Math 140, Jeffrey Adams/Test II SOLUTIONS

Question 1. (20 points) (a)

\[f'(x) = \frac{(\cos(2x) + x(-2\sin(2x)))e^{3x} - x\cos(2x)3e^{3x}}{e^{6x}} \]

Plugging in \(x = 0 \) gives \(f''(0) = \frac{(1+0)1-0}{1} = 1. \)

(b)

\[f'(x) = \frac{1}{\cos(x)}(-\sin(x)) = -\frac{\sin(x)}{\cos(x)} = -\tan(x), \]

and

\[f''(x) = -\frac{\cos(x)(\cos(x) - \sin(x)(-\sin(x)))}{\cos^2(x)} = -\frac{1}{\cos^2(x)} = -\sec^2(x). \]

Question 2. (20 points)

(a) Differentiating gives \(\sin(x-y)(1-\frac{dy}{dx}) = 1 \). Solve this for \(\frac{dy}{dx} \):

\[1 - \frac{dy}{dx} = -\frac{1}{\sin(x-y)}, \]

or \(\frac{dy}{dx} = 1 + \frac{1}{\sin(x-y)}. \)

(b) Plugging in \(x = 0, y = \pi/2 \) gives \(\frac{dy}{dx} = 1 + \frac{1}{\sin(-\pi/2)} = 1 - 1 = 0. \)

(c) Since the the tangent line has slope 0 by (b), it is horizontal, with equation \(y = \pi/2. \) Alternatively, \(y = \frac{\pi}{2} = 0(x-0), \) or \(y = -\frac{\pi}{2}. \)

Question 3. (20 points)

Let \(O \) be the center of the circle, \(P \) be the point on the circle. Let \(L \) be a horizontal line through the center of the circle. Let \(\theta \) be the angle between the line \(OP \) and \(L \), and let \(h \) be the height of \(P \) above the ground.

Let \(\frac{dh}{dt} = 3, \) and we are looking for \(\frac{dh}{dt}. \) The equation relating them is \(h = 100\sin(\theta). \) Therefore \(\frac{dh}{dt} = 100\cos(\theta)\frac{d\theta}{dt} = 300\cos(\theta). \)

We need to find \(\cos(\theta) \) when \(h = 50. \) When \(h = 50, \) \(\sin(\theta) = 50/100 = \frac{1}{2}. \)

Therefore \(\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \frac{1}{4}} = \sqrt{3}/2. \) Therefore \(\frac{dh}{dt} = 300\sqrt{3}/2 = 150\sqrt{3} = 259.8. . . . \)

Question 4. (20 points)

(a) Let \(f(x) = \ln(x), a = 20 \) and \(h = .01. \) Then \(f(20.01) \approx f(20) + (.01)f'(20). \)

Since \(f'(x) = \frac{1}{x}, f'(20) = \frac{1}{20} = .05. \) Therefore

\[f(20.01) \approx 2.9957322735 + (.01)(.05) = 2.9962322735. \]

(b) The error is \(2.9962322735 - 2.9962321485 = .0000001249 \) (or \(.0000001250, \) depending on how your round off.)

Question 5. (20 points)

The first step is \(c_1 = 4 - \frac{f(4)}{f'(4)} = 4 - \frac{\log(4) - 4 + 3}{\frac{4}{4-1}} = 4.5150591481 \) and the second is

\[c_2 = 4.5150591481 - \frac{f(4.5150591481)}{f'(4.5150591481)} = 4.5150591481 - \frac{\log(4.5150591481) - 4.5150591481 + 3}{\frac{1}{4.5150591481} - 1} = 4.5052445368. \]