Math/Cmsc 475, Jeffrey Adams Twelve-Fold Way

The number of ways of putting m balls into n boxes,

m balls	n boxes	no constraint	≤ 1	≥ 1
distinct	distinct	n^m	n!/(n-m)!	n!S(m,n)
identical	distinct	$\binom{n+m-1}{n-1}$	$\binom{n}{m}$	$\binom{n-1}{m-1}$
distinct	identical	$S(m,1) + S(m,2) + \dots + S(m,n)$	$\begin{cases} 0 & m \le n \\ 1 & m > n \end{cases}$	S(m,n)
identical	identical	$p_1(m) + p_2(m) + \dots p_n(m)$	$\begin{cases} 0 & m \le n \\ 1 & m > n \end{cases}$	$p_m(n)$

Notation:

- 1. $\binom{a}{b} = \frac{a!}{b!(a-b)!}$
- 2. S(m, n) is a Stirling number of the second kind: the number of partitions of an *m*-set into *n* parts.
- 3. $p_k(m)$: number of partitions of m into k parts

See Enumerative Combinatorics by Richard Stanley.