kpx

{
(− ln px+k)

((k + 1)px+k − k

ln px+k
− px+k − 1

(ln px+k)2

)
− k qx+k

}

=
ω−x−1∑

k=0

kpx

(
− px+k − qx+k

ln px+k

)
(4.50)

The complete minus curtate life expectancies calculated from this formula
were found range from 0.493 at ages 40 and below, down to 0.485 at age
78 and 0.348 at age 99. (Contrast this result with the constant difference
of 1/2 under assumption (i).) Thus there is essentially no new information
in the calculated complete life expectancies, and they are not plotted.

The aspect of Figure 4.1 which is most startling to the intuition is the
large expected numbers of additional birthdays for individuals of advanced
ages. Moreover, the large life expectancies shown are comparable to actual
US male mortality circa 1959, so would be still larger today.
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Figure 4.1: Curtate life expectancy ex as a function of age, calculated
from the simulated illustrative life table data of Table 1.1, with age-specific
death-rates qx extrapolated as indicated in formula (2.10).
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4.6 Exercise Set 4

(1). For each of the following three lifetime distributions, find (a) the
expected remaining lifetime for an individual aged 20, and (b) 7/12q40/q40.

(i) Weibull(.00634, 1.2), with S(t) = exp(−0.00634 t1.2),

(ii) Lognormal(log(50), 0.3252), with S(t) = 1−Φ((log(t)− log(50))/0.325),

(iii) Piecewise exponential with force of mortality given the constant value
µt = 0.015 for 20 < t ≤ 50, and µt = 0.03 for t ≥ 50. In these
integrals, you should be prepared to use integrations by parts, gamma function
values, tables of the normal distribution function Φ(x), and/or numerical
integrations via calculators or software.

(2). (a) Find the expected present value, with respect to the constant
effective interest rate r = 0.07, of an insurance payment of $1000 to be
made at the instant of death of an individual who has just turned 40 and
whose remaining lifetime T − 40 = S is a continuous random variable with
density f(s) = 0.05 e−0.05 s , s > 0.

(b) Find the expected present value of the insurance payment in (a) if
the insurer is allowed to delay the payment to the end of the year in which
the individual dies. Should this answer be larger or smaller than the answer
in (a) ?

(3). If the individual in Problem 2 pays a life insurance premium P at
the beginning of each remaining year of his life (including this one), then
what is the expected total present value of all the premiums he pays before
his death ?

(4). Suppose that an individual has equal probability of dying within each
of the next 40 years, and is certain to die within this time, i.e., his age is x
and

kpx − k+1px = 0.025 for k = 0, 1, . . . , 39

Assume the fixed interest rate r = 0.06.

(a) Find the net single whole-life insurance premium Ax for this person.

(b) Find the net single premium for the term and endowment insurances
A1

x:20
and Ax:30 .
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(5). Show that the expected whole number of years of remaining life for a
life aged x is given by

cx = E([T ]− x | T ≥ x) =

ω−x−1∑

k=0

k kpx qx+k

and prove that this quantity as a function of integer age x satisfies the
recursion equation

cx = px (1 + cx+1)

(6). Show that the expected present value bx of an insurance of 1 payable
at the beginning of the year of death (or equivalently, payable at the end of
the year of death along with interest from the beginning of that same year)
satisfies the recursion relation (4.51) above.

(7). Prove the identity (4.16) algebraically.

For the next two problems, consider a cohort life-table population for
which you know only that l70 = 10, 000, l75 = 7000, l80 = 3000, l85 = 0, and
that the distribution of death-times within 5-year age intervals is uniform.

(8). Find (a) e̊75 and (b) the probability of an individual aged 70 in
this life-table population dying between ages 72.0 and 78.0.

(9). Find the probability of an individual aged 72 in this life-table popula-
tion dying between ages 75.0 and 83.0, if the assumption of uniform death-
times within 5-year intervals is replaced by:

(a) a constant force of mortality within 5-year age-intervals;

(b) assuming linearity of 1/S(t)) within 5-year age intervals.

(10). Suppose that a population has survival probabilities governed at all
ages by the force of mortality

µt =





.01 for 0 ≤ t < 1

.002 for 1 ≤ t < 5

.001 for 5 ≤ t < 20

.004 for 20 ≤ t < 40

.0001 · t for 40 ≤ t

Then (a) find 30p10, and (b) find e̊50.
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(11). Suppose that a population has survival probabilities governed at all
ages by the force of mortality

µt =





.01 for 0 ≤ t < 10

.1 for 10 ≤ t < 30
3/t for 30 ≤ t

Then (a) find 30p20 = the probability that an individual aged 20 survives
for at least 30 more years, and (b) find e̊30.

(12). Assuming the same force of mortality as in the previous problem, find
e̊70 and A60 if i = 0.09.

(13). The force of mortality for impaired lives is three times the standard
force of mortality at all ages. The standard rates qx of mortality at ages 95,
96, and 97 are respectively 0.3, 0.4, and 0.5 . What is the probability that
an impaired life age 95 will live to age 98 ?

(14). You are given a survival function S(x) = (10−x)2/100 , 0 ≤ x ≤ 10.

(a) Calculate the average number of future years of life for an individual
who survives to age 1.

(b) Calculate the difference between the force of mortality at age 1, and
the probability that a life aged 1 dies before age 2.

