MATH 401 Applications of Linear Algebra Matlab Problem Set 1

Problems

1. Let A be the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
4 & 5 & -2 & 0 \\
2 & 4 & -2 & 1 \\
4 & 2 & -5 & 1
\end{array}\right]
$$

a) Use the MATLAB command $[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\mathrm{lu}(\mathrm{A})$ to get the factorization $P A=L U$. Verify that indeed $\mathrm{P} * \mathrm{~A}=\mathrm{L} * \mathrm{U}$.
b) Now let $B=P A$. Try the command $[\mathrm{L}, \mathrm{U}, \mathrm{P}]=1 \mathrm{u}(\mathrm{B})$. Why is $P=I$?
2. In this exercise we see the speed gained by using the $L U$ factorization. For a given vector x_{1} we want to find the vectors x_{k} defined by the recursive relation

$$
A x_{k+1}=x_{k}, \quad k=1, \ldots, 49 .
$$

We shall do this in a Mfile as follows:

```
    % create a random 100 x 100 matrices with
        entries between 0 and 1
    A = rand (100,100);
    % create a column vector of all ones.
    x1 = ones(100,1);
    x = x1;
tic
for k = 1:49
        x = A\x;
end
toc
% displays the time elapsed to compute
        the 49 iterates.
% this is x_50
x
```

Now extend this Mfile by writing the command that factors $A, P A=L U$, and then write a loop that solves the equations

$$
L y=P x_{k} \quad U x_{k+1}=y, \quad k=1, \ldots, 49 .
$$

Put a command tic before the factorization command, and put a toc command at the end of the loop. Compare the last values of x in both loops to make sure you are doing the same calculation. Compare the times needed for the different loops for several different matrices A. Each time you run the Mfile, a different matrix A is created.
3. In this exercise we use MATLAB to solve the equations used to describe the system of springs and masses. We will work with a system of 7 springs and 6 masses. We shall assume that the springs all have length $l=.1$ Let the spring constants be $k_{j}, j=1, \ldots, 7$. Let $a=\left(a_{1}, a_{2}, \ldots, a_{6}\right)$ be the equilibrium positions of the joints of the springs when then there are no masses. They satisfy the equations $S a=b$ where S is the tridiagonal matrix constructed from the spring constants

$$
S=\left[\begin{array}{cccccc}
k_{1}+k_{2} & -k_{2} & 0 & 0 & 0 & 0 \\
-k_{2} & k_{2}+k_{3} & -k_{3} & 0 & 0 & 0 \\
0 & -k_{3} & k_{3}+k_{4} & -k_{4} & 0 & 0 \\
0 & 0 & -k_{4} & k_{4}+k_{5} & -k_{5} & 0 \\
0 & 0 & 0 & -k_{5} & k_{5}+k_{6} & -k_{6} \\
0 & 0 & 0 & 0 & -k_{6} & k_{6}+k_{7}
\end{array}\right]
$$

and b is the column vector
$b=\left(l\left(k_{1}-k_{2}\right), l\left(k_{2}-k_{3}\right), l\left(k_{3}-l_{4}\right), l\left(k_{4}-k_{5}\right), l\left(k_{5}-k_{6}\right), l\left(k_{6}-k_{7}\right)+k_{7}\right)$.
a) Write a script Mfile that does the following:
(i) Takes a vector of values k_{j} as input;
(ii) Creates the matrix S and the vector b;
(iii) Solves the system $S a=b$; and
(iv) Plots the joining points a_{j} on the x axis.

Try various vectors of spring constants: First $k=(1,1,1,1,1,1,1)$. Then $k=(1,2,3,4,3,2,1)$. Finally take $k=(1,2,3,4,5,6,7)$. Give a physical interpretation of your results in each case. Verify in each case that $a_{1} \geq l$, $a_{j}-a_{j-1} \geq l$, and $1-a_{6} \geq l$. How do you interpret this physically?

Now consider the system that describes the small displacements of the masses. Let

$$
d_{j}=a_{j}-a_{j-1}, \quad j=2, \ldots, 6
$$

while

$$
d_{1}=a_{1}, \quad d_{7}=1-a_{6}
$$

The numbers d_{j} are the lengths of the stretched springs in equilibrium. We set

$$
r_{j}=1-\frac{l}{d_{j}}
$$

Since all $d_{j}>l$, the numbers $r_{j}>0$. Let T be the matrix obtained by replacing k_{j} in S by $r_{j} k_{j}$.

Let $m=\left(m_{1}, \ldots, m_{6}\right)$ be the vector of masses. Then the vector $y=$ $\left(y_{1}, \ldots, y_{6}\right)$ of small displacments of masses satisfies

$$
T y=-g m
$$

where g is the gravitational constant, $g=9.8 \mathrm{~m} / \mathrm{s}$.
b) Extend the Mfile of part a) to do the following:
(i) Accepts a vector $m=\left(m_{1}, \ldots, m_{6}\right)$ of masses as input;
(ii) Creates the matrix T and the vector $-g m$;
(iii) Solves the system $T y=-m g$;
(iv) plots the solution points $\left(a_{j}, y_{j}\right)$

Set all the $k_{j}=1$, and try various combinations of masses. First try all $m_{j}=.001$. Next try $m_{1}=m_{2}=m_{3}=m_{6}=.01$, and $m_{4}=m_{5}=.003$.

