MATH 401 Applications of linear algebra
 Problem set 4
 Problems on eigenvalues and Markov processes

1. In this exercise we use the MATLAB codes gersh1 and gersh2 which are available on my web page.
a) Consider the matric

$$
A=\left[\begin{array}{cc}
1 & s \\
-s & 2
\end{array}\right]
$$

A has the form $A=L+s R$ where L is diagonal and R is skew symmetric. For what values of s are the eigenvalues of A real? What is the value s^{*} where the real eigenvalues coalesce and then split into two complex eigenvalues? Plot the eignevalues in the complex plane for $0 \leq s \leq 1$.

The codes gersh1 and gersh2 start with the diagonal matrix L, with elements $1,2,4,7$, and adds a perturbation $s R$ where R is a random matrix. The eigenvalues of $A(s)=L+s R$ are plotted in red for $0 \leq s \leq 1$. Eigenvalues of $A(0)=L$ are located in blue and the Gershgorin disks for the matrix $A(1)=L+R$ are plotted as blue circles.
b) In the code gersh1, the perturbation R is a random matrix with all entries between 0 and 1 . Run this code several times to see how the eigenvalues change. Do the eigenvalues of $A(1)=L+R$ ever come close to the boundaries of the Gershgorin disks?
c) In the code gersh2, the perturbation matrix R is a random skew symmetric matrix with entries between -1 and 1. Run this code several times. Do you see behavior similar to that of part a)? Do the eigenvalues of $A(1)$ come close to the boundaries of the Gershgorin disks?
2. Use the following MATAB commands to generate a 10×10 Markov matrix.

```
A = rand (10,10);
for j = 1:10
    colsum = sum(A(:,j));
    A(:,j) = A(:,j)/colsum;
end
```

a) Use the command $[S, D]=\operatorname{eig}(A)$ to find the steady state of this process. Normalize the steady state so that the entries sum to one:
steady $=$ steady/sum(steady)
b) Set $d=\operatorname{diag}(D)$ and then look at $\operatorname{abs}(d)$ to find the eigenvalue λ_{2} with largest absolute value, $\left|\lambda_{2}\right|<1$.
c) Now generate a random column vector having entries that sum to one.

$$
\begin{aligned}
& \mathrm{v}=\operatorname{rand}(10,1) ; \\
& \mathrm{v}=\mathrm{v} / \operatorname{sum}(\mathrm{v}) ;
\end{aligned}
$$

We know that for any normalized vector v, the iterates $A^{k} v$ converge to the steady state as $k \rightarrow \infty$. Can we estimate how fast? Combine the all the previous instructions into a code that compares the value $\left|\lambda_{2}\right|^{k}$ with the difference steady - $\left(\mathrm{A}^{\wedge} \mathrm{k}\right) * \mathrm{v}$ for several different matrices A, several different vectors v, and the values $k=5,10,20$. What do you observe?
3. Write a MATLAB code that generates a random 4×4 matrix A and a random 4×1 column starting vector u_{0}. Then write a loop to implement the power method to approximate the largest eigenvalue of A. Try 10 iterations. Compare your result with the result you get by using MATLAB command eig.