(15). An n-year term life insurance policy to a life aged x provides
that if the insured dies within the n-year period an annuity-certain of yearly
payments of 10 will be paid to the beneficiary, with the first annuity payment
made on the policy-anniversary following death, and the last payment made

on the N th policy anniversary. Here 1 < n ≤ N are fixed integers. If
B(x, n,N) denotes the net single premium (= expected present value) for
this policy, and if mortality follows the law lx = C(ω − x)/ω for some
terminal integer age ω and constant C, then find a simplified expression
for B(x, n,N) in terms of interest-rate functions, ω, and the integers
x, n, N . Assume x + n ≤ ω.

(16). The father of a newborn child purchases an endowment and insurance
contract with the following combination of benefits. The child is to receive

$100, 000 for college at her 18th birthday if she lives that long and $500, 000

at her 60th birthday if she lives that long, and the father as beneficiary is
to receive $200, 000 at the end of the year of the child’s death if the child
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dies before age 18. Find expressions, both in actuarial notations and in
terms of v = 1/(1 + i) and of the survival probabilities kp0 for the child,
for the net single premium for this contract.

(17). Verify algebraically, using (4.37) together with (4.11), that the right-
hand sides of formulas (4.36) and (4.38) are equal.

For the next four problems, concerning insurance contract risk premiums
in a variable interest rate environment, apply formula (4.33).

(18). Suppose that a life aged x wants to purchase a 20-year term insurance
now, and that interest rates over the next twenty years will be i = .05 for
policy ages in (0, 10] and i = .06 for policy ages in (10, 20]. Find the net
single premium for a unit term insurance (i.e., if the insurance payment is 1)
if survival is governed by the Weibull(2 · 10−6, 4) distribution for T−x. (You
may use the formulas and R code of section 4.5.3 to aid in the calculation.)

(19). Pass to the limit m → ∞ in formula (4.33) to derive an analogous
formula for the net single premium, in a variable interest rate environment
with instantaneous force of interest δ(t) at policy time t, of a contract
for a life aged x paying a continuous-time stream at rate G at all policy
times t < min(T − x, n) and paying a lump-sum amount F at the instant
of death if death occurs before age x + n.

(20). Suppose that a life aged x wants to purchase a 10-year term insurance
or temporary annuity-due, and that interest rates over the next ten years will
be i = .07 for policy ages in (0, 6] and i = .04 for policy ages in (6, 10].
Show that the net single premium for a unit 10-year term insurance or a
unit temporary life annuity-due, with one payment period per year (i.e.,
m = 1) depends on the survival distribution only through the cohort life
table quantities kpx for integers k = 1, 2, . . . , 10.

(21). Suppose that a life aged x wants to purchase a 10-year term in-
surance, and that it is believed that interest rates will vary over the 10-year
interval according to the rule δ(t) = δ · (1 + 0.002 t). Show that the net
single premium for a unit 10-year term insurance depends on the continuous
conditional survival probabilities tpx, 0 ≤ t ≤ 10 and not only on the values
for integer t.
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4.7 Worked Examples

Example 1. Toy Life-Table (assuming uniform failures)

Consider the following life-table with only six equally-spaced ages. (That
is, assume l6 = 0.) Assume that the rate of interest i = .09, so that
v = 1/(1 + i) = 0.9174 and (1 − e−δ)/δ = (1 − v)/δ = 0.9582.

x Age-range lx dx ex Ax

0 [0, 1) 1000 60 4.2 0.704
1 [1, 2) 940 80 3.436 0.749
2 [2, 3) 860 100 2.709 0.795
3 [3, 4) 760 120 2.0 0.844
4 [4, 5) 640 140 1.281 0.896
5 [5, 6) 500 500 0.5 0.958

Using the data in this Table, and interest rate i = .09, we begin by cal-
culating the expected present values for simple contracts for term insurance,
annuity, and endowment. First, for a life aged 0, a 3-year term insurance
with payoff amount $1000 has present value given by formula (4.17) as

1000A1
0:3 = 1000

{
0.917

60

1000
+ (0.917)2 80

1000
+ (0.917)3 100

1000

}
= 199.60

Second, for a life aged 2, a 3-year temporary annuity-due of $700 per year
(with last payment at age 4) has present value computed from (4.19) to be

700 ä2:3 = 700

{
1 + 0.917

760

860
+ (0.917)2 640

860

}
= 1705.98

For the same life aged 2, the 3-year Endowment for $700 has present value

700A 1
2:3

= 700 · (0.9174)3 500

860
= 314.26

Thus we can also calculate (for the life aged 2) the present value of the
3-year annuity-immediate of $700 per year as

700 ·
(
ä2:3 − 1 + A 1

0:3

)
= 1705.98 − 700 + 314.26 = 1320.24
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We next apply and interpret the formulas of Section 4.5.1, together with
the observation that

jpx · qx+j =
lx+j

lx
· dx+j

lx+j
=

dx+j

lx

to show how the last two columns of the Table were computed. In particular,
by (4.41)

e2 =
100

860
· 0 +

120

860
· 1 +

140

860
· 2 +

500

860
· 3 +

1

2
=

1900

860
+ 0.5 = 2.709

Moreover: observe that cx =
∑5−x

k=0 k kpxqx+k satisfies the “recursion equa-
tion” cx = px (1 + cx+1) (cf. Exercise 5 above), with c5 = 0, from which
the ex column is easily computed by: ex = cx + 0.5.

Now apply the present value formula for continuous insurance to find

Ax =
5−x∑

k=0

kpx qx+k vk 1 − e−δ

δ
= 0.9582

5−x∑

k=0

kpx qx vk = 0.9582 bx

where bx is the expected present value of an insurance of 1 payable at the
beginning of the year of death (so that Ax = v bx ) and satisfies b5 = 1
together with the recursion-relation

bx =
5−x∑

k=0

kpx qx+k vk = px v bx+1 + qx (4.51)

(Proof of this recursion is Exercise 6 above.)

