
1

Symbolic Solutions

Table of Contents
The Symbolic Approach .. 1
Solving One Equation Symbolically ... 1
Which Variable to Solve For? .. 2
Solving When Not Equal to Zero .. 2
Solving a System of Equations Symbolically ... 2
Order of The Variables in the Solution ... 4

We can ask MATLAB to try to solve equations two different ways. MATLAB can sometimes obtain a symbolic solu-
tion by manipulating the symbols in the equation(s) much like you would do with pencil and paper in an introductory
math class. Another way is to find a numerical answer which may be approximate.

The Symbolic Approach
This approach works well for some problems. Unfortunately there is a large class of problems that will
defy attempts to solve them this way. For example try solving (by hand) the equation

ln(x)+x+1=0

It looks easy to solve but it isn't! An equation like this one can be solved using a numerical method which
will yield a very good approximation to the precise answer. The numerical approach usually involves
taking an initial estimate of the correct solution and then repeating some kind of calculation over and over
to gradually improve the estimate.

Solving One Equation Symbolically
Suppose you want to find the solutions to the quadratic equation

x^2-5*x=0

Matlab can solve this with the solve command. By default this solves the symbolic expression equal to
zero. First we symbolically define our variable x and then apply the command. Try this:

syms x
solve (x^2 - 5 * x)

ans =

 0
 5

That was easy! MATLAB found both of the solutions. You can also ask MATLAB to solve equations that
involve arbitrary constants. A nice example is to try to find the general solutions to the generalized form
of the quadratic equation a*x^2+b*x+c=0. What do you think the solutions should look like? Let's see
if you're right...

Symbolic Solutions

2

syms x a b c
solve(a * x ^ 2 + b * x + c)

ans =

 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

Do those solutions look familiar? You may have to mentally re-arrange them to make them look the way
you're used to seeing them!

Which Variable to Solve For?
How does Matlab know which variable to solve for? It tries to follow common-sense respecting what we
usually solve for. Since the variable x is so common it solves for that one first. Suppose we wished to
solve a*x^2+b*x+c=0 for a; we'd have to tell Matlab as follows:

syms a b c x
solve(a*x^2+b*x+c,a)

ans =

-(c + b*x)/x^2

Solving When Not Equal to Zero
If we're interested in solving an equation which is not equal to zero then we have to enclose the expression
in apostrophes (single quotes):

syms x
solve('2*x+3 = 7')

ans =

2

Solving a System of Equations Symbolically
You can use the solve command for a whole system of equations as well. For example, suppose we are
trying to find the solution to the following system of equations:

3*x+4*y+z-7=0
x-y-15=0
6*x-2*y-5*z+11=0

We can try to use the solve command to do this by feeding it all of the equations at once, separating
them with commas:

Symbolic Solutions

3

syms x y z
solve (3*x+4*y+z-7,x-y-15,6*x-2*y-5*z+11)

ans =

 x: [1x1 sym]
 y: [1x1 sym]
 z: [1x1 sym]

Hmmmm. That output is a bit disappointing! To enable us to see the actual answers conveniently, we can
introduce an intermediate variable that will store the whole "vector" of answers. Then we can view the
values individually. Here's how that might look:

syms x y z
MyAnswers = solve (3*x+4*y+z-7,x-y-15,6*x-2*y-5*z+11)

MyAnswers =

 x: [1x1 sym]
 y: [1x1 sym]
 z: [1x1 sym]

Now we can ask to see each of the three values individually, as follows:

MyAnswers.x

ans =

98/13

MyAnswers.y

ans =

-97/13

MyAnswers.z

ans =

185/13

Another way to accomplish the same thing is by assigning the value of the computation to a vector com-
prised of variables like this:

[x y z] = solve (3*x+4*y+z-7,x-y-15,6*x-2*y-5*z+11)

Symbolic Solutions

4

x =

98/13

y =

-97/13

z =

185/13

Notice that the answers are displayed as fractions rather decimal expansions. Does that surprise you? It
actually makes sense because Matlab solved the equations symbolically. If you solved these equations by
hand, the last operation you would do in calculating z would be to take 185 and divide it by 13. Although
you could try to evaluate this as a decimal why should you? The expression 185/13 is exact. If this were
written as a decimal it would be 14.230769230769230769230769.... We could only write down
an approximation this way and besides -- it looks really hideous!

Order of The Variables in the Solution
The solve command returns a vector with entries in alphabetical order. For example

solve(x+y,x-y+2)

will return the vector whose first entry is x and whose second entry is y. If you do something like

[y x]=solve(x+y,x-y+2)

then what happens is that y gets assigned to the x solution and x gets assigned to the y solution. This
is not what you want.

To unconfuse things make sure that your entries in the vector on the left are in alphabetical order! For
example if your variables are dogs and cats then don't do:

[dogs,cats] = ...

instead do

[cats,dogs] = ...

Published with MATLAB® 8.0

	Table of Contents
	The Symbolic Approach
	Solving One Equation Symbolically
	Which Variable to Solve For?
	Solving When Not Equal to Zero
	Solving a System of Equations Symbolically
	Order of The Variables in the Solution

