When you generate a random \(m \times n \) matrix, it would have rank as big as possible, which means the minimum of \(m \) and \(n \). Try this by using \(\text{rank}(\text{rand}(4, 7)) \), \(\text{rank}(\text{rand}(8, 4)) \) etc.

You can generate \(m \times n \) matrices with smaller rank by the following method. Assume you would like to get an \(4 \times 7 \) matrix of rank 2. Then use \(A = \text{rand}(4, 2) \ast \text{rand}(2, 7) \). Try it and check that indeed rank equals 2.

Problem 1. a) Generate random \(6 \times 8 \), \(7 \times 5 \), \(10 \times 10 \) matrices (do not print them!) and check that their ranks are as expected.
b) Generate a random \(6 \times 8 \) matrix of rank 3. Check that its rank is 3.
Ask matlab for a basis for its nullspace. The matlab command \(\text{null}(A) \) produces a matrix whose columns form a basis for the nullspace of \(A \).
Use Matlab commands and the theory to check that you indeed got a basis for the nullspace of \(A \).
First use matrix multiplication to check whether vectors you got are in the nullspace. Then check that they are linearly independent. Then refer to a theorem from the textbook which implies that these vectors span the nullspace.

Problem 2. Solve the following linear systems with complex coefficients by using two methods \(\text{rref}([A \ b]) \) and \(x = A\backslash b \) and explain your answers.

\[
(1 + i)x_1 + (2 - i)x_2 + 3ix_3 = 7 - 5i \\
2x_1 + (1 - i)x_3 = 4i \\
x_1 + 4ix_2 + (1 + 3i)x_3 = -5 + 7i
\]

and

\[
(1 + i)x_1 + (-3i)x_2 + x_3 = 5 - 4i \\
(3 - i)x_1 - (6 + i)x_2 + 3x_3 = 1 + 2i
\]