Example 2. Find a simplified expression in terms of actuarial expected
present value notations for the net single premium of an insurance on a
life aged x, which pays F (k) = C än−k if death occurs at any exact ages
between x + k and x + k + 1, for k = 0, 1, . . . , n − 1, and interpret the
result.

Let us begin with the interpretation: the beneficiary receives at the end
of the year of death a lump-sum equal in present value to a payment stream
of C annually beginning at the end of the year of death and terminating at

the end of the nth policy year. This payment stream, if superposed upon
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an n-year life annuity-immediate with annual payments C, would result in
a certain payment of C at the end of policy years 1, 2, . . . , n. Thus the
expected present value in this example is given by

C an − C ax:n (4.52)

Next we re-work this example purely in terms of analytical formulas. By
formula (4.52), the net single premium in the example is equal to

n−1∑

k=0

vk+1
kpx qx+k C än−k+1 = C

n−1∑

k=0

vk+1
kpx qx+k

1 − vn−k

d

=
C

d

{
n−1∑

k=0

vk+1
kpx qx+k − vn+1

n−1∑

k=0

(kpx − k+1px)

}

=
C

d

{
A1

x:n − vn+1 (1 − npx)
}

=
C

d

{
Ax:n − vn

npx − vn+1 (1 − npx)
}

and finally, by substituting expression (4.15) with m = 1 for Ax:n , we
have

C

d

{
1 − d äx:n − (1 − v) vn

npx − vn+1
}

=
C

d

{
1 − d (1 + ax:n − vn

npx) − d vn
npx − vn+1

}

=
C

d

{
v − d ax:n − vn+1

}
= C

{
1 − vn

i
− ax:n

}

= C {an − ax:n }

So the analytically derived answer agrees with the one intuitively arrived at
in formula (4.52).

Example 3. Consider the following cohort life table fragment applicable to
lives aged from 30 to 36. Find the risk premiums for unit-face-amount 6-year
duration annuity-due and term insurance, (a) with m=1, (b) with m = 4
and uniform failure density within year of failure, and (c) with m = 4 and
respective failure probabilities .2, .2, .3, .3 of dying within the 4 quarter-years
given the year of failure. Assume interest rate 5% throughout.
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x Age-range lx dx

30 [30, 31) 95000 165
31 [31, 32) 94835 150
32 [32, 33) 94685 155
33 [33, 34) 94530 158
34 [34, 35) 94472 172
35 [35, 36) 94300 187

To clarify the different calculations in the three parts (a)-(c), we provide
R code as well as numerical answers. Parts (a) and (b) respectively make use
of formulas (4.17), (4.19) and (4.35) plus (4.36).

> probmass = c(165,150,155,158,172,187)/95000

> kpx = 1-cumsum(c(0,probmass[1:5]))

> probmass

[1] 0.001737 0.001579 0.001632 0.001663 0.001811 0.001968

> kpx

[1] 1.0000 0.9983 0.9967 0.9951 0.9934 0.9916

> Ains = sum( 1.05^(-(1:6)) * probmass )

AnnDue = sum( 1.05^(-(0:5)) * kpx )

c(Ains=Ains, AnnDue=AnnDue)

Ains AnnDue

0.008751 5.308505 ### answer to (a)

> i4 = 4*(1.05^.25-1)

aux1 = sum(1.05^(-(0:3)/4))/4

aux2 = sum((0:3)*1.05^(-(0:3)/4))/4^2

c(Ains.m = Ains*i4/.05,

AnnDue.m = aux1*AnnDue - 1.05*aux2*Ains)

Ains.m AnnDue.m

0.008592 5.209397 ### answer to (b)

For part (c), we start from formulas (4.23) and (4.24) and calculate by de-
composing sums as we did in Section 4.4,

A(m)1
x:n =

n−1∑

b=0

bpx

m−1∑

j=0

vb+(j+1)/m ((j+1)/mqx+b − j/mqx+b)
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ä
(m)
x:n =

n−1∑

b=0

bpx
1

m

m−1∑

j=0

vb+j/m (1 − j/mqx+b)

Now for m = 4, we have in this problem the special assumption that for
integers b and 0 ≤ j < 4,

(j/4qx+b − (j+1)/4qx+b)/qx+b =

{
0.2 if j = 0, 1
0.3 if j = 2, 3

It follows that j/4qx+b / qx+b has respective values 0, 0.2, 0.4, 0.7 for j =
0, 1, 2, 3. Substituting, we find

A(4)1
x:n =

n−1∑

b=0

bpx qx+b vb+1 (1 + i)
(
0.2 v1/4 + 0.2 v1/2 + 0.3 v3/4 + 0.3 v

)

= A1
x:n ·

(
0.2 v1/4 + +0.2 v1/2 + 0.3 v3/4 + 0.3 v

)
(1 + i)

and

ä
(4)
x:n =

1

4

n−1∑

b=0

bpx vb
(
1 − v qx+b (0.2 v−3/4 + 0.4 v−1/2 + 0.7 v−1/4)

)

= äx:n − 1

4
A1

x:n

(
0.2 v−3/4 + 0.4 v−1/2 + 0.7 v−1/4

)

The numerics in R for part (c) now follow:

> aux3 = .2*(1.05^.75+1.05^.5)+.3*(1.05^.25 + 1)

aux4 = .2*1.05^.75+.4*1.05^.5+.7*1.05^.25

c(Ains.ptc = Ains*aux3, AnnDue.ptc = AnnDue - 0.25*Ains*aux4

Ains.ptc AnnDue.ptc

0.008892 5.305604

So the different within-year distribution of failures made roughly a 2% dif-
ference in the term insurance and temporary life annuity-due risk premiums.
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Example 4. Find the risk premiums for a 24-year life annuity-due and insur-
ance figured with m = 1 and m = 4 based on the probability densities, with
parameters as given in Figure 2.5 in Chapter 2, (a) Gamma(14.74, .4383),
and (b) Lognormal(3.491, (.246)2).

