1. Given the function \(f(x) = (x-2)(x-5) \), find the equations of two lines: one tangent to \(f(x) \) and the other perpendicular to \(f(x) \), both at \(x = 2 \). Draw graphs of all three on a single graph.

2. Evaluate the following derivatives:
 (a) \(\frac{d}{dx} \tan(2x^2 + 1) \)
 (b) \(\frac{d}{dt} t^2 e^{-t} \)
 (c) \(\frac{d}{dx} \sin^{-1}(5x) \)

3. Evaluate the following integrals:
 (a) \(\int \sqrt{1-x} \, dx \)
 (b) \(\int \frac{1}{\sqrt{4-x^2}} \, dx \)
 (c) \(\int \cos^2(3x) \, dx \)
 (d) \(\int 3xe^{-2x} \, dx \)

4. Plot the curves with the following parametrizations:
 (a) \(x = 3t + 1 \) and \(y = 1 - t \) for \(0 \leq t \leq 3 \).
 (b) \(x = 2 \cos t \) and \(y = 3 \sin t \) for \(0 \leq t \leq \pi \).

5. Plot the following polar graphs:
 (a) \(r = \cos \theta \)
 (b) \(r = 3 \)
 (c) \(r = 2 \sec \theta \). Hint: \(r \cos \theta = x \).