Differentiation

Table of Contents

Using diff 1
Higher Derivatives 1
IMPORTANT 2
Higher Derivatives - An Alternate Way 2
A Different Variable 2
Wait, that Second Parameter? 3
Again with Symbolic Functions 3
Differentiating and then Plugging In - Using subs. 3
Plotting Derivatives 4

Differentiation is the most important thing in calculus so let's get to it!

Using diff

What about calculus? Don't worry -- Matlab will not let you down! Suppose you'd like to differentiate the function $\log \left(6^{*} x+2\right)$. You could either do it yourself or... just ask Matlab to do it with the diff command:

```
syms x
diff(log(6 * x + 2))
    ans =
    6/(6*x + 2)
```

Or with a symbolic function:

```
syms f(x);
f(x)= cos(x^2+2*tan(x));
diff(f(x))
```

```
ans=
```

ans=
-sin(2*tan (x) + x^2)*(2*x + 2* tan (x)^2 + 2)

```
-sin(2*tan (x) + x^2)*(2*x + 2* tan (x)^2 + 2)
```


Higher Derivatives

What could be easier?
Would you like to find the third derivative of the function $\log (6 * x+2)$? That's easy too -- just pass 3 as a second parameter to the diff command:

```
diff(log(6 * x + 2), 3)
```


IMPORTANT

It is a common mistake to believe that the 3 in the above calculation will take the first derivative and plug in $\mathrm{x}=3$. It does not do this! If you want to differentiate and then plug in just wait a bit and we'll cover that.

Higher Derivatives - An Alternate Way

It's worth noting that we could have taken the third derivative this way, though we probably wouldn't:

```
diff(diff(diff(log(6*x+2))))
ans =
432/(6*x + 2)^3
```


A Different Variable

Suppose our expression has two variables and we want the derivative with respect to one of them. As usual x is the default

```
syms a x
```

$\operatorname{diff}\left(a^{\wedge} 3 * x^{\wedge} 4\right)$
ans =
$4 * a^{\wedge} 3 * x^{\wedge} 3$
but we can tell Matlab differently.
$\operatorname{diff}\left(a^{\wedge} 3^{*} x^{\wedge} 4, a\right)$
ans =
$3 * a^{\wedge} 2 * x^{\wedge} 4$

We can even do the second derivative with respect to a.
$\operatorname{diff}\left(a^{\wedge} 3 * x^{\wedge} 4, a, 2\right)$

```
6*a* *^4
```


Wait, that Second Parameter?

Matlab is smart. If the second parameter is a variable it will take the derivative with respect to that variable. If it's a number it will take that numbered derivative. If it sees a variable and then a number it will take that numbered derivative with respect to that variable.

Again with Symbolic Functions

If we have a symbolic function of multiple variables we can differentiate too:

```
syms f(x,y);
f(x,y) = 2* *^2* y^3+x*
diff(f(x,y),x)
ans =
```


We could even take the deriative with respect to x and then with respect to y . This might only make sense to those with multidimensional calculus:
$\operatorname{diff}(\operatorname{diff}(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{x}), \mathrm{y})$

```
ans =
    2* }\mp@subsup{x}{}{*}\operatorname{cos}(\mp@subsup{x}{}{*}y)+12*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\wedge}2-\mp@subsup{x}{}{\wedge}2*\mp@subsup{}{}{*}\mp@subsup{y}{}{*}\operatorname{sin}(\mp@subsup{x}{}{*}y
```


Differentiating and then Plugging In - Using subs.

It may seem a bit late but this is the perfect time to talk about plugging things into symbolic expressions. Here's how. Suppose we simply want to plug $x=3$ into $x^{\wedge} 2-x+2$. We do:

```
subs (x^2-x+2,x,3)
```

 ans =
 8
 So now to take the derivative and then plug in, we simply nest the commands. Here's the second derivative of $x^{\wedge} 3+\exp \left(x^{\wedge} 2\right)$ with $x=1$ plugged in:
subs (diff($\left.\left.x^{\wedge} 3+\exp \left(x^{\wedge} 2\right), 2\right), x, 1\right)$

```
ans =
```

22.3097

Or with a function:
syms $f(x)$;
$f(x)=1 /\left(x^{\wedge} 2+3\right)$;
subs (diff(f(x)), x,-3)

```
ans =
0.0417
```


Plotting Derivatives

Likewise we can nest diff inside ezplot. Here's an example, a plot of the derivative of $\sin \left(x^{\wedge} 2\right)$: ezplot(diff(sin(x^2)))

Published with MATLAB® 8.0