Here the ideas and formulas are simple: the only issue is how to organize
the numerical calculations. The Gamma distribution function can be directly
called in R, while the Lognormal distribution function values are simply ex-
pressed in terms of the normal distribution function. In neither case need we
perform numerical integrations.

kpx1 = 1-pgamma(0:24, rate=.4383, shape=14.74)

kpx2 = 1-pnorm(log(0:24),mean=3.491, sd =.246)

array(c(sum(-diff(kpx1)/1.05^(1:24)),

sum(-diff(kpx2)/1.05^(1:24)),

sum(kpx1[1:24]/1.05^(0:23)),

sum(kpx2[1:24]/1.05^(0:23)),

kpx1[12], kpx2[12], kpx1[24], kpx2[24]), dim=c(2,4),

dimnames=list(c("Gamma","Lognormal"),

c("Ains","AnnDue","P(T-x>12)","P(T-x>24)")))

Ains AnnDue P(T-x>12) P(T-x>24)

Gamma 0.04558 14.36 0.9998 0.9001

Lognormal 0.03504 14.41 1.0000 0.9258

The large relative difference between the term-insurance risk premiums is
due to the more rapid decrease of the Gamma versus the Lognormal survival
function between 12 and 24 years, which can be seen also in Figure 2.5.
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4.8 Useful Formulas from Chapter 4

Tm = [Tm]/m = x +
k

m
if x +

k

m
≤ T < x +

k + 1

m
p. 117

P (Tm = x +
k

m
| T ≥ x) = k/mpx − (k+1)/mpx = k/mpx · 1/mqx+k/m

p. 118

Endowment A 1
x:n = nEx = Ex

(
vn I[T−x≥n]

)
= vn

npx

p. 120

Ax:n = A1
x:n + A 1

x:n = A1
x:n + nEx p. 121

äx:n = Ex

(1 − vmin([T−x]+1, n)

d

)
=

1 − Ax:n

d
p. 122

d äx:n + Ax:n = 1 p. 122

Term (temporary) life annuity ax:n = äx:n+1/m − 1/m

p. 122

A(m)
x − A(m)1

x:n = vn
npx · Ax+n p. 123

Term Insurance A1
x:n = Ex

(
v[T−x]+1 I{T<x+n}

)
=

n−1∑

k=0

vk+1
kpx qx+k

p. 124
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äx:n = Ex

(
ämin([T−x]+1,n)

)
=

n−1∑

k=0

vk
kpx

p. 124

Ax:n =

n−1∑

k=0

vk+1
(

kpx − k+1px

)
+ vn

npx

p. 124

A1
x:n = Ex

(
vTm−x+1/m I{T<x+n}

)
=

nm−1∑

k=0

v(k+1)/m
k/mpx 1/mqx+k/m

p. 126

A
(m)
x:n = A(m)1

x:n + A(m) 1
x:n = A(m)1

x:n + nEx

p. 127

A
(m)
x:n =

nm−1∑

k=0

v(k+1)/m
(

k/mpx − (k+1)/mpx

)
+ vn

npx

p. 127

ä
(m)
x:n = Ex

(1 − vmin(Tm−x+1/m, n)

d(m)

)
=

1 − A
(m)
x:n

d(m)

p. 127

d(m) ä
(m)
x:n + A

(m)
x:n = 1

p. 127

a
(m)
x:n = ä

(m)

x:n+1/m
− 1/m

p. 128
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under (i): A(m)1
x:n = (i/i(m))

n−1∑

b=0

vb+1
bpx qx+b = (i/i(m))A1

x:n

p. 131

under (i): ä
(m)
x:n =

1

d(m)

(
1 − i

i(m)
A1

x:n − vn
npx

)

p. 131

e̊x = Ex(T − x) =

∫ ∞

0

s µ(x + s) spx ds

p. 134

A1
x:n = Ex

(
vT−x I{T−x≤n}

)
=

∫ n

0

vs µ(x + s) spx ds

p. 134

ax:n = Ex

(∫ n

0

vy I{y≤T−x} dy

)
=

∫ n

0

vy
ypx dy

p. 135

δ āx:n + Āx:n = 1

p. 136

under (ii): e̊x − ex =
ω−x−1∑

k=0

kpx

(
− px+k − qx+k

ln px+k

)

p. 142



Appendix A

Duration Data Structures

In this Chapter, we introduce some of the features of real data structures
embodying waiting-time or duration data. Such data arise in a wide variety
of disciplines and applied fields, including:

• Life Insurance, where payments are made and received as contractually
determined functions of the duration of an insured individual’s lifetime;

• Casualty Insurance, where the durations of interest are the times until
accident, health emergency, or other adverse occurrence resulting in
liability or loss;

• Other Insurance, such as mortgage insurance relating to the waiting
time until a specified emergency resulting in

• Clinical Trials and other Biomedical studies, where human lives meet-
ing specific criteria are followed between some initiating event (such
as diagnosis of a disease or a specific treatment or intervention) and
a response of interest (such as alleviation of symptoms, or death, or
tumor recurrence or return of other disease condition);

• Epidemiology, where larger human populations are followed between
recruitment to a study population

• Reliability, where the object of study is either cumulative time or cu-
mulative operational loading in an engineered system until failure or
specified degradation of performance; and

157
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• Economics, where the waiting times of interest are generally times of
transition, such as those for individuals from employment to unem-
ployment or vice versa, for businesses from inception to profitability or
bankruptcy, for economies between macroeconomic events, etc.

