Math 403, Jeffrey Adams
Test II, April 30, 2010 Take Home SOLUTIONS

1. Suppose R has no zero-divisors, and $a \in R$ $(a \neq 0)$ satisfies $a^2 = a$. Show that a is a unity for R.

For $b \in R$ we have $a^2b = ab$, which can be written $(ab)a = ba$, or $(ab-b)a = 0$. Since there are no zero-divisors this implies $ab-b = 0$, or $ab = b$. This holds for all a: a is a unity.

Note: If you assume R has a unity 1, then $a^2 = a$ implies $a(a-1) = 0$, which implies $a = 1$ since there are no zero-divisors. But strictly speaking one shouldn’t assume there is a 1 beforehand.

2. Suppose R is commutative with prime characteristic p.

(a) Show that for all $a, b \in R$, $(a+b)^p = a^p + b^p$.

By the binomial theory $(a+b)^p = \sum \binom{p}{k}a^kb^{p-k}$. It is a standard fact that p divides $\binom{p}{k}$ for all $1 \leq k \leq p-1$. For example $\binom{p}{2} = p$, $\binom{p}{2} = p(p-1)/2$, etc. So reducing (mod p) all terms are 0 except the first and last, giving $a^p + b^p$

(b) Show that the map $f(a) = a^p$ is a ring homomorphism from R to R. Obviously $f(ab) = (ab)^p = a^pb^p = f(a)f(b)$. Also $f(a+b) = (a+b)^p = a^p + b^p$ by part (a), and this equals $f(a) + f(b)$.

3. Suppose R is commutative with unity. Let $S = \{ r \in R \mid r$ is not a unit $\}$. If S is an ideal, show that it is (a) a maximal ideal in R, and (b) the unique maximal ideal.

Suppose $I \subset J \subset R$ and $I \neq J$. Then there is an element $a \in J - I$. By definition of I a is a unit (i.e. not a non-unit). But then $J = R$ as usual: for any r, $(ra^{-1})a = r \in J$.

For (b), if I is a proper ideal then I cannot contain a unit (which forces $I = R$). Therefore I is contained in the non-units, i.e. $I \subset S$. So every proper ideal is contained in S, and S is the unique maximal ideal.

4. Suppose R, S are commutative with unities. Let f be a homomorphism from R onto S. Suppose I is an ideal in S, and let $J = \{ r \in R \mid f(r) \in I \}$.

(a) Show that J is an ideal in R.

This is straightforward. If $a, b \in J$, then $f(ab) = f(a)f(b)i$$I$, and $f(a) + f(b) \in I$, so $ab \in J, a + b \in J$. Also if $a \in R, b \in J$ then $f(ab) = f(a)f(b) \in I$ since $f(b) \in I$ and I is an ideal. So $ab \in J$.

(b) If I is prime show that J is prime.

(c) If I is maximal show that J is maximal.

Consider the homomorphism $\phi : R \to S/I$, obtained by composing f with the projection to S/I. This is surjective since f is surjective. Its kernel is J: if $f(x) = 0$ in S/I, then $f(x) \in I$, i.e.
Recall I is prime if and only if R/I is an integral domain. By the isomorphism this holds if and only if S/J is an integral domain, i.e. if and only if J is prime.

Similarly with maximal in place of prime, and field in place of integral domain.

For another proof of (c), suppose $J \subset K \subset R$. We want to show $K = J$ or $K = R$. We have $I = f(J) \subset f(K) \subset S = f(R)$, and $f(K)$ is an ideal. Since I is maximal, $I = f(K)$ or $S = f(K)$. If $I = f(K)$ then K is contained in $f^{-1}(I) = J$, so $K = J$.

On the other hand suppose $f(K) = S$. This does not immediately imply $K = S$. Since $f(K) = S$ we can find $k \in K$ so that $f(k) = 1$. If $k = 1$ then $K = R$ and we’re done. But we can’t assume $f(k) = 1$. However $f(1) = 1$ also, so $f(k - 1) = f(k) - f(1) = 1 - 1 = 0$. Since $0 \in I$, this says $f(k - 1) \in I$, so $k - 1 \in J$. Write $k - 1 = j$ for some $j \in J$. Then $1 = k - j$. Since $k \in K, j \in J \subset K$, this says $1 \in K$, so indeed $K = R$.

5. Suppose R is commutative and I is a prime ideal of R. Show that (a) $I[x]$ is an ideal in $R[x]$ and (b) $I[x]$ is a prime ideal.

(a) If $p(x) = \sum a_i x^i \in R[x]$ and $f(x) = \sum b_j x^j \in I[x]$ then $f(x)p(x) = \sum_{i,j} a_i b_j x^{i+j}$. Since $b_j \in I, a_i \in R$ and I is an ideal each $a_i b_j \in I$, so $f(x)p(x) \in I[x]$. Also clearly $I[x]$ is a ring.

(b) Suppose $f(x) = \sum a_i x^i \in R[x]$ and $g(x) = \sum b_j x^j \in R[x]$ and $f(x)g(x) \in I[x]$. We want to show all $a_i \in I$ or all $b_j \in I$.

Proof by contradiction: suppose not, and choose r, s minimal so that $a_r \notin I, b_s \notin I$. The coefficient c_{r+s} of x^{r+s} in $f(x)g(x)$ is $c_{r+s} = \sum_{i+j=r+s} a_i b_j$. If $i + j = r + s$ then, unless $i = r, j = s$, either $i < r$ or $j < s$. By assumption $i < r$ implies $a_i \in$, and $j < s$ implies $b_j \in I$. Since I is an ideal all terms in this sum are in I, except possibly $a_r b_s$. By assumption $c_{r+s} \in I$. Therefore $a_r b_s = c_{r+s} - \sum a_i b_j$ where the sum is over all $i + j = r + s$ except $i = r, j = s$. All terms on the right are on I, so $a_r b_s \in I$, a contradiction.

Here is another nice proof, provided by someone in class. There is a natural homomorphism $\psi : R[x]/I[x] \rightarrow (R/I)[x]$. Since I is prime R/I is an integral domain, and by Theorem 16.1 $(R/I)[x]$ is an integral domain. Now it is not hard to see ψ is an isomorphism. So $R[x]/I[x]$ is an integral domain, which implies $I[x]$ is prime.
6. For p a prime determine the number of irreducible polynomials over \mathbb{Z}_p of degree 2.

The polynomials $(x - a)(x - b)$ are reducible. There are $\binom{p}{2}$ with $a \neq b$, and p with $a = b$, for a total of $p + \binom{p}{2} = p(p + 1)/2$. These are the ones with coefficient of x^2 equal to 1. Multiply by $p - 1$ to have arbitrary such coefficient. There are thus $(p - 1)p(p + 1)/2$ reducible polynomials. There are $(p - 1)p^2$ polynomials of degree 2, so there are $(p - 1)p^2 - (p - 1)p(p + 1)/2 = (p - 1)\binom{p}{2}$ irreducible ones.