Math/Cmsc 475, Jeffrey Adams
 Twelve-Fold Way

The number of ways of putting m balls into n boxes,

m balls	n boxes	no constraint	≤ 1	≥ 1
distinct	distinct	n^{m}	$n!/(n-m)!$	$n!S(m, n)$
identical	distinct	$\binom{n+m-1}{n-1}$	$\binom{n}{m}$	$\binom{n-1}{m-1}$
distinct	identical	$S(m, 1)+S(m, 2)+\cdots+S(m, n)$	$\begin{cases}0 & m \leq n \\ 1 & m>n\end{cases}$	$S(m, n)$
identical	identical	$p_{1}(m)+p_{2}(m)+\ldots p_{n}(m)$	$\begin{cases}0 & m \leq n \\ 1 & m>n\end{cases}$	$p_{m}(n)$

Notation:

1. $\binom{a}{b}=\frac{a!}{b!(a-b)!}$
2. $S(m, n)$ is a Stirling number of the second kind: the number of partitions of an m-set into n parts.
3. $p_{k}(m)$: number of partitions of m into k parts

See Enumerative Combinatorics by Richard Stanley.