All of these examples involve the analysis of ‘lifetime’ or ‘waiting-time’
or ‘duration’ data, consisting of a waiting-time random variable T ob-
served, incompletely, for many individuals of a study population. All of
them also consider probability distributions and expected values for functions
depending on waiting-time random variables, and for many purposes of sta-
tistical anlysis and estimation, reduce the complex data as actually recorded
into the idealized format of the Life Table.

A.1 Concepts and Terminology of Duration

(or Mortality, or Survival) Studies

We next define and discuss some concepts and terminology that will allow us
to identify common versus distinct aspects of duration data in the different
subject areas listed above. We restrict attention in our discussion to stud-
ies and datasets concerning individuals, usually people, being observed over
chronological time intervals from entry into the study until the occurrence of
an event of interest – the study endpoint – or the end of followup – called
a right-censoring time – whichever comes first.

Study Population. In a formal observational setting, the study popula-
tion is defined thorugh qualifying characteristics. For example, one might
recruit into a clinical trial males with the same disease diagnosis at a des-
ignated set of hospital centers, who are between 30 and 60 years of age
and otherwise is good health, and who consent to be randomly assigned to
an experimental versus standard treatment. In an epidemiologic context, the
population might consist of those in certain professions or risky occcupations,
age-intervals, and locations, or who have specified existing medical conditions
(such as high cholesterol) and consent to participate in a study entailing a
number of scheduled medical examinations. In an insurance context, mortal-
ity or time-to-event statistics might be compiled for all individuals insured
by one or a group of companies, over a specified time-window, or the subset



A.1. SURVIVAL DATA CONCEPTS 159

of such people subject to a particular risk – such as ‘cigarette smokers’. In
some insurance tabulations, data are gathered on special high- or low-risk
populations in order to justify premiums different from those paid by the
general population.

Mode of entry. Depending on the purpose for which time-to-event data
are gathered, the initiating event for the interval of length T can have dif-
ferent possible relationships to the chronological time at which an individual
is brought under observation. The simplest case is where these are the same,
or where all individuals in the study are entered simultaneously: this kind of
survival or duration study is called a cohort study. For example, a study
in which babies born in a given year are followed for the next period of (3 or
10 or 20) years would be a cohort study, as would a reliability study in which
100 machines of a given type are set running – possibly under heighted load
or stress – and observed until failure. Another example would be a survival
study in which the interesting duration variable T is ‘time from diagnosis to
death’, and data are to be collected by followup over time on a set of subjects
who receive this diagnosis within a short period, say three months.

More broadly, and with a slightly different meaning, the term “cohort
study” applies to longitudinal data collected on a set of individuals selected
simultaneously at the outset, for example in a survey, and then followed over
time. In that usage, ‘cohort’ and ‘longitudinal’ study are roughly synony-
mous. As used in an actuarial or demographic context, which is the way we
use it in this book, ‘cohort’ refers to a set of individuals who have the same
whole-number age at the same time and whose waiting time until death or
other failure-event is of interest. In this way, one could refer to the ‘cohort’
of US males in the state of New Jersey who were 50 years old in 1977.

On the other hand, most survival studies and insurance portfolios consist
of individuals who at any single chronological time have widely differing
current ages. Whether in clinical trials or Insurance, entry of individuals
into observation occurs by staggered entry, at differing chronological times
chosen by the individual. In demography or epidemiologic studies, large
populations are studied beginning at a specified date, so that all entry times
into the study are simultaneous, but the individuals’ ages at entry vary.

Usually in Insurance and demography and epidemiology, the time variable
of interest is age. Thus, birth is the event initiating the individual’s clock,



160 APPENDIX A. GENERAL FEATURES OF DURATION DATA

but at entry into the data-collection, the individual’s age is recorded. When
the entry age is positive, the individual’s data are said to be left-censored:
the individual could have been observed to experience the study endpoint
only at an age greater than the entry age.

Mode of study termination. Survival and other duration studies are often
conducted over fixed administrative time windows. Subjects enter either
together, in a cohort, or individually, staggered. The study will end and be
reported as of a fixed chronological termination time, so individuals under
study may have a positive age at entry and age of last followup in the study
without ever having experienced the study endpoint. Moreover, in many
studies as in Insurance portfolios, individuals can withdraw from observation
before the study endpoint, for reasons which may or may not be related to
the nearness of that endpoint. For these reasons, data about the individual’s
variable T may be incomplete and are said to be right-censored: within the
dataset, the individual’s T is known only to be greater than or equal to the
last age of followup, which is also called that individual’s right-censoring
time.

Based on the examples and discussion above, we can formulate the follow-
ing general data structure for a duration or survival study. If the individuals
in a study are indexed administratively by i = 1, 2, . . . , N , then each indi-
vidual must come equipped with at least the following information:

Ei = chronological time of entry of individual i into the study

Ai = age of individual i at entry into the study

Ti = age of individual i at last followup or endpoint under the study

Di = binary indicator equal to 1 if i experiences endpoint during followup,
and equal to 0 otherwise

In terms of these notations, individual i first enters the study at chrono-
logical time Ei and is under active observation, or under followup, for
a total duration of Ti − Ai. Thus the chronological interval of followup is
[Ei, Ei + Ti − Ai]. The individual’s earliest age in the study is Ai, and the
latest is Ti. If Di = 1, the final age Ti is also the age at which the study
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endpoint is observed to occur for individual i, while if Di = 0, then individual
i does not experience the study end-point while under followup.

The terminology ‘under followup’ is the one used in clinical or epidemi-
ologic settings. Expressed in terms of age during the followup period, indi-
vidual i would be said to be on test — by adoption of an older terminology
from Reliability — on the age interval [Ai, Ti]. The biomedical term would be
that individual i is at risk at ages in the interval (Ai, Ti], while the Insurance
term is that the individual is exposed (or ‘exposed to risk’, as might be said
also in an epidemiologic or demographic context) on that age interval.
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Figure A.1: Representation of entry times (solid diamonds), at-risk inter-
vals (solid line segments), and death (filled circle) or right-censoring (hollow
circle) for each of 9 patients in an artificial clinical trial.
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The definitions for right-censored staggered-entry survival data are illus-
trated in Figure A.1, for 9 patients in an artificial clinical trial with stagg-
gered entry. Each patient’s interval at risk is a horizontal line segment be-
ginning just after the entry-time depicted with a solid diamond and ending
at the time indicated with a circle, solid if an observed death and hollow if
a dropout or censoring time. ‘Dropout’ takes place at the hollow circle for
patient 2, while the other censoring events would be called ‘administrative
right-censoring’ because the clinical trial observation periods all end at the
chronological time 10 indicated by a vertical dashed line.

The central idea of the Life Table, described in Section A.2 below, is to
tabulate over equally spaced intervals of age, or time-on-test, the numbers of
study subjects at risk and observed to fail (i.e., to experience the study end-
point while under followup). This idea is fundamental to statistical analysis
of duration data in all of the fields of study listed at the beginning of this
Chapter.

In this Section, we have addressed the most frequently occurring com-
plexities of Insurance and other survival data as actually collected. However,
there are still other complexities, some of which we can mention briefly. Sur-
vival data, or their underlying study populations are often defined through
information collected in sample surveys, in which some demographic groups
are given heavier weight than their proportion in the general population.
The way in which the data should be analyzed depend on survey inclusion
probabilities or weights, and also on what the target sampled population
was, including whether the criteria for inclusion depend on time-dependent
(for example health-related) variables. Two books describing many forms of
biomedical survival data, with examples, are those of Klein and Moeschberger
(2003) and Lee (1992).

A.2 Formal Notion of the Life Table

Consider the artificial clinical trial data summarized in Figure A.1. Such
data might have been collected for the purpose of understanding the rate of
mortality at different ages. The Life Table, or more specifically the cohort
life table, is a simplified representation which summarizes only the numbers
‘at risk’ and the numbers observed to fail and be censored, in the one-year
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age intervals [1, 2), [2, 3), . . . , [9, 10). In the notation of the previous Section,
the patient labelled i is said to be at risk (i.e. could potentially be observed
to die) at time t if Ai < t ≤ Ti, and is actually observed to die at Ti only
if Di = 1. If we agree to consider only integer times t = k, then we have

Yk = # at risk at age k =
∑

i

I[Ai<k≤Ti]

dk = # observed to die in [k, k + 1) =
∑

i

Di I[k≤Ti<k+1]

ck = # right-censored in [k, k + 1) =
∑

i

(1 − Di) I[k≤Ti<k+1]

However, it is not true that all individuals dying within the age interval
[k, k+1) were necessarily at risk at time k. For this reason, it is important
to tabulate an additional quantity, the total number of subject-years in the
survival study during which subjects were under followup at exact ages in
[k, k + 1):

τk = Time on test at ages in [k, k+1) =
∑

i

(min(Ti, k+1) −max(k,Ai))

Clearly, τk is more informative than simply Yk as a denominator against
which to compare the observed number of failures dk in order to estimate
the rate of failures within the successive age-intervals. Indeed, we will see in
Chapter 8 that a reasonable estimator of the death-rate within age-intervals
k, k + 1) are the ratios λk = dk/τk.

To complete this brief illustration, we tabulate in Table A.1 the quantities
mentioned so far for the data represented in Figure A.1.

A.2.1 The Cohort Life Table

If a cohort of individual subjects were entered into a study simultaneously
with the same age-variable and followed up until they died, then the life
table could have a simpler form, and a simpler interpretation. In that case,
the right-censored counts ck would all be 0, and the table itself would
contain all of the information (Ei, Ai, Ti,Di)

n
i=1 for the n subjects. If a

were the common initial age, then the proportions Yk/Ya would estimate
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Table A.1: Life table quantities for the staggered-entry survival data used to
construct Figure A.1.

k Age-int Yk dk ck τk λk

1 [1, 2) 0 0 0 1.2 0.0
2 [2, 3) 2 0 0 2.0 0.0
3 [3, 4) 2 0 0 3.0 0.0
4 [4, 5) 4 0 0 4.8 0.0
5 [5, 6) 5 0 0 6.0 0.0
6 [6, 7) 6 1 0 6.8 0.147
7 [7, 8) 5 1 0 6.0 0.167
8 [8, 9) 6 1 0 6.05 0.165
9 [9, 10) 4 3 1 3.0 1.0

the fraction of the population studied which survived to age k, and the
identity Yk+1 = Yk − dk would always hold.

However, only in very special applications, not in Insurance, can data
actually be collected in this cohort format. One is a study which follows up
a cohort of newborns, or a cohort of people selected somehow either at the
same age or with the same initiating event (like diagnosis of a disease whose
mortality is of interest). Some longitudinal epidemiologic studies, like the
famous Framingham study [ref ?] which monitored various risk factors for
heart disease, follow large numbers of people – many of whom are of the same
age or fall into narrow age brackets initially – over time. Animal studies can
follow cohorts, e.g. of newborn laboratory rats, which are subjected to the
same diets or survival stresses. But the one area of application in which this
kind of data is very common is Engineering Reliability, where a number of
devices are set running at identical (usually accelerated) stresses, in parallel,
and observed until they fail.

Despite the fact that mortality data for large human populations are
generally not collected in cohorts, the data are often tabulated as though
they were collected that way. Regardless of how the data in a mortality study
were collected, once can first estimate the age-specific death rates directly,

qk = number of observed deaths at exact ages in the interval [k, k + 1),
divided by the total number of person-years spent by subjects under
followup in the study
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This might be done in practice only after approximating or imputing the
times on test not directly observable in the study. Moreover, in Demography
or Insurance, the estimated death-rates are often altered slightly to enhance
smoothness of the estimated death-rates as a sequence indexed by k. Finally,
in presenting the death-rates for purposes of calculation of insurance premi-
ums or population projections, the death rates are presented in the tabular
form which we now define as the cohort life table.

The cohort life table, briefly, displays the (integer-rounded) numbers of
expected survivors at each birthday k and numbers of deaths between
successive birthdays, for a population of large hypothetical size experiencing
exactly the death rates qk interpreted as conditional probabilities of dying
at age [k, k + 1) given survival to the k’th birthday. Begin by choosing
a large conventional size l0, called the radix of the cohort life table, for a
population cohort of newborns. This number is a power of 10, usually 105.
Denote by [·] the greatest-integer or floor function. Then the cohort life
table consists of the columns

lk =
[
l0

k−1∏

j=0

qj

]
= number of lives aged k

dk = lk − lk+1 = number of deaths at ages in [k, k + 1)

for k ranging from 0 up to and including the largest integer age ω − 1,
where ω is the terminal age) seen for any subject of the mortality study.
Next to these columns may also be displayed the death-rates qk. Note that,
apart from rounding errors, qk = dk/lk for all k.

This ‘life table’ is an artificial construction, referring directly to no actu-
ally observed population, but containing exactly the same information as the
column of (smoothed, rounded) death rates qk. It is the mortality record
of a fictitious population cohort with exactly the same death rates after
smoothing and rounding as those estimated from some actual population.

A.3 Sample Spaces for Duration Data

The preceding sections have described first the actual setting in which ran-
dom durations are observed within a realistic mortality study, and then the
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idealized presentation of the observed mortality in the form of a cohort life
table, in which mortality of a fictitious population cohort is recorded. From
the viewpoint of Probability Theory, random variables or data are formalized
as measurement functions on the sample space Ω of all possible detailed
outcomes of a survival experiment. It is instructive to define the sample
spaces needed at three levels of complexity of the probability and statistics
of survival models.

A.3.1 Sample Space for a Single Newly Insured Life

The simplest case is the one studied in the first two chapters of this book,
where only integer ages are recorded in the survival experiment, and all
probabilities and expected values related to functions of a single lifetime or
integer-age-at-death random variable [T ]. Here the sample space and under-
lying probability is very easy to describe: Ω = {1, 2, . . . , l0} enumerates
the l0 lives summarized in the cohort life table, with equal assigned proba-
bility Pr({i}) = 1/l0 for each individual labelled i, 1 ≤ i ≤ l0. Recalling
that dk = lk − lk+1 in the cohort life table, for all k = 0, 1, . . . , ω − 1,
we note that l0 =

∑ω−1
k=0 dk. Then the single integer-valued age random

variable [T ] for a new individual being insured can be explicitly constructed
as a function of i ∈ Ω as follows: for k = 0, 1, . . . , ω − 1,

[T ](i) = k if and only if
k−1∑

j=0

dj < i ≤
k∑

j=0

dj (A.1)

The interpretation of this rule is that if we number the l0 individuals i in
the cohort life table in order of the whole-number age k at which they die,
then the first

∑k−1
j=1 dj = l0 − lk individuals die at ages less than k, and

the next dk individuals die at integer age k.

The underlying random experiment is to select an individual i equiprob-
ably from the list of all all l0 individuals in the cohort ‘population’: that is,
in this simplified model the lifetime [T ] of the newly to-be-insured indi-
vidual is modelled as being the same as a randomly selected member of the
cohort population. Then the event [T ] = k consists precisely of the subset
of indices i satisfying

∑k−1
j=0 dj < i ≤

∑k
j=0 dj, and therefore has size

dk and probability dk/l0 as desired.
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Remark A.1 In the next subsection, we consider the sample space appro-
priate to a cohort of lives, assumed independent, simultaneously following the
same mortality rates summarized in a cohort life table. There are cases of
intermediate complexity not discussed in detail in this book, cases where each
lifetime is additionally labelled by a cause of death L or where events defined
in terms of the dependent lifetimes T A, T B of a pair of related lives (such as
a husband-wife pair) have consequences for Insurance. The feature of these
intermediate-complexity sample spaces is that a single vector (T1, . . . , TK)
of finitely many, possibly dependent, lifetime random variables are modelled
simultaneously.

The case of lifetimes (T,L) labelled by cause arises when for each of K
distinct types of mortality, such as death from specified disease (as in ‘cancer
insurance’) or accident or from other causes, there is an underlying random
variable Tk, k = 1, 2, . . . , K, giving the age at which the individual would
have died from that cause if not earlier killed from another cause. Then the
actual observed failure age T is min(T1, . . . , TK) and the random label L
is the integer in {1, 2, . . . ,K} for which TL = T . This setup is called a
competing risks model (see Gail 1975; David and Moeschberger 1978) in
the biostatistical literature, and relates to multiple decrement (cohort) life
tables in an Insurance context (Gerber 1997 Ch. 7; Jordan 1991 Part II), but
these topics are not treated further in this book.

The joint modelling of pairs (T A, T B) or larger multi-life groups of life-
times is important in the calculation of insurance premiums and annuity or
pension values for husband-wife pairs, for example in insurances of both hus-
bands and wives or in annuities — possibly variable, like US Social Security,
or with a smaller payment to the survivor — which revert to the surviv-
ing member of the pair when one member dies. This topic is treated under
the heading of contingent multi-life functions (Jordan 1991 Part II, or
Gerber 1997 Ch. 8). 2

A.3.2 Sample Space for a Full Cohort Population

As mentioned explicitly in Section A.2.1, the cohort population whose mor-
tality is summarized in the cohort life table is generally a complete fiction.
Nevertheless, the relative frequency ratios defining the survival functions and
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death rates which are derived from the life table and used in calculated in-
surance premiums could also be viewed as statistical estimators of unknown
statistical parameters based on a set of n independent identically distributed
lifetime random variables Ti, 1 ≤ i ≤ n. That is, rather than viewing the
cohort data as fixed, we can view them as the realized values of a set of
independent identically distributed lifetime random variables representating
a realistic underlying mechanism of mortality. In particular, while the sam-
ple space described in Section A.3.1 is inherently discrete, it is a little more
realistic to treat the possible cohort lifetimes as a set of continuous random
variables, which are independent across individuals and can each take values
anywhere on the positive age axis.

The sample space described in this Section allows us to consider the in-
trinsic variability of the estimated death rates qk and other statistics derived
as a function of observed age-at-death random variables if those variable val-
ues were lifetime lengths of individuals under followup for their entire lives.
This aspect of the random mortality experiment is still an artificial idealiza-
tion, since we have already argued in this Chapter that realistic mortality
studies generally have a much more complicated and inconvenient pattern
of staggered positive ages at entry and of loss to followup before death for
many subjects under study.

The greater realism of cohort-type survival experiments, whose sample
sizes we now define, is of particular use in Chapter 3 of this book, where
the quality of death-rate estimates is studied and where the simulation of
new cohort life-tables with specified survival functions S(t) is described.
Yet it is immediately apparent that this realism comes at a price of greater
mathematical complexity. The sample space itself must be a set of detailed
outcomes not only for a single continuously distributed lifetime, but for a
sequence of n independent lifetimes. The most natural space to use is
Ω = Rn

+ = [0,∞)n, with the vector-valued mapping given by the identity
mapping on Ω:

T (s) = {Ti(s)}n
i=1 = {si}n

i=1

Unlike the situation in Section A.2.1, where the random-lifetime mapping
was defined in such a way that the probabilities associated with individual
outcomes were equiprobable, now the probabilities are defined by the prop-
erty that the lifetimes all follow survival function S(t) and are independent
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of one another, a specification accomplished by the definition

Pr
({

s ∈ Rn : a1 < s1 ≤ b1, a2 < s2 ≤ b2, . . . , an < sn ≤ bn

})
=

Pr
({

s ∈ Rn : T (s) ∈ (a1, b1]×(a2, b2]×· · ·×(an, bn]
})

=
n∏

i=1

(S(ai)−S(bi))

Probabilities of other events concerning the random-variable components
Ti(s) are implicitly determined from this definition on n-dimensional recan-
gles

⊗n
i=1 (ai, bi] by means of the probability axioms (finite or countable

additivity), since a very large class of events can be generated by limits of
increasing unions and decreasing intersections of unions of such rectangles.
Further details of the unique specification of probability laws from a gener-
ating collection of open sets can be found in more advanced treatments of
Probability Theory, such as Ross (2005) or Billingsley (1995).

A.3.3 Sample Space for the Realistic Mortality Study

The Sample Space Ω needed to accomodate the detailed outcome data
(Ei, Ai, Ti,Di, 1 ≤ i ≤ n) described in Section A.1 requires a Cartesian
product of R3n

+ whose coordinates model the values factors of all of the
random variables Ei, Ai, Ti, 1 ≤ i ≤ n, along with a further space {0, 1}n

to model the values Di, 1 ≤ i ≤ n. The usual assumption of independence
of (Ei, Ai, Ti,Di) across different individuals i is embodied in a definition
of Probability on Ω as a so-called ‘product probability’ across n spaces
R3

+ × {0, 1}. However, the joint probability density of (Ei, Ai, Ti,Di), can
have all sorts of different realistic dependence structures. We refer to texts on
Survival Analysis (Cox and Oakes 1994; Klein and Moeschberger 2003; David
and Moeschberger 1978) for discussion of such matters. In this book, only in
Chapter 8 do we address a simplified although typical setting (‘independent
death and censoring’) to introduce maximum likelihood estimators of survival
in models with piecewise constant hazards and Kaplan-Meier estimators in
models with general (‘nonparametric’) hazards.
